Supplementary Material

A Proofs of Lemmas 7 and 8

The proofs of Lemmas 7 and 8 require additional notations and some preliminary results. Returning to the process depicted in Algorithm 3, let the conditional probability measures for all $i \in [K]$ be

$$\mathbf{Q}_i(\cdot) = \mathbb{P}(\cdot \mid i^* = i)$$

and denote Ω_0 the probability over the loss sequence when $\Delta = 0$, and all actions incur the same loss. Next, let \mathcal{F} be the σ -algebra generated by the player's observations $\{\ell_{t,I_t}\}_{t \in [T]}$. Denote the *total variation* distance between Ω_i and Ω_j on \mathcal{F} by

$$d_{\mathrm{TV}}^{\mathcal{F}}(\mathbf{Q}_i,\mathbf{Q}_j) = \sup_{E \in \mathcal{F}} |\mathbf{Q}_i(E) - \mathbf{Q}_j(E)|.$$

We also denote \mathbb{E}_{Ω_i} as the expectation on the conditional distribution Ω_i . Lastly, we present the following result from Dekel et al. [8].

Lemma 10 ([8, Lemma 3 and Corollary 1]). For any $i \in [K]$ it holds that

$$\frac{1}{K}\sum_{i=1}^{K} d_{TV}^{\mathcal{F}}(\mathbf{Q}_0,\mathbf{Q}_i) \leq \frac{\Delta}{\sigma\sqrt{K}}\sqrt{\mathbb{E}_{\mathbf{Q}_0}[\mathbf{S}_T]\log_2 T},$$

and specifically for K = 2,

$$d_{TV}^{\mathcal{F}}(\mathbf{Q}_1, \mathbf{Q}_2) \leq (\Delta/\sigma)\sqrt{2 \mathbb{E}[\mathbf{S}_T] \log_2 T}.$$

With this Lemma at hand, we are ready to prove Lemmas 7 and 8.

Proof of Lemma 7. Observe that $\Re_T \ge 0$ by the construction in Algorithm 3. Then, if $\mathbb{E}[\mathfrak{S}_T] \ge 1/(c\Delta^2 \log_2^3 T)$ for $c = 40^2$ we have that $\mathbb{E}[\mathfrak{R}_T + \mathfrak{S}_T] \ge 1/(c\Delta^2 \log_2^3 T)$, which guarantees the desired lower bound. On the other hand, applying Lemma 10 when $\mathbb{E}[\mathfrak{S}_T] \le 1/(c\Delta^2 \log_2^3 T)$, we get

$$d_{\text{TV}}^{\mathcal{F}}(\mathbf{Q}_1, \mathbf{Q}_2) \le (1/\sigma)\sqrt{2/(c\log_2^2 T)} \le \frac{1}{3}.$$
 (13)

Let *E* be the event that arm i = 1 is picked at least T/2 times, namely

$$E = \left\{ \sum_{t \in [T]} \mathbb{1}\{I_t = 1\} \ge T/2 \right\},\$$

and let E^c be its complementary event. If $Q_1(E) \leq \frac{1}{2}$ then,

$$\mathbb{E}[\mathcal{R}_T] \ge \mathbb{E}_{\mathcal{Q}_1}[\mathcal{R}_T | E^c] \cdot \mathcal{Q}_1(E^c) \cdot \mathbb{P}(i^* = 1) \qquad (\mathcal{R}_T \ge 0)$$

$$\ge \Delta T/8. \qquad (\mathcal{R}_T \ge \Delta T/2 \text{ under the conditional event})$$

If $Q_1(E) > \frac{1}{2}$ then from Eq. (13) we obtain that $Q_2(E) \ge \frac{1}{6}$. This implies,

$$\mathbb{E}[\mathcal{R}_T] \ge \mathbb{E}_{\mathcal{Q}_2}[\mathcal{R}_T|E] \cdot \mathcal{Q}_2(E) \cdot \mathbb{P}(i^* = 2) \qquad (\mathcal{R}_T \ge 0)$$

$$\ge \Delta T/24. \qquad (\mathcal{R}_T \ge \Delta T/2 \text{ under the conditional event})$$

Since $S_T \ge 0$ we conclude the proof.

