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Abstract

When developing deep learning models, we usually decide what task we want
to solve then search for a model that generalizes well on the task. An intriguing
question would be: what if, instead of fixing the task and searching in the model

space, we fix the model and search in the task space? Can we find tasks that the
model generalizes on? How do they look, or do they indicate anything? These are
the questions we address in this paper.
We propose a task discovery framework that automatically finds examples of such
tasks via optimizing a generalization-based quantity called agreement score. We
demonstrate that one set of images can give rise to many tasks on which neural
networks generalize well. These tasks are a reflection of the inductive biases of
the learning framework and the statistical patterns present in the data, thus they
can make a useful tool for analysing the neural networks and their biases. As an
example, we show that the discovered tasks can be used to automatically create

“adversarial train-test splits” which make a model fail at test time, without changing

the pixels or labels, but by only selecting how the datapoints should be split between
the train and test sets. We end with a discussion on human-interpretability of the
discovered tasks.

1 Introduction

Deep learning models are found to generalize well, i.e., exhibit low test error when trained on
human-labelled tasks. This can be seen as a consequence of the models’ inductive biases that favor
solutions with low test error over those which also have low training loss but higher test error. In this
paper, we aim to find what are examples of other tasks1 that are favored by neural networks, i.e., on
which they generalize well. We will also discuss some of the consequences of such findings.

We start by defining a quantity called agreement score (AS) to measure how well a network generalizes
on a task. It quantifies whether two networks trained on the same task with different training
stochasticity (e.g., initialization) make similar predictions on new test images. Intuitively, a high
AS can be seen as a necessary condition for generalization, as there cannot be generalization if the
AS is low and networks converge to different solutions. On the other hand, if the AS is high, then
there is a stable solution that different networks converge to, and, therefore, generalization is possible

(see Appendix J). We show that the AS indeed makes for a useful metric and differentiates between
human- and random-labelled tasks (see Fig. 1-center).

Given the AS as a prerequisite of generalization, we develop a task discovery framework that
optimizes it and finds new tasks on which neural networks generalize well. Experimentally, we found
that the same images can allow for many different tasks on which different network architectures
generalize (see an example in Fig. 1-right).

1In the context of this paper, generally, a “task” is a labelling of a dataset, and any label set defines a “task”.
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Figure 1: Left: The agreement score (AS) measures whether two networks trained on the task ⌧ with different
optimization stochasticity (e.g., initialization) make the same prediction on a test image x̂. f(x̂, w) denotes a
network with weights w applied to an input x̂. w̃ and w⇤ denote initial and converged weights, respectively.
Center: The agreement score successfully differentiates between human-labelled tasks based on CIFAR-10
original labels and random-labelled tasks. The task discovery framework finds novel tasks with high agreement
scores. Right: Examples of a discovered, human-labelled (animals vs. non-animals) and random-labelled
tasks on CIFAR-10. This particular discovered task looks visually distinct and seems to be based on the image
background.

Finally, we discuss how the proposed framework can help us understand deep learning better, for
example, by demonstrating its biases and failure modes. We use the discovered tasks to split a
dataset into train test sets in an adversarial way instead of random splitting. After training on the
train set, the network fails to make correct predictions on the test set. The adversarial splits can
be seen as using the “spurious” correlations that exist in the datasets via discovered tasks. We
conjecture that these tasks provide strong adversarial splits since task discovery finds tasks that are
“favored” by the network the most. Unlike manually curated benchmarks that reveal similar failing
behaviours [67, 47, 77], or pixel-level adversarial attacks [71, 40, 51], the proposed approach finds
the adversarial split automatically and does not need to change any pixels or labels or collect new
difficult or adversarial images.

2 Related Work

Deep learning generalization. It is not well understood yet why deep neural networks generalize
well in practice while being overparameterized and having large complexity [26, 21, 59, 80, 75]. A
line of work approaches this question by investigating the role of the different components of deep
learning [1, 57, 2, 1, 53, 82, 72, 19] and developing novel complexity measures that could explain
neural networks’ generalization [58, 32, 46, 54, 69]. The proposed task discovery framework can
serve as an experimental tool to shed more light on when and how deep learning models generalize.
Also, compared to existing quantities for studying generalization, namely [81], which is based on the
training process only, our agreement score is directly based on test data and generalization.

Similarity measures between networks. Measuring the similar between two networks is challenging
and depends on a particular application. Two common approaches are to measure the similarity
between hidden representations [45, 38, 41, 66, 44, 53] and the predictions made on unseen data [70].
Similar to our work, [19, 29, 64] also use an agreement score measure. In contrast to these works,
which mainly use the AS as a metric, we turn it into an optimization objective to find new tasks with
the desired property of good generalization.

Bias-variance decomposition. The AS used in this work can be seen as a measure of the variance
term in the bias-variance decomposition of the test error [18, 4, 73, 14]. Recent works investigate how
this term behaves in deep learning models [3, 55, 79, 56]. In contrast, we characterize its dependence
on the task being learned instead of the model’s complexity and find those that maximize the AS.

Creating distribution shifts. Distributions shifts can result from e.g. spurious correlations, under-
sampling [77] or adversarial attacks [71, 40, 51]. To create such shifts to study the failure modes of
networks, one needs to define them manually [67, 47]. We show that it is possible to automatically

create many such shifts that lead to a significant accuracy drop on a given dataset using the discovered
tasks (see Sec. 6 and Fig. 5-left). In contrast to other automatic methods to find such shifts, the
proposed approach allows to creates many of them for a learning algorithm rather than for a single
trained model [16], does not require additional prior knowledge [12] or adversarial optimization [42],
and does not change pixel values [40] or labels.
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Data-centric analyses of learning. Multiple works study how training data influences the final
model. Common approaches are to measure the effect of removing, adding or mislabelling individual
data points or a group of them [36, 37, 27, 28]. Instead of choosing which objects to train on, in task
discovery, we choose how to label a fixed set of objects (i.e., tasks), s.t. a network generalizes well.

3 Agreement Score: Measuring Consistency of Labeling Unseen Data
In this section, we introduce the basis for the task discovery framework: the definition of a task and
the agreement score, a measure of the task’s generalizability. We then provide an empirical analysis
of this score and demonstrate that it differentiates human- and random-labelled tasks.

Notation and definitions. Given a set of N images X = {xi}N
i=1

, x 2 X , we define a task as a
binary labelling of this set ⌧ : X ! {0, 1} (a multi-class extension is straightforward). We denote
the corresponding labelled dataset as D(X, ⌧) = {(x, ⌧(x))|x 2 X} and the set of all possible
tasks (i.e., label sets) on X as TX . We consider a learning algorithm A to be a neural network
f(·; w) : X ! [0, 1] with weights w trained by SGD with cross-entropy loss. Due to the inherent
stochasticity, such as random initialization and mini-batching, this learning algorithm induces a
distribution over the weights given a dataset w ⇠ A(D(X, ⌧)).

3.1 Agreement Score as a Measure of Generalization
A standard approach to measure the generalization of a learning algorithm A trained on D(Xtr, ⌧)
is to measure the test error on D(Xte, ⌧). The test error can be decomposed into bias and variance
terms [4, 73, 14], where, in our case, the stochasticity is due to A while the train-test split is fixed.
We now examine how this decomposition depends on the task ⌧ . The bias term measures how much
the average prediction deviates from ⌧ and mostly depends on what are the test labels on Xte. The
variance term captures how predictions of different models agree with each other and does not depend
on the task’s test labels but only on training labels through D(Xtr, ⌧). We suggest measuring the
generalizability of a task ⌧ with an agreement score, as defined below.

For a given train-test split Xtr, Xte and a task ⌧ , we define the agreement score (AS) as:

AS(⌧ ; Xtr, Xte) = Ew1,w2⇠A(D(Xtr,⌧))Ex⇠Xte [f(x; w1) = f(x; w2)], (1)

where the first expectation is over different models trained on D(Xtr, ⌧) and the inner expectation
is averaging over the test set. Practically, this corresponds to training two networks from different
initializations on the training dataset labelled by ⌧ and measuring the agreement between these two
models’ predictions on the test set (see Fig. 1-left and the inner-loop in Fig. 3-left).

The AS depends only on the task’s training labels, thus, test labels are not required. However, it
is tightly connected to the test error, as having a high-AS task ⌧ that labels training data, one can
construct a task with a high test accuracy. We note, however, that when the task is given and fixed, the
high-AS provides only a necessary but not a sufficient condition for a high test accuracy as test labels
can take any values in general (e.g., be adversarial as in Sec. 5), thus, it cannot be used to predict the
test accuracy, in this case [29, 35]. Refer to Appendix J for a more in-depth discussion.

3.2 Agreement Score Behaviour for Random- and Human-Labelled Tasks

Here, we demonstrate that the AS exhibits the desired behaviour of differentiating human-labelled
from random-labelled tasks. We take the set of images X from the CIFAR-10 dataset [39] and
split the original training set into 45K images for Xtr and 5K for Xte. We split 10 original classes
differently into two sets of 5 classes to construct 5-vs-5 binary classification tasks ⌧hl. Out of all

�
10

5

�

tasks, we randomly sub-sample 20 ones to form the set of human-labelled tasks THL. We construct the
set of 20 random-labelled tasks TRL by generating binary labels for all images randomly and fixing
them throughout the training, similar to [81]. We use ResNet-18 [24] architecture and Adam [34]
optimizer as the learning algorithm A, unless otherwise specified. We measure the AS by training
two networks for 100 epochs, which is enough to achieve zero training error for all considered tasks.

AS differentiates human- from random-labelled tasks. Fig. 1-center shows that human-labelled
tasks have a higher AS than random-labelled ones. This coincides with our intuition that one should
not expect generalization on a random task, for which AS is close to the chance level of 0.5. Note, that
the empirical distribution of the AS for random-labelled tasks (Fig. 2-left) is an unbiased estimation
of the AS distribution over all possible tasks, as TRL are uniform samples from TXtr . This suggests
that high-AS tasks do not make for a large fraction of all tasks. A high AS of human-labelled tasks
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Figure 2: Agreement score for human- and random-labelled tasks. Left: AS measured on three architectures:
ResNet-18, MLP and ViT. Center: AS measured on ResNet-18 for different numbers of training images N . The
standard deviation is over four random tasks and three data splits. Right: Ablating the sources of stochasticity
present in A. Each row shows when one of the 1) initialization, 2) data-order or 3) CUDA is stochastic and the
other two sources are fixed, and the bottom is when all the sources are fixed (see Sec. 3.2). The differentiation
between human- and random-labelled tasks stably persists across different architectures, data sizes and sources
of randomness.

is also consistent with the understanding that a network is able to generalize when trained on the
original CIFAR-10 labels.

How does the AS differ across architectures? In addition to ResNet-18, we measure the AS using
MLP [70] and ViT architectures [15] (see Appendix L.3). Fig. 2-left shows that the AS for all the
architectures distinguishes tasks from TRL and THL well. MLP and ViT have lower AS than ResNet-
18, aligned with our understanding that convolutional networks should exhibit better generalization
on this small dataset due to their architectural inductive biases. Similar to the architectural analysis,
we provide the analysis on the data-dependency of the AS in Appendix C.

How does the AS depend on the training size? When only too little data is available for training,
one could expect the stochasticity in A to play a bigger role than data, i.e., the agreement score
decreases with less data. This intuition is consistent with empirical evidence for human-labelled
tasks, as seen in Fig. 2-center. However, for random-labelled tasks, the AS increases with less data
(but they still remain distinguishable from human-labelled tasks). One possible reason is that when
the training dataset is very small, and the labels are random, the two networks do not deviate much
from their initializations. This results in similar networks and consequently a high AS, but basically
irrelevant to the data and uninformative.

Any stochasticity is enough to provide differentiation. We ablate the three sources of stochasticity
in A: 1) initialization, 2) data-order and 3) CUDA stochasticity [31]. The system is fully deterministic
with all three sources fixed, thus, AS=1. Interestingly, when any of these variables change between
two runs, the AS drops, creating separation between human- and random-labelled tasks.

These empirical observations show that the AS well differentiates between human- and random-
labelled tasks across multiple architectures, dataset sizes and sources of stochasticity.

4 Task Discovery via Meta-Optimization of the Agreement Score
As the previous section shows, AS is a useful measure of network’s generalization on a given task. A
natural question then arises: are there high-AS tasks other than human-labelled ones, and what are

they? In this section, we establish a task discovery framework to automatically search for these tasks
and study this question computationally.

4.1 Task Space Parametrization and Agreement Score Meta-Optimization

Our goal is to find a task ⌧ that maximizes AS(⌧). It is a high-dimensional discrete optimization
problem which is computationally hard to solve. In order to make it differentiable and utilize more
efficient first-order optimization methods, we, first, substitute the 0-1 loss in Eq. 1 with the cross-
entropy loss lce. Then, we parameterize the space of tasks with a task network t✓ : X ! [0, 1] and
treat the AS as a function of its parameters ✓. This basically means that we view the labelled training
dataset D(Xtr, ⌧) and a network t✓ with the same labels on Xtr as being equivalent, as one can
always train a network to fit the training dataset.

Given that all the components are now differentiable, we can calculate the gradient of the AS w.r.t.
task parameters r✓AS(t✓) by unrolling the inner-loop optimization and use it for gradient-based
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optimization over the task parameters ✓. This results in a meta-optimization problem where the
inner-loop optimization is over parameters w1, w2 and the outer-loop optimization is over ✓ (see
Fig. 3-left).

Evaluating the meta-gradient w.r.t. ✓ has high memory and computational costs, as we need to train
two networks from scratch in the inner-loop. To make it feasible, we limit the number of inner-loop
optimization steps to 50, which we found to be enough to separate the AS between random and
human-labelled tasks and provide a useful learning signal (see Appendix L.1). We additionally
use gradient checkpointing [8] after every inner-loop step to avoid linear memory consumption in
the number of steps. This allows us to run the discovery process for the ResNet-18 model on the
CIFAR-10 dataset using a single 40GB A100. See Appendix L.2 for more details.

4.2 Discovering a Set of Dissimilar Tasks with High Agreement Scores

The described AS meta-optimization results in only a single high-AS task, whereas there are poten-
tially many of them. Therefore, we would like to discover a set of tasks T = {t✓1 , . . . , t✓K }. A naive
approach to finding such a set would be to run the meta-optimization from K different intializations
of task parameters ✓. However, this results in a set of similar (or even the same) tasks, as we observed
in the preliminary experiments. Therefore, we aim to discover dissimilar tasks to better represent the
set of all high-AS tasks. We measure the similarity between two tasks on a set X as follows:

simX(⌧1, ⌧2) = max {Ex⇠X [⌧1(x) = ⌧2(x)], Ex⇠X [⌧1(x) = 1 � ⌧2(x)]} , (2)
where the maximum accounts for the labels’ flipping. Since this metric is not differentiable, we,
instead, use a differentiable loss Lsim to minimize the similarity (defined later in Sec. 4.3, Eq. 5).
Finally, we formulate the task discovery framework as the following optimization problem over T :

arg max
T={t✓1 ,...,t✓K

}
Et✓⇠T AS(t✓) � � · Lsim(T ). (3)

We show the influence of � on task discovery in Appendix H. Note that this naturally avoids
discovering trivial solutions that are highly imbalanced (e.g., labelling all objects with class 0) due
to the similarity loss, as these tasks are similar to each other, and a set T that includes them will be
penalized.

In practice, we could solve this optimization sequentially – i.e., first find t✓1 , freeze it and add it to T ,
then optimize for t✓2 , and so on. However, we found this to be slow. In the next Sec. 4.3, we provide
a solution that is more efficient, i.e., can find more tasks with less compute.

Regulated task discovery. The task discovery formulation above only concerns with finding high-
AS tasks – which is the minimum requirement for having generalizable tasks. One can introduce
additional constraints to regulate the discovery process, e.g., by adding a regularizer to Eq. 3 or via
the task network’s architectural biases. This approach can allow for a guided task discovery to favor
the discovery of particular tasks. We provide an example of a regulated discovery in Sec. 5.1 by using
self-supervised pre-trained embeddings as the input to the task network.

4.3 Modelling The Set of Tasks with an Embedding Space

Modelling every task by a separate network increases memory and computational costs. In order to
amortize these costs, we adopt an approach popular in multi-task learning and model task networks
with a shared encoder e(·; ✓e) : X ! Rd and a task-specific linear head ✓l 2 Rd, so that t✓(x) =
e(x; ✓e)>✓l. See Fig. 3-right for visualization. Then, instead of learning a fixed set of different
task-specific heads, we aim to learn an embedding space where any linear hyperplane gives rise to a
high-AS task. Thus, an encoder with parameters ✓e defines the following set of tasks:

T✓e = {t✓ | ✓ = (✓e, ✓l), ✓l 2 Rd}. (4)
This set is not infinite as it might seem at first since many linear layers will correspond to the same
shattering of X . The size of T✓e as measured by the number of unique tasks on X is only limited by
the dimensionality of the embedding space d and the encoder’s expressivity. Potentially, it can be as
big as the set of all shatterings when d = |X| � 1 and the encoder e is flexible enough [74].

We adopt a uniformity loss over the embedding space [76] to induce dissimilarity between tasks:

Lsim(T✓e) = Lunif(✓e) = log Ex1,x2 exp

⇢
↵ · e(x1; ✓e)>e(x2; ✓e)

ke(x1; ✓e)k · ke(x2; ✓e)k

�
, (5)
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Figure 3: Left: Agreement score meta-optimization. Inner-loop: given the task t✓ 2 T , two networks w1, w2

optimize the cross-entropy loss lce on the training set labelled by the task t✓ (Sec. 4.1). After training, the
agreement between two networks is calculated on the test set. Outer-loop: the task parameters ✓ are updated
with the meta-gradient of the AS. Right: the task-space paramertrization with the shared encoder (Sec. 4.3). The
encoder e(· ; ✓2) (after projection) distributes images uniformly on the sphere in the embedding space. Different
tasks are then formed by applying a linear classifier with weights, e.g., ✓1l and ✓2l , passing through the origin.
The corresponding set of tasks T✓e consists of all such linear classifiers in this space. This results in a more
efficient task discovery framework than modelling each task with a separate network.

where the expectation is taken w.r.t. pairs of images randomly sampled from the training set. It
favours the embeddings to be uniformly distributed on a sphere, and, if the encoder satisfies this
property, any two orthogonal hyper-planes ✓1

l ? ✓2

l (passing through origin) give rise to two tasks
with the low similarity of 0.5 as measured by Eq. 2 (see Fig. 3-right).

In order to optimize the AS averaged over T✓e in Eq. 3, we can use a Monte-Carlo gradient estimator
and sample one hyper-plane ✓l at each step, e.g., w.r.t. an isotropic Gaussian distribution, which, on
average, results in dissimilar tasks given that the uniformity is high. As a result of running the task
discovery framework, we find the encoder parameters ✓⇤

e that optimize the objective Eq. 3 and gives
rise to the corresponding set of tasks T✓⇤

e
(see Eq. 4 and Fig. 3-right).

Note that the framework outlined above can be straightforwardly extended to the case of discovering
multi-way classification tasks as we show in Appendix D, where instead of sampling a hyperplane
that divides the embedding space into two parts, we sample K hyperplanes that divide the embedding
space into K regions and give rise to K classes.

Towards the space of high-AS tasks. Instead of creating a set of tasks, one could seek to define a

space of high-AS tasks. That is to define a basis set of tasks and a binary operation on a set of tasks
that constructs a new task and preserves the AS. The proposed formulation with a shared embedding
space can be seen as a step toward this direction. Indeed, in this case, the structure over T✓⇤

e
is

imposed implicitly by the space of liner hyperplanes ✓l 2 Rd, each of which gives rise to a high-AS
task.

4.4 Discovering High-AS Tasks on CIFAR-10 Dataset

In this section, we demonstrate that the proposed framework successfully finds dissimilar tasks
with high AS. We consider the same setting as in Sec. 3.2. We use the encoder-based discovery
described in Sec. 4.3 and use the ResNet-18 architecture for e(·; ✓e) with a linear layer mapping to
Rd (with d = 32) instead of the last classification layer. We use Adam as the meta-optimizer and
SGD optimizer for the inner-loop optimization. Please refer to Appendix L.2 for more details.

We optimize Eq. 3 to find ✓⇤
e and sample 32 tasks from T✓⇤

e
by taking d orthogonal hyper-planes ✓l.

We refer to these 32 tasks as TResNet. The average similarity (Eq. 2) between all pairs of tasks from
this set is 0.51, close to the smallest possible value of 0.5. For each discovered task, we evaluate its
AS in the same way as in Sec. 3.2 (according to Eq. 1). Fig. 1-center demonstrates that the proposed
task discovery framework successfully finds tasks with high AS. See more visualizations and analyses
of these discovered tasks in Sec. 5 and Appendix B.

Random networks give rise to high-AS tasks. Interestingly, in our experiments, we found that
if we initialize a task network randomly (standard uniform initialization from PyTorch [63]), the
corresponding task (after applying softmax) will have a high AS, on par with human-labelled and
discovered ones (⇡ 0.85). Different random initializations, however, give rise to very similar tasks
(e.g., 32 randomly sampled networks have an average similarity of 0.68 compared to 0.51 for the
discovered tasks. See Appendix K for a more detailed comparison). Therefore, a naive approach of
sampling random networks does not result in an efficient task discovery framework, as one needs to
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Figure 4: Left: The AS for tasks from THL, TResNet, TMLP, TViT measured on all three architectures (x and
y axis). Right: Sample images for each class of our discovered tasks are shown in the first two columns. We
show some unlabelled examples in the third column for the reader to guess the label. The answers are in the
Appendix B. These images have been sampled to be the most discriminative, as measured by the network
predicted probability. Right (top): Some of the discovered tasks from the unregulated version of task discovery
seem to be based on color patterns, e.g. ⌧1(x) = 1 are images with similar blue color, which make sense as a
learnable task and are expected (see Sec. 5.1). Right (bottom): The same, but for a regulated version where the
encoder was pretrained with SimCLR. The tasks seems to correspond more to semantic tasks e.g. ⌧reg.

1
(x) = 1

are images of vehicles with different backgrounds. As the pretraining encourages the encoder to be invariant
to color, it seems to be biased towards semantic information. Thus, the framework is able to pick up on the
inductive biases from SimCLR pretraining, via the discovered tasks.

draw prohibitively many of them to get sufficiently dissimilar tasks. Note, that this result is specific
to the initialization scheme used and not any instantiation of the network’s weights necessarily results
in a high-AS task.

5 Empirical Study of the Discovered Tasks

In this section, we first perform a qualitative analysis of the discovered tasks in Sec. 5.1. Second in
Sec. 5.2, we discuss the human-interpretability of the discovered tasks and whether human-labelled
tasks should be expected to be discovered. Then, we analyze how discovered tasks differ for three
different architectures in Sec. 5.3. We also study the dependency of the AS on the test data domain
and show the results in Appendix C in the interest of space.

5.1 Qualitative Analyses of the Discovered Tasks

Here we attempt to analyze the tasks discovered by the proposed discovery framework. Fig. 4-
top-right shows examples of images for three sample discovered tasks found in Sec. 4.4. For ease
of visualization, we selected the most discriminative images from each class as measured by the
network’s predicted probability. In the interest of space, the visuals for all tasks are in the Appendix B,
alongside some post hoc interpretability analysis.

Some of these tasks seem to be based on color, e.g. the class 1 of ⌧1 includes images with blue (sky
or water) color, and the class 0 includes images with orange color. Other tasks seem to pick up other
cues. These are basically reflections of the statistical patterns present in the data and the inductive

biases of the learning architecture.

Regulated task discovery described in Sec. 4.2 allows us to incorporate additional information to
favor the discovery of specific tasks, e.g., ones based on more high-level concepts. As an example,
we use self-supervised contrastive pre-training that learns embeddings invariant to the employed set
of augmentations [20, 22, 5, 52]. Specifically, we use embeddings of the ResNet-50 [24] trained
with SimCLR [9] as the input to the encoder e instead of raw images, which in this case is a 2-layer
fully-connected network. Note that the AS is still computed using the raw pixels.

Fig. 4-bottom-right shows the resulting tasks. Since the encoder is now more invariant to colour
information due to the colour jittering augmentation employed during pre-training [9], the discovered
tasks seem to be more aligned with CIFAR-10 classes; e.g. samples from ⌧ reg

1
’s class 1 show vehicles

against different backgrounds. Note that task discovery regulated by contrastive pre-training only
provides a tool to discover tasks invariant to the set of employed augmentations. The choice of
augmentations, however, depends on the set of tasks one wants to discover. For example, one should
not employ a rotation augmentation if they need to discover view-dependent tasks [78].
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5.2 On Human-Interpretability and Human-Labelled Tasks

In this section, we discuss i) if the discovered tasks should be visually interpretable to humans, ii) if
one should expect them to contain human-labelled tasks and if they do in practice, and iii) an example
of how the discovery of human-labelled tasks can be promoted.

Should the discovered high-AS tasks be human-interpretable? In this work, by “human-
interpretable tasks”, we generally refer to those classifications that humans can visually understand
or learn sufficiently conveniently. Human-labelled tasks are examples of such tasks. While we
found in Sec. 3.2 that such interpretable tasks have a high AS, the opposite is not true, i.e., not all

high-AS tasks should be visually interpretable by a human – as they reflect the inductive biases of the
particular learning algorithm used, which are not necessarily aligned with human perception. The
following “green pixel task” is an example of such a high-AS task that is learnable and generalizable
in a statistical learning sense but not convenient for humans to learn visually.

The “green pixel task”. Consider the following simple task: the label for x is 1 if the pixel p at a fixed
position has the green channel intensity above a certain threshold and 0 otherwise. The threshold is
chosen to split images evenly into two classes. This simple task has the AS of approximately 0.98,
and a network trained to solve it has a high test accuracy of 0.96. Moreover, the network indeed
seems to make the predictions based on this rule rather than other cues: the accuracy remains almost
the same when we set all pixels but p to random noise and, on the flip side, drops to the chance level
of 0.5 when we randomly sample p and keep the rest of the image untouched. This suggests that the
network captured the underlying rule for the task and generalizes well in the statistical learning sense.
However, it would be hard for a human to infer this pattern by only looking at examples of images
from both classes, and consequently, it would appear like an uninterpretable/random task to human
eyes.

It is sensible that many of the discovered tasks belong to such a category. This indicates that finding
more human-interpretable tasks would essentially require bringing in additional constraints and

biases that the current neural network architectures do not include. We provide an example of such a
promotion using the SSL regulated task discovery results below.

Do discovered tasks contain human-labelled tasks? We observe that the similarity between the
discovered and most human-labelled tasks is relatively low (see Fig. 11-left and Appendix E for
more details). As mentioned above, human-labelled tasks make up only a small subset of all tasks
with a high AS. The task discovery framework aims to find different (i.e., dissimilar) tasks from this
set and not necessarily all of them. In other words, there are many tasks with a high AS other than
human-labelled ones, which the proposed discovery framework successfully finds.

As mentioned above, introducing additional inductive biases would be necessary to promote finding
more human-labelled tasks. We demonstrate this by using the tasks discovered with the SimCLR
pre-trained encoder (see Sec. 5.1). Fig. 11-right shows that the recall of human-labelled tasks among
the discovered ones increases notably due to the inductive biases that SimCLR data augmentations
bring in.

5.3 The Dependency of the Agreement Score and Discovered Tasks on the Architecture

In this section, we study how the AS of a task depends on the neural network architecture used for
measuring the AS. We include human-labelled tasks as well as a set of tasks discovered using different
architectures in this study. We consider the same architectures as in Sec. 3.2: ResNet-18, MLP, and
ViT. We change both f and e to be one of MLP or ViT and run the same discovery process as in
Sec. 4.4. As a result, we obtain three sets: TResNet, TMLP, TViT, each with 32 tasks. For each task,
we evaluate its AS on all three architectures. Fig. 4-left shows that high-AS tasks for one architecture
do not necessary have similar AS when measured on another architecture (e.g., TResNet on ViT). For
MLP and ViT architectures, we find that ASs correlate well for all groups for tasks, which is aligned
with the understanding that these architectures are more similar to each other than to ResNet-18.

More importantly, we note that comparing architectures on any single group of tasks is not enough.
For example, if comparing the AS for ResNet-18 and MLP only on human-labelled tasks THL,
one might conclude that they correlate well (⇢ = 0.8), suggesting they generalize on similar tasks.
However, when the set TResNet is taken into account, the conclusion changes (⇢ = 0.17). Thus, it is
important to analyse the different architectures on a broader set of tasks not to bias our understanding,
and the proposed task discovery framework allows for more complete analyses.
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Figure 5: Adversarial splits on CIFAR-10. Left: Test accuracy for human-labelled tasks ⌧hl on random and
adversarial splits. The boxplot distribution is over four ⌧hl tasks for the random split and 24 (⌧hl, ⌧d) pairs for
the adversarial one. Training with the adversarial split results in a significant test performance drop. Center:
Example of an adversarial split, constructed such that images from train and test sets have the opposite correlation
between ⌧hl and ⌧d (the percentage of images in each group is shown in brackets). The model seems to learn
to make its predictions based on ⌧d instead of ⌧hl (hence, the significant test accuracy drop). Right: Each dot
corresponds to a pair of tasks (⌧1, ⌧2), where the y-axis is the test accuracy after training on the corresponding
adversarial split to predict ⌧1, and the x-axis is the difference in the AS of these two tasks. The plot suggests that
the network favors learning the task with a higher AS: the higher the AS of ⌧1 is, the higher the accuracy w.r.t. ⌧1
is. Thus, for an adversarial split to be successful, the AS of the target task ⌧1 should be lower than the AS of ⌧2.

6 Adversarial Dataset Splits
In this section, we demonstrate how the discovered tasks can be used to reveal biases and failure modes
of a given network architecture (and training pipeline). In particular, we introduce an adversarial

split – which is a train-test dataset split such that the test accuracy of the yielded network significantly
drops, compared to a random train-test split. This is because the AS can reveal what tasks a network
favors to learn, and thus, the discovered tasks can be used to construct such adversarial splits.

6.1 Creating Adversarial Train-Test Dataset Partitions Using Discovered High-AS Tasks

For a given human-labelled task ⌧hl, let us consider the standard procedure of training a network on
D(Xtr, ⌧hl) and testing it on D(Xte, ⌧hl). The network usually achieves a high test accuracy when
the dataset is split into train and test sets randomly. Using discovered tasks, we show how to construct
adversarial splits on which the test accuracy drops significantly after training. To do that, we take a
discovered task ⌧d with a high AS and construct the split, s.t. ⌧hl and ⌧d have the same labels on the
training set Xadv

tr
and the opposite ones on the test set Xadv

te
(see Fig. 5-center):

Xadv

tr
= {x | ⌧hl(x) = ⌧d(x), x 2 X}, Xadv

te
= {x | ⌧hl(x) 6= ⌧d(x), x 2 X}. (6)

Fig. 5-left shows that for various pairs of (⌧hl, ⌧d), the test accuracy on D(Xadv

te
, ⌧hl) drops signifi-

cantly after training on D(Xadv

tr
, ⌧hl). