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Abstract

We study best-of-both-worlds algorithms for bandits with switching cost, recently
addressed by Rouyer, Seldin, and Cesa-Bianchi [14]. We introduce a surprisingly
simple and effective algorithm that simultaneously achieves minimax optimal re-
gret bound (up to logarithmic factors) of O(𝑇2/3) in the oblivious adversarial
setting and a bound of O(min{log(𝑇)/∆2, 𝑇2/3}) in the stochastically-constrained
regime, both with (unit) switching costs, where ∆ is the gap between the arms.
In the stochastically constrained case, our bound improves over previous results
due to [14], that achieved regret of O(𝑇1/3/∆). We accompany our results with a
lower bound showing that, in general, Ω̃(min{1/∆2, 𝑇2/3}) switching cost regret
is unavoidable in the stochastically-constrained case for algorithms with O(𝑇2/3)
worst-case switching cost regret.

1 Introduction

Multi Armed Bandit (MAB) is one of the most fundamental problems in online learning and
sequential decision making. This problem is often framed as a sequential game between a player
and an environment played over 𝑇 rounds. In each round, the player chooses an action from a finite
set [𝐾] = {1, . . . , 𝐾} and incurs a loss in [0, 1] for that action. The environment then only reveals
the loss of the chosen action—this is referred to as bandit feedback. The goal of the player is to
minimize the regret, which measures the difference between the cumulative loss of the player and
that of the best arm in hindsight.
Two common regimes often studied in the MAB literature are the adversarial setting [6] and the so-
called stochastically-constrained setting [18] which is a generalization of the more classical stochastic
setting. In the former regime, losses are generated arbitrarily and possibly by an adversary; in the
latter, losses are assumed to be generated in a way that one arm performs better (in expectation)
than any other arm, by a margin of ∆ > 0. Both regimes have witnessed a flurry of research
[1, 3, 5, 6, 12, 17] leading to optimal regret bounds in each of the settings.
Recently, significant effort has been dedicated for designing best-of-both-worlds MAB algorithms,
where one does not have a-priori knowledge on the underlying environment but still wishes to enjoy
the optimal regret in both regimes simultaneously [4, 7, 15, 16, 18, 19]. Most notably, Zimmert and
Seldin [19] analyzed the Tsallis-INF algorithm and established that it achieves optimal regret bounds
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in both stochastically-constrained and adversarial environments, matching the corresponding lower
bounds asymptotically.
Another well-studied variant of the MAB setting is that of Bandits with switching cost [2, 8–10],
where the learner suffers not only regret but also a penalty for switching actions. As shown by
Dekel et al. [8] adding a unit switching cost to the regret incurs a lower bound of Ω̃

(
𝐾1/3𝑇2/3) , in

contrast toΩ(
√
𝐾𝑇) in the standard setting, highlighting the difficulty of this setup. Recently Rouyer

et al. [14] asked the question of how best-of-both-worlds algorithms can be obtained for MAB where
switching costs are considered. Rouyer et al. [14] managed to show a best-of-both-worlds type
algorithm that, for constant 𝐾 and cost-per-switch, achieves optimal regret bound of O(𝑇2/3) in the
oblivious adversarial regime, whereas in the stochastically-constrained setup their upper bound is of
order O(𝑇1/3/∆), which was unknown to be optimal.
In this work we tighten the above gap. we introduce a new algorithm that improves the bound of
[14] and achieves O(min{log𝑇/∆2, 𝑇2/3}) in the stochastically constrained case (while obtaining
the same optimal regret bound in the worst-case). Further, we provide a lower regret bound, and
show that the above bound is tight, up to logarithmic factors, in the best-of-both-worlds setup. For
the more general case of 𝐾 > 2 arms, our algorithm still improves over [14], however in that case
our lower bounds and upper bound do not fully coincide; we leave this as an open question for future
study.

2 Setup and Background

In the classic Multi Armed Bandit problem with 𝐾 arms, a game is played consecutively over
𝑇 > 𝐾 rounds. At each round 𝑡 ≤ 𝑇 , an adversary (also called the environment) generates a loss
vector ℓ𝑡 ∈ [0, 1]𝐾 . The player (referred to as learner) selects an arm 𝐼𝑡 ∈ [𝐾] according to some
distribution 𝑝𝑡 ∈ ∆𝐾 where ∆𝐾 B {𝑝 ∈ [0, 1]𝐾 :

∑
𝑖∈[𝐾 ] 𝑝𝑖 = 1}, and observes ℓ𝑡 ,𝐼𝑡 , which is also

defined to be its loss at round 𝑡. Notice that the learner never has access to the entire loss vector
ℓ𝑡 ∈ [0, 1]𝐾 .
The performance of the learner is measured in terms of the regret. The regret of the learner is defined
as

R𝑇 B
∑︁
𝑡 ∈[𝑇 ]

ℓ𝑡 ,𝐼𝑡 − min
𝑖∈[𝐾 ]

∑︁
𝑡 ∈[𝑇 ]

ℓ𝑡 ,𝑖 .

Another common performance measure we care about is the pseudo-regret of the algorithm:

R𝑇 B
∑︁
𝑡 ∈[𝑇 ]

ℓ𝑡 ,𝐼𝑡 − min
𝑖∈[𝐾 ]

∑︁
𝑡 ∈[𝑇 ]

𝔼
[
ℓ𝑡 ,𝑖

]
.

We next describe two common variants of the problem, which differ in the way the losses are
generated.

Adversarial (oblivious) regime: In the oblivious adversarial regime, at the beginning of the game
the environment chooses the loss vectors ℓ1, . . . , ℓ𝑇 , and they may be entirely arbitrary. In general,
the objective of the learner is to minimize its expected regret for the adversarial regime. One can
observe that the expected pseudo-regret coincides with the expected regret, in this setting. More
generally, it can be seen that the expected regret upper bounds the expected pseudo-regret. Namely,
𝔼[R𝑇 ] ≤ 𝔼[R𝑇 ] .

Stochastically-constrained adversarial regime: We also consider the stochastically-constrained
adversarial regime [18]. In this setting we assume that the loss vectors are drawn from distributions
such that there exists some 𝑖★ ∈ [𝐾],

∀𝑖 ≠ 𝑖★ : 𝔼[ℓ𝑡 ,𝑖 − ℓ𝑡 ,𝑖★] = ∆𝑖 , (1)

independently of 𝑡1. That is, the gap between arms remains constant throughout the game, while
the losses {ℓ𝑡 ,𝑖}𝑡 ∈[𝑇 ] of any arm 𝑖 are drawn from distributions that are allowed to change over time

1This definition is equivalent to the standard definition of ∀𝑖, 𝑗 : 𝔼[ℓ𝑡 ,𝑖 − ℓ𝑡 , 𝑗 ] = ∆𝑖, 𝑗 .
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and may depend on the learner’s past actions 𝐼1, . . . , 𝐼𝑡−1. It is well known that the stochastically-
constrained adversarial regime generalizes the well-studied stochastic regime that assumes the losses
are generated in an i.i.d. manner.
We denote the best arm at round 𝑡 to be 𝑖★𝑡 = arg min𝑖∈[𝐾 ] 𝔼[ℓ𝑡 ,𝑖]. Note that since the gap between
arms is constant we have that ∀𝑡 ∈ [𝑇] : 𝑖★𝑡 = 𝑖★ where 𝑖★ is the optimal arm. We consider
the case where there is a unique best arm. Also, we denote the gap between arm 𝑖 and 𝑖★ to be
∆𝑖 B 𝔼[ℓ𝑡 ,𝑖 − ℓ𝑡 ,𝑖★] and we let ∆min = min𝑖≠𝑖★ ∆𝑖 .
We note that in the stochastically-constrained case, the pseudo-regret is often expressed by the
sub-optimality gaps ∆𝑖 , and it is given by:

𝔼
[
R𝑇

]
B

∑︁
𝑡 ∈[𝑇 ]

∑︁
𝑖≠𝑖★

ℙ(𝐼𝑡 = 𝑖)∆𝑖 .

2.1 Multi-Armed Bandits with Switching Cost

In the problem described above, there is no limitation on the number of times the player is allowed
to switch arms between consecutive rounds. In this work, we consider a setup where the regret is
accompanied by a switching cost, as suggested by Arora et al. [2]. We then measure our performance
by the switching cost regret, parameterized by the switching cost parameter λ ≥ 0 :

R
λ

𝑇 B R𝑇 + λS𝑇 ,
where S𝑇 B

∑
𝑡 ∈[𝑇 ] 1{𝐼𝑡 ≠ 𝐼𝑡−1}.

Best-of-both-worlds with switching cost. Rouyer et al. [14] considered the setting of switching
cost in the framework of best-of-both-worlds analysis. They showed (Thm 1 therein): that there exists
an algorithm, Tsallis-Switch, for which in the adversarial regime the pseudo-regret of Tsallis-Switch
for λ ∈ Ω(

√︁
𝐾/𝑇) :

𝔼[R
λ

𝑇 ] ≤ O
(
(λ𝐾)1/3𝑇2/3

)
, (2)

and in the stochastically constrained setting:

𝔼[R
λ

𝑇 ] ≤ O
(∑︁
𝑖≠𝑖★

(λ𝐾)2/3𝑇1/3 + log𝑇
∆𝑖

)
. (3)

3 Main results

Our main result improves over the work of Rouyer et al. [14] and provides an improved best-of-both-
worlds algorithm for the setting of switching cost

Theorem 1. Provided that λ ≥
√︁
𝐾/𝑇 , the expected pseudo-regret with switching cost of “Switch

Tsallis, Switch!” (Algorithm 1) satisfies the following simultaneously:

• In the adversarial regime,

𝔼
[
R
λ

𝑇

]
= O

(
(λ𝐾)1/3𝑇2/3) . (4)

• In the stochastically constrained adversarial regime,

𝔼
[
R
λ

𝑇

]
= O

(
min

{(λ log𝑇
∆min

+ log𝑇
) ∑︁
𝑖≠𝑖★

1
∆𝑖
, (λ𝐾)1/3𝑇2/3

})
. (5)

We next compare the bound of “Switch Tsallis, Switch!” and Rouyer et al. [14]. We first observe that
for small switching cost, λ ≤ 𝑂

(√︁
𝐾/𝑇

)
, both algorithms basically ignore the switching cost and run

standard Tsallis without any type of change hence the algorithms actually coincide, so we only care
for the caseλ ≥

√︃
𝐾
𝑇

. Also, notice that in the adversarial regime Eq. (2) and Eq. (4) are equivalent and
both algorithms obtain the minimax optimal regret (up to logarithmic factors). In the stochastically
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constrained regime comparing Eqs. (3) and (5), note that for ∆min ≤ (λ𝐾)1/3𝑇−1/3 log𝑇 , we have
that ∑︁

𝑖≠𝑖★

(λ𝐾)2/3𝑇1/3

∆𝑖
≥ (λ𝐾)2/3𝑇1/3

∆min
= Ω̃

(
(λ𝐾)1/3𝑇2/3

)
,

which is comparable to our bound up to logarithmic factors. On the other hand, if ∆min ≥
(λ𝐾)1/3𝑇−1/3 log𝑇∑︁

𝑖≠𝑖★

(λ𝐾)2/3𝑇1/3

∆𝑖
≥

(
λ𝐾 log𝑇
∆min

) ∑︁
𝑖≠𝑖★

1
∆𝑖

= Ω

(
λ log𝑇
∆min

∑︁
𝑖≠𝑖★

1
∆𝑖

)
,

which is comparable to Eq. (5). It can also be observed that when ∆min is large enough (larger than
say 𝑇−1/3 log𝑇) our bound improves over Eq. (3) by a factor of Õ(𝑇1/3∆min).
Next, we describe a lower bound, which demonstrates that our bounds are tight for 𝐾 = 2 (up to
logarithmic factors).
Theorem 2. Let 𝐴 be a randomized player in a multi armed bandit game of 𝐾 arms played over
𝑇 rounds with a switching cost regret guarantee of O(𝐾1/3𝑇2/3) in the adversarial regime. Then,
for every ∆ > 0 there exists a stochastically-constrained sequence of losses ℓ1, . . . , ℓ𝑇 with minimal
gap parameter ∆, that 𝐴 incurs R𝑇 + S𝑇 = Ω̃

(
min

{
1/∆2, 𝐾1/3𝑇2/3}) .

4 Algorithm

Our algorithm, “Switch Tsallis, Switch!” (see Algorithm 1), is a simple modification of Tsallis-INF.
We start by playing the original Tsallis-INF algorithm introduced by [19], and after a certain amount
of switches we switch to a second phase that plays a standard block no-regret algorithm.

Algorithm 1 Switch Tsallis, Switch!
Input: time horizon 𝑇 , switching cost λ.

1: Initialize: 𝑆 = 0, ℓ̂0 = 0𝐾 , η𝑡 = 2/
√
𝑡

2: for 𝑡 = 1, ..., 𝑇 do % Run standard Tsallis Inf
3: Compute:

𝑝𝑡 = arg min
𝑝∈∆𝐾

{
𝑡−1∑︁
𝑟=0

ℓ̂𝑟 · 𝑝 −
1
η𝑡

∑︁
𝑖∈[𝐾 ]

4
√
𝑝𝑖

}
.

4: Sample 𝐼𝑡 ∼ 𝑝𝑡 , play 𝐼𝑡 and observe the loss ℓ𝑡 ,𝐼𝑡 .
5: Update:

∀𝑖 ∈ [𝐾] : ℓ̂𝑡 ,𝑖 =
ℓ𝑡 ,𝑖

𝑝𝑡 ,𝑖
1{𝐼𝑡 = 𝑖}

𝑆 = 𝑆 + 1{𝐼𝑡 ≠ 𝐼𝑡−1}
6: if 𝑆 ≥ 𝐾1/3 ( 𝑇

λ
)2/3 then

7: break
8: if 𝑡 < 𝑇 then for remaining rounds
9: Run Tsallis-INF over blocks (Algorithm 2) of size λ2/3𝐾−1/3𝑇1/3.

The idea is motivated by our observation that under the stochastically constrained setting, there is a
natural bound on the number of switches which is of order 𝑂 (R𝑇/∆min), so as long as this number
doesn’t exceed the worst case bound of the adversarial setting we have no reason to perform blocks.
In other words, we start by playing under the assumption that we are in the stochastically-constrained
regime and if the number of switches is larger than expected, we break and move to an algorithm
that handles only the oblivious adversarial case.
Best-of-both-worlds algorithms that start under stochasticity assumption and break are natural to
consider. Indeed, in the standard setting, without switching they were studied and suggested [4,
7]. However, while successful at the stochastic case, they suffer from a logarithmic factor in the
adversarial regime. Moreover, in the standard best-of-both-worlds setup (without switching cost),
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the optimal methods don’t attempt to identify the regime (stochastic or adversarial). In contrast, what
we observe here, is that once switching cost is involved, the criteria to shift between the regimes
becomes quite straightforward which allows us to design such a simple algorithm. Indeed, unlike
regret which is hard to estimate, the cost of switching is apparent to the learner, hence we can verify
when our switching loss exceeds what we expect in the adversarial regime and decide to switch to
enjoy both worlds.

5 Proofs

Before delving into the proof, we provide a brief review of the Tsalis-INF algorithm guarantees ,
introduced by Zimmert and Seldin [19], which serves as the backbone of Algorithm 1.

5.1 Technical Preliminaries

Theorem 3 ([19, Thm 1]). The expected pseudo-regret of Tsallis-INF under the adversarial regime
satisfies:

𝔼[R𝑇 ] ≤ 4
√
𝐾𝑇 + 1, (6)

and in the stochastically constrained setting:

𝔼[R𝑇 ] ≤ O

(∑︁
𝑖≠𝑖★

log𝑇
∆𝑖

)
(7)

Algorithm 2 Mini-Batched Tsallis-INF
Input: time horizon 𝑇 , block size 𝐵.

1: Initialize: ℓ̂0 = 0𝐾 , η𝑛 = 2/
√
𝑛, |𝐵𝑛 | = 𝐵

2: for 𝑛 = 1, ..., 𝑇/𝐵 do
3: Compute:

𝑝𝑛 = arg min
𝑝∈∆𝐾

{
𝑛−1∑︁
𝑟=0

ℓ̂𝑟 · 𝑝 −
1
η𝑛

∑︁
𝑖∈[𝐾 ]

4
√
𝑝𝑖

}
.

4: Sample 𝐼𝑛 ∼ 𝑝𝑛 and play 𝐼𝑛 for 𝐵 times.
5: Suffer the loss

∑
𝑡 ∈𝐵𝑛 ℓ𝑡 ,𝐼𝑛 and observe its average: 1

𝐵

∑
𝑡 ∈𝐵𝑛 ℓ𝑡 ,𝐼𝑛

6: Update:

∀𝑖 ∈ [𝐾] : ℓ̂𝑛,𝑖 =

1
𝐵

∑
𝑡 ∈𝐵𝑛 ℓ𝑡 ,𝐼𝑛
𝑝𝑛,𝑖

1{𝐼𝑛 = 𝑖}

Arora et al. [2] showed how, given a no-regret algorithm against an oblivious adversary, one can
convert the algorithm to be played over mini-batches of size 𝐵 and obtain a regret of 𝐵 𝔼

[
R𝑇/𝐵

]
.

In turn, the regret with switching cost is bounded by 𝔼
[
Rλ
𝑇

]
≤ 𝐵 𝔼

[
R𝑇/𝐵

]
+ λ 𝑇

𝐵
. Applying their

approach to build a mini-batched version of Tsallis-INF leads to Algorithm 2 which we depict above,
yielding a similar algorithm to a one suggested by Rouyer et al. [14]. Using the above bound for the
special case of Tsallis-INF, we obtain the following guarantee:
Corollary 4. There exists an algorithm ,in particular - Algorithm 2 with constant blocks of size
𝐵 = O

(
λ2/3𝐾−1/3𝑇1/3) , for which the expected regret with switching cost, satisfies

𝔼[Rλ
𝑇 ] ≤ 11(λ𝐾)1/3𝑇2/3.

Indeed, using the above observation when 𝑇/𝐵 may not be a natural number,

𝔼[Rλ
𝑇 ] ≤ 𝐵

(
4
√︁
𝐾 (𝑇/𝐵 + 1) + 1

)
+ λ (𝑇/𝐵 + 1) (Eq. (6))

≤ 7
√
𝐾𝑇𝐵 + λ (2𝑇/𝐵)

≤ 11(λ𝐾)1/3𝑇2/3. (𝐵 B ⌈λ2/3𝐾−1/3𝑇1/3⌉)
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5.2 Proof of Theorem 1

“Switch Tsallis, Switch!” consists of two parts. We will denote the regret and pseudo-regret attained
after the first part by R(1) and R

(1)
respectively, while the regret and pseudo-regret achieved in

Line 9 are denoted by R(2) and R
(2)

. Similarly, S(1) and S(2) express the number of switches of each
segment. The proof of the adversarial case, i.e. Eq. (4) is straightforward and follows by explicitly
bounding the regret in each of these phases:

𝔼
[
Rλ
𝑇

]
≤ 𝔼

[
R(1) + λS(1) ] + 𝔼

[
R(2) + λS(2) ]

≤ 𝔼
[
R(1) + λS(1) ] + 12(λ𝐾)1/3𝑇2/3 (Corollary 4)

≤ 𝔼
[
R(1) ] + (λ𝐾)1/3𝑇2/3 + λ + 12(λ𝐾)1/3𝑇2/3

≤ 4
√
𝐾𝑇 + 1 + λ + 13(λ𝐾)1/3𝑇2/3 (Eq. (6))

≤ O
(
(λ𝐾)1/3𝑇2/3

)
. (λ ≥

√︁
𝐾/𝑇)

We thus continue to the stochastically constrained case. For the proof we rely on the following two
Lemmas:
Lemma 5. For every loss sequence, Algorithm 1 satisfies:

𝔼
[
R

(2) + λS(2) ] ≤ 11λ𝔼
[
S(1) ] .

Proof. Consider the switching cost regret of Line 9 (Algorithm 2) conditioned on S(1) ,

𝔼
[
R

(2) + λS(2) ��S(1) ] ≤ 𝔼
[
R(2) + λS(2) ��S(1) ]

≤
{
11(λ𝐾)1/3𝑇2/3, if S(1) ≥ 𝐾1/3 ( 𝑇

λ
)2/3

0, o.w. (Corollary 4)

≤
{
11(λ𝐾)1/3𝑇2/3, if S(1) ≥ 𝐾1/3 ( 𝑇

λ
)2/3

11λS(1) , o.w.

≤ 11λS(1) . (8)

Where we used that by the general regret definition we have that for any algorithm 𝔼
[
R𝑇

]
≤ 𝔼

[
R𝑇

]
.

Taking expectation on both sides of Eq. (8) concludes the proof. ■

Lemma 6. Suppose we run Algorithm 1 against a stochastically constrained loss sequence with gap
∆min, then:

λ𝔼[S(1) ] ≤ min
{
λ + 2λ𝔼

[R(1) ]
∆min

,λ + (λ𝐾)1/3𝑇2/3
}
.

Proof. Consider some arbitrary arm 𝑖 ∈ [𝐾]. When a switch occurs at round 𝑡, either 𝐼𝑡−1 or 𝐼𝑡
are different from 𝑖★. Hence, using linearity of expectation one can bound the expected number of
switches 𝔼[S], regardless to the environment regime (either adversarial or stochastically-constrained
adversarial) as follows:

𝔼[S] ≤ 1 + 2
∑︁
𝑡 ∈[𝑇 ]

∑︁
𝑖≠𝑖★

𝔼[𝑝𝑡 ,𝑖],

where we have used the fact that ℙ(𝐼𝑡 = 𝑖) = 𝔼[𝑝𝑡 ,𝑖]. Additionally, in the stochastically-constrained
regime we also have that:∑︁

𝑡 ∈[𝑇 ]

∑︁
𝑖≠𝑖★

𝔼[𝑝𝑡 ,𝑖] ≤
∑︁
𝑡 ∈[𝑇 ]

∑︁
𝑖≠𝑖★

𝔼[𝑝𝑡 ,𝑖]∆𝑖
∆min

=
𝔼[R

(1) ]
∆min

.

Utilizing the stopping criterion of “Switch Tsallis, Switch!,” we can bound the expected number
of switches 𝔼[S(1) ], regardless to the environment regime (either adversarial or stochastically-
constrained adversarial) and obtain the desired result ■
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The total expected pseudo-regret is upper bounded by the summation of the pseudo-regret attained
for each part of the algorithm. We will consider two cases.

𝔼
[
R
λ

𝑇

]
≤ 𝔼

[
R

(1) + λS(1) +R
(2) + λS(2) ]

≤ 𝔼
[
R

(1) ] + 12λ𝔼
[
S(1) ] (Lemma 5)

≤ 𝔼
[
R

(1) ] + min
{
12λ + 24λ

∆min
𝔼
[
R

(1) ]
, 12λ + 12(λ𝐾)1/3𝑇2/3

}
(Lemma 6)

≤ min
{
12λ +

( 24λ
∆min

+ 1
)
𝔼
[
R

(1) ]
, 12λ + 12(λ𝐾)1/3𝑇2/3 + 𝔼

[
R

(1) ]}
≤ O

(
min

{( λ

∆min
+ 1

)
𝔼
[
R

(1) ]
, (λ𝐾)1/3𝑇2/3 + 𝔼

[
R

(1) ]})
≤ O

(
min

{( λ

∆min
+ 1

) ∑︁
𝑖≠𝑖★

log𝑇
∆𝑖

, (λ𝐾)1/3𝑇2/3 +
√
𝐾𝑇

})
. (Eqs. (6) and (7))

5.3 Proof of Theorem 2

Our lower bound builds upon the work of Dekel et al. [8] and we adapt it to the stochastically-
constrained adversarial regime. Dekel et al. [8] suggested the following process, depicted in Algo-
rithm 3, to generate an adversarial loss sequence. With correct choice of parameter ∆ = 𝑂 (𝑇−1/3),
the process ensures for any deterministic player, a regret of order 𝔼[R𝑇 ] = Ω̃(𝐾1/3𝑇2/3). For our
purposes we need to take care of two things: First we need to generalize the bound to arbitrary
∆. Second, one can see that the loss sequence generated by the adversary in Algorithm 3, is not
stochastically constrained (as defined in Section 2). To cope with this, we develop a more fine-grained
analysis over a modified loss sequence that assures the stochastically-constrained assumption is met.
Towards proving Theorem 2, we present the following Lemmas.
Lemma 7. Let

{
ℓ1, . . . , ℓ𝑇

}
be the stochastic sequence of loss functions defined in Algorithm 3 for

𝐾 = 2. Then for 𝑇 ≥ 4 and any deterministic player against this sequence it holds

𝔼[R𝑇 + S𝑇 ] ≥ min
{
1/(402∆2 log3

2 𝑇),∆𝑇/24
}
.

Lemma 8. Let
{
ℓ1, . . . , ℓ𝑇

}
be the stochastic sequence of loss functions defined in Algorithm 3 with

∆ ≤ 𝑎𝐾1/3𝑇−1/3 log−9/2
2 𝑇 . Then for 𝑇 ≥ τ and any deterministic player against this sequence, with

a switching cost regret guarantee of O(𝐾1/3𝑇2/3), against an arbitrary sequence, it holds

𝔼[R𝑇 + S𝑇 ] ≥ 𝑐𝐾1/3𝑇2/3/log3
2 𝑇,

for some universal constants 𝑎, 𝑐, τ > 0.

We deter the proofs of Lemmas 7 and 8 to the supplementary material, and we now proceed with
proving our desired lower bound in Theorem 2.
Proof of Theorem 2. It can be observed, that the process depicted in Algorithm 3 is almost stochas-
tically constrained, in fact, if at 𝑡 and 𝑖 we do not perform clipping to [0, 1], i.e. ℓ𝑡 (𝑖) = ℓ′𝑡 (𝑖) the
sequence is indeed stochastically constrained. Let us define then an event 𝐻 as follows,

𝐻 =

{
∀𝑡 ∈ [𝑇] : 𝑋𝑡 + 1

2 ∈
[ 1

6 ,
5
6
]}
.

If we restrict∆ ≤ 1
6 , the event 𝐻 implies that ℓ𝑡 = ℓ′𝑡 for all 𝑡 ∈ [𝑇]. By standard Gaussian arguments

one can derive the following Lemma.
Lemma 9 ([8, Lemma 1]). For any δ ∈ (0, 1) it holds

ℙ
({
∀𝑡 ∈ [𝑇] : |𝑋𝑡 | ≤ 2σ

√︁
log2 𝑇 log(𝑇/δ)

})
≥ 1 − δ.

Setting δ = 1/𝑇 and σ = 1/(9 log2 𝑇) we get,

ℙ(𝐻) = ℙ
({
∀𝑡 ∈ [𝑇] : |𝑋𝑡 | ≤ 1

3
})

≥ 1 − 1/𝑇.
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Algorithm 3 The adversary’s loss generation process proposed by Dekel et al. [8].
Input: time horizon 𝑇 , the minimal gap ∆.
Output: loss sequence

{
ℓ𝑡 ∈ [0, 1]𝐾

}
𝑡 ∈[𝑇 ] .

1: Set σ = (9 log2 𝑇)−1.
2: Draw 𝑇 independent Gaussian variables - {𝑛𝑡 ∼ N(0,σ2)}𝑡 ∈[𝑇 ] .
3: Define the process {𝑋𝑡 }𝑡 ∈[𝑇 ] by

∀𝑡 ∈ [𝑇] : 𝑋𝑡 = 𝑋𝑟 (𝑡) + 𝑛𝑡 ,

where 𝑋0 = 0, 𝑟 (𝑡) = 𝑡 − 2𝑚(𝑡) , and 𝑚(𝑡) = max{𝑖 ≥ 0 : 2𝑖 divides 𝑡}.
4: Choose 𝑖★ ∈ [𝐾] uniformly at random.
5: For all 𝑡 ∈ [𝑇] and 𝑖 ∈ [𝐾], set

ℓ′𝑡 (𝑖) = 𝑋𝑡 + 1
2 − ∆ · 1{𝑖★ = 𝑖}.

If 0 ≤ ℓ′𝑡 (𝑖) ≤ 1, set ℓ𝑡 (𝑖) = ℓ′𝑡 (𝑖), else perform clipping:

ℓ𝑡 (𝑖) = min{max{ℓ′𝑡 (𝑖), 0}, 1}.

This implies,

𝔼[R𝑇 + S𝑇 ] ≤ 𝔼[R𝑇 + S𝑇 |𝐻𝑐] · 1
𝑇
+ 𝔼[R𝑇 + S𝑇 |𝐻] (R𝑇 + S𝑇 ≥ 0)

≤ ∆ + 1 + 𝔼[R𝑇 + S𝑇 |𝐻] (R𝑇 + S𝑇 ≤ (∆ + 1)𝑇)

Taken this together with Lemma 7 we get that for any deterministic player,

𝔼[R𝑇 + S𝑇 |𝐻] = Ω
(
min

{
1/(∆2 log3

2 𝑇),∆𝑇
})
. (9)

Here we used the fact that for any ∆ > 1
6 there exists a trivial lower bound of 1. Clearly, a simple

derivation shows that the lower bound in Eq. (9) holds for any 𝐾 ≥ 2, as we can always extend
the loss sequence for 𝐾 > 2 by setting ℓ𝑡 ,𝑖 = 1 for any 𝑖 > 2. In addition, using Lemma 8,
when ∆ ≤ O(𝐾1/3𝑇−1/3 log−9/2

2 𝑇), we get that for any deterministic player with a guarantee of
O(𝐾1/3𝑇2/3) switching regret,

𝔼[R𝑇 + S𝑇 |𝐻] = Ω
(
𝐾1/3𝑇2/3/log3

2 𝑇
)
. (10)

Combining both lower bounds in Eqs. (9) and (10) and observing that ∆𝑇 ≥ Ω(𝐾1/3𝑇2/3/log9/2
2 𝑇)

when ∆ ≥ Ω(𝐾1/3𝑇−1/3 log−9/2
2 𝑇), we obtain that for any ∆ > 0,

𝔼[R𝑇 + S𝑇 |𝐻] = Ω
(
min

{
1/(∆2 log3

2 𝑇), 𝐾
1/3𝑇2/3/log9/2

2 𝑇
})
. (11)

In other words, if we let the loss sequence to be the conditional process given that 𝐻 is fulfilled,
we obtain a stochastic process that generates a random sequence that satisfies the conditions of a
stochastically-constrained loss sequence, i.e. Eq. (1) is met. Eq. (11), in turn, bounds the expected
regret given that our loss sequence is drawn from the above process.
Next, since any randomized player can be implemented by a random combination of deterministic
players we conclude that Eq. (11) holds for any randomized player. This then immediately implies that
there exists a deterministic loss sequence {ℓ1, . . . , ℓ𝑇 }, that is stochastically-constrained, for which
R𝑇 + S𝑇 is lower bounded by the RHS of Eq. (11). Lastly, we argue that 𝔼[R𝑇 ] = 𝔼[R𝑇 ]. This
is a direct implication of the loss sequence construction, as for all 𝑡 we have 𝑖★ = arg min𝑖∈[𝐾 ] ℓ𝑡 ,𝑖 .
Therefore, the acclaimed bounds are achieved also with respect to the pseudo-regret, which concludes
the proof. ■

6 Discussion

Best-of-both-worlds algorithm is an extremely challenging setting and in particular, the case of regret
with switching cost poses interesting challenges. We presented here an algorithm that achieves (up
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to logarithmic factors) optimal minimax rates for the case of two arms, i.e. 𝐾 = 2. Surprisingly,
the result is obtained using a very simple modification of the standard best-of-both-worlds Tsallis-
INF algorithm. We note that our analysis is agnostic to any best-of-both-worlds algorithm and that
Tsallis-INF serves only as a building block of our proposed method. For example, employing the
refined bound of Masoudian and Seldin [13] in our analysis follows naturally and will improve our
bounds accordingly. Additionally, it is important to mention, that while we assumed the time horizon
𝑇 is known to the algorithm in advanced, it is not a necessary assumption. One can use a simple
doubling trick while preserving the upper bound under the adversarial regime and suffer an extra
multiplicative logarithmic factor of O

(
log𝑇

)
in the stochastically constrained regime so the bound

at Eq. (5) becomes,

𝔼
[
R
λ

𝑇

]
= O

(
min

{(λ log2 𝑇

∆min
+ log2 𝑇

) ∑︁
𝑖≠𝑖★

1
∆𝑖
, (λ𝐾)1/3𝑇2/3

})
. (12)

Several open problems though seem to arise from our work.
Open Question 1. Given arbitrary 𝐾 , what is the optimal minimax regret rate, in the stochastically
constrained setting, of any algorithm that achieves, in the adversarial regime, regret of

𝔼[Rλ
𝑇 ] = Õ

(
(λ𝐾)1/3𝑇2/3

)
.

In particular, in our result, it is interesting to find out if the term O
(∑

𝑖≠𝑖★
λ log𝑇
∆min∆𝑖

)
can be replaced

by O
(∑ λ log𝑇

∆2
𝑖

)
. Note that this term is obtained by a worst-case analysis of the switching cost that

assumes that we obtained the regret by only switching from the optimal arm to the consecutive
second-to-best arm. It seems more likely that any reasonable algorithm roughly switches to each
arm 𝑖, order of Õ(1/∆2

𝑖
) times, leading to more optimistic rate.

Another natural open problem is to try and generalize the lower bound to the general case. For
simplicity we state the next problem for the case all arms have the same gap.
Open Question 2. Suppose ∆1 = ∆2 =, . . . ,= ∆min, and ∆min ≥ (λ𝐾)1/3𝑇−2/3. Is it possible to
construct an algorithm that achives regret, in the adversarial regime of

𝔼[Rλ
𝑇 ] = Õ

(
(λ𝐾)1/3𝑇2/3

)
.

and in the stochastically constrained case:

𝔼[Rλ
𝑇 ] = 𝑜

(
λ𝐾 log𝑇
∆2

min

)
.

Finally, we would like to stress that our lower bound applies to a stochastically constrained setting,
where in principle we often care to understand the stochastic case:
Open Question 3. What is the optimal expected pseudo-regret with switching cost that can be
achieved by an algorithm that achieves regret, in the adversarial regime of

𝔼[Rλ
𝑇 ] = Õ

(
(λ𝐾)1/3𝑇2/3

)
,

against an i.i.d sequence ℓ1, . . . , ℓ𝑇 that satisfies Eq. (1)?

Achieving a non-trivial lower bound for the above case seems like a very challenging task. In
particular, it is known that, if we don’t attempt to achieve best-of-both-worlds rate then an upper
bound of 𝑂 (

∑
𝑖≠𝑖★

log𝑇
∆𝑖

) is achievable [9, 10]. Interestingly, then, our lower bound at Theorem 2
presents a separation between the stochastic and stochastically constrained case, leaving open the
possibility that a best-of-both-worlds algorithm between adversarial and stochastically constrained
case is possible but not necessarily against a stochastic player. Proving the reverse may require new
algorithmic techniques. In particular, the current analysis of Tsallis-INF is valid for the stochastically-
constrained case as much as to the stochastic case. An improved upper bound for the pure stochastic
case, though, cannot improve over the stochastically constrained case as demonstrated by Theorem 2.
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Open Question 4. Is the uniqueness of the best arm mandatory in the case of bandits with switching
cost?

The case of multiple best arms introduces new challenges. Whereas Ito [11] showed that Tsallis-INF
can handle the case of multiple best arms, it is unclear whether one can use their results to obtain non-
trivial bounds in the switching cost setting. In their experiments, Rouyer et al. [14], demonstrated
this challenge, suggesting that the requirement of the uniqueness of the best arm is necessary in
order to obtain improved bounds. We leave the question of this necessity, in the case of bandits with
switching cost and in particular in a best-of-both-worlds setting, to future research.
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