Proof of Lemma 8. The proof is comprised of two steps. First, we prove the lower bound for deterministic players that make at most $K^{1/3}T^{2/3}$ switches. Towards the end of the proof we generalize our claim to any deterministic player. To prove the former, we present the next Lemma, which follows from the proof in [8, Thm 2]. For completeness the proof for this Lemma is provided at the end of the section.

Lemma 11. For any deterministic player that makes at most ΔT switches over the sequence defined in Algorithm 3,

$$\mathbb{E}[\mathcal{R}_T + \mathcal{S}_T] \ge \frac{1}{3}\Delta T + \mathbb{E}_{\mathcal{Q}_0}[\mathcal{S}_T] - \frac{18\Delta^2 T}{\sqrt{K}}\log_2^{3/2}T\sqrt{\mathbb{E}_{\mathcal{Q}_0}[\mathcal{S}_T]},$$

provided that $\Delta \leq 1/6$ and T > 6.

Setting $\Delta = \frac{1}{6}$ in Lemma 11 we get,

$$\mathbb{E}[\mathfrak{R}_T + \mathfrak{S}_T] \ge \frac{1}{18}T + \mathbb{E}_{\mathfrak{Q}_0}[\mathfrak{S}_T] - \frac{T\log_2^{3/2}T}{2\sqrt{K}}\sqrt{\mathbb{E}_{\mathfrak{Q}_0}[\mathfrak{S}_T]}$$
(14)

In addition, recall that we are interested in deterministic players that satisfy the following regret guarantee in the adversarial regime,

$$\mathbb{E}[\mathcal{R}_T + \mathcal{S}_T] \le \mathcal{O}(K^{1/3}T^{2/3}).$$
(15)

Hence, taking Eqs. (14) and (15) we have,

$$\mathcal{O}(K^{1/3}T^{2/3}) \ge \frac{1}{18}T + \mathbb{E}_{\Omega_0}[\mathcal{S}_T] - \frac{T\log_2^{3/2}T}{2\sqrt{K}}\sqrt{\mathbb{E}_{\Omega_0}[\mathcal{S}_T]}$$
(16)

~ /~

Now, assuming that $\sqrt{\mathbb{E}_{\Omega_0}[\mathcal{S}_T]} < \frac{\sqrt{K}}{10 \log_2^{3/2} T}$ we get that for every K < T:

$$\mathcal{O}(K^{1/3}T^{2/3}) \ge \frac{1}{18}T + \mathbb{E}_{\mathcal{Q}_0}[\mathcal{S}_T] - \frac{T\log_2^{3/2}T}{2\sqrt{K}}\sqrt{\mathbb{E}_{\mathcal{Q}_0}[\mathcal{S}_T]} \\> \frac{T}{18} - \frac{T}{20} = \Omega(T)$$

Which is a contradiction. Therefore, in our case, $\sqrt{\mathbb{E}_{\Omega_0}[\mathcal{S}_T]} \ge \frac{\sqrt{K}}{10\log_2^{3/2}T}$. Furthermore, Lemma 11 also holds for any deterministic player that makes at most $K^{1/3}T^{2/3}$ switches, which is less than ΔT under the condition that $\Delta \ge K^{1/3}T^{-1/3}$. Suppose that $\mathbb{E}_{\Omega_0}[\mathcal{S}_T] \le K^{1/3}T^{2/3}/(60^2\log_2^3 T)$, then choosing $\frac{1}{6} \ge \Delta = \sqrt{K}/(60\sqrt{\mathbb{E}_{\Omega_0}[\mathcal{S}_T]}\log_2^{3/2}T) \ge K^{1/3}T^{-1/3}$ we obtain,

$$\mathbb{E}[\mathcal{R}_T + \mathcal{S}_T] \ge \mathbb{E}_{\mathcal{Q}_0}[\mathcal{S}_T] + \frac{\sqrt{kT}}{3 \cdot 10^3 \sqrt{\mathbb{E}_{\mathcal{Q}_0}[\mathcal{S}_T]} \log_2^{3/2} T}.$$
(17)

Taking both observations in Eqs. (15) and (17) implies that $\mathbb{E}_{\Omega_0}[S_T] \ge \Omega(K^{1/3}T^{2/3}/\log_2^3 T)$. To put simply, we have shown that for any deterministic player that makes at most $K^{1/3}T^{2/3}$ switches and holds Eq. (15), then

$$\mathbb{E}_{\Omega_0}[\mathbf{S}_T] \ge \Omega(K^{1/3}T^{2/3}/\log_2^3 T), \tag{18}$$

independently of Δ . On the other hand, for any $\Delta > 0$, since $\Omega_i(\mathfrak{S}_T > K^{1/3}T^{2/3}) = 0$ for any $i \in [K] \cup \{0\}$,

$$\mathbb{E}_{\Omega_0}[\mathbf{S}_T] - \mathbb{E}_{\Omega_i}[\mathbf{S}_T] = \sum_{s=1}^{\lfloor K^{1/3}T^{2/3} \rfloor} (\mathbf{\Omega}_0(\mathbf{S}_T \ge s) - \mathbf{\Omega}_i(\mathbf{S}_T \ge s))$$
$$\leq K^{1/3}T^{2/3} \cdot d_{\mathrm{TV}}^{\mathcal{F}}(\mathbf{\Omega}_0, \mathbf{\Omega}_i).$$

Averaging over *i* and rearranging terms we get,

$$\mathbb{E}[\mathbf{S}_{T}] \ge \mathbb{E}_{\mathbf{\Omega}_{0}}[\mathbf{S}_{T}] - \frac{T^{2/3}}{K^{2/3}} \sum_{i=1}^{K} d_{\mathrm{TV}}^{\mathcal{F}}(\mathbf{\Omega}_{0}, \mathbf{\Omega}_{i})$$

$$\ge \mathbb{E}_{\mathbf{\Omega}_{0}}[\mathbf{S}_{T}] - 9\Delta K^{-1/6} T^{2/3} \log_{2}^{3/2} T \sqrt{\mathbb{E}_{\mathbf{\Omega}_{0}}[\mathbf{S}_{T}]} \qquad (\text{Lemma 10})$$

Using Eq. (18) and the assumption $S_T \leq K^{1/3}T^{2/3}$, we get that for any $\Delta \leq aK^{1/3}T^{-1/3}\log_2^{-9/2}T$ for some constant a > 0 and sufficiently large T,

$$\mathbb{E}[\mathcal{R}_T + \mathcal{S}_T] \ge \mathbb{E}[\mathcal{S}_T] \ge \Omega(K^{1/3}T^{2/3}/\log_2^3 T).$$
(19)

The above lower bound holds for any deterministic player that makes at most $K^{1/3}T^{2/3}$ switches. However, given a general deterministic player denoted by A we can construct an alternative player, denoted by \tilde{A} , which is identical to A, up to the round A performs the $\lfloor \frac{1}{2}K^{1/3}T^{2/3} \rfloor$ switch. After that \tilde{A} employs the Tsalis-INF algorithm with blocks of size $B = \lceil 4K^{-1/3}T^{1/3} \rceil$ for the remaining rounds (see Algorithm 2). Clearly, the number of switches this block algorithm does is upper bounded by $T/B + 1 \le K^{1/3}T^{2/3}/2$, therefore \tilde{A} performs at most $K^{1/3}T^{2/3}$ switches. We denote, $\mathcal{R}_T^A + \mathcal{S}_T^A$ the regret with switching cost of player A and $\mathcal{R}_T^{\tilde{A}} + \mathcal{S}_T^{\tilde{A}}$ respectively. Observe that when $\mathcal{S}_T^A < \lfloor \frac{1}{2}K^{1/3}T^{2/3} \rfloor$ we get,

$$\mathfrak{R}_T^A + \mathfrak{S}_T^A = \mathfrak{R}_T^{\tilde{A}} + \mathfrak{S}_T^{\tilde{A}}.$$

While for $\mathfrak{S}_T^A \ge \lfloor \frac{1}{2} K^{1/3} T^{2/3} \rfloor$,

$$\begin{aligned} \mathcal{R}_{T}^{\tilde{A}} + \mathcal{S}_{T}^{\tilde{A}} &\leq \mathcal{R}_{T}^{A} + \mathcal{S}_{T}^{A} + 21K^{1/3}T^{2/3} & (\text{Corollary 4 with } B = \lceil 4K^{-1/3}T^{1/3} \rceil) \\ &\leq \mathcal{R}_{T}^{A} + 63\mathcal{S}_{T}^{A}. & (\mathcal{S}_{T}^{A} \geq \frac{1}{3}K^{1/3}T^{2/3} \text{ for } T \geq 15) \end{aligned}$$

This implies that $\Re_T^A + \mathfrak{S}_T^A \ge \frac{1}{63}(\Re_T^{\tilde{A}} + \mathfrak{S}_T^{\tilde{A}})$, and together with Eq. (19) it concludes the proof. **Proof of Lemma 11.** We examine deterministic players that make at most ΔT switches. Since $S_T \le \Delta T$ we have that,

$$\mathbb{E}_{\Omega_0}[\mathfrak{S}_T] - \mathbb{E}_{\Omega_i}[\mathfrak{S}_T] = \sum_{s=1}^{\lceil \Delta T \rceil} (\Omega_0(\mathfrak{S}_T \ge s) - \Omega_i(\mathfrak{S}_T \ge s)) \quad (\Omega_i(\mathfrak{S}_T > \Delta T) = 0 \ \forall i \in [K] \cup \{0\})$$
$$\leq \Delta T \cdot d_{\mathrm{TV}}^{\mathcal{F}}(\Omega_0, \Omega_i).$$

Averaging over *i* and rearranging terms we get,

$$\mathbb{E}[\mathbf{S}_T] \ge \mathbb{E}_{\mathbf{Q}_0}[\mathbf{S}_T] - \frac{\Delta T}{K} \sum_{i=1}^K d_{\mathrm{TV}}^{\mathcal{F}}(\mathbf{Q}_0, \mathbf{Q}_i).$$
(20)

Next we present the following Lemma that is taken verbatim from Dekel et al. [8]. Lemma 12 ([8, Lemmas 4 and 5]). Assume that $T \ge \max\{K, 6\}$ and $\Delta \le 1/6$ then,

$$\mathbb{E}[\mathcal{R}_T + \mathcal{S}_T] \geq \frac{\Delta T}{3} - \frac{\Delta T}{K} \sum_{i=1}^K d_{TV}^{\mathcal{F}}(\mathcal{Q}_0, \mathcal{Q}_i) + \mathbb{E}[\mathcal{S}_T].$$

Using Lemma 12 together with Eq. (20) we obtain,

$$\mathbb{E}[\mathcal{R}_{T} + \mathcal{S}_{T}] \geq \frac{\Delta T}{3} - \frac{2\Delta T}{K} \sum_{i=1}^{K} d_{TV}^{\mathcal{F}}(\Omega_{0}, \Omega_{i}) + \mathbb{E}_{\Omega_{0}}[\mathcal{S}_{T}]$$

$$\geq \frac{\Delta T}{3} - \frac{2\Delta^{2}T}{\sigma\sqrt{K}} \sqrt{\mathbb{E}_{\Omega_{0}}[\mathcal{S}_{T}] \log_{2} T} + \mathbb{E}_{\Omega_{0}}[\mathcal{S}_{T}] \qquad (\text{Lemma 10})$$

$$= \frac{\Delta T}{3} - \frac{18\Delta^{2}T}{\sqrt{K}} \log_{2}^{3/2} T \sqrt{\mathbb{E}_{\Omega_{0}}[\mathcal{S}_{T}]} + \mathbb{E}_{\Omega_{0}}[\mathcal{S}_{T}]. \qquad (\sigma = 1/(9 \log_{2} T))$$

Setting $\sigma = 1/(9 \log_2 T)$ we conclude,

$$\mathbb{E}[\mathcal{R}_T + \mathcal{S}_T] \geq \frac{\Delta T}{3} - \frac{18\Delta^2 T}{\sqrt{K}} \log_2^{3/2} T \sqrt{\mathbb{E}_{\Omega_0}[\mathcal{S}_T]} + \mathbb{E}_{\Omega_0}[\mathcal{S}_T].$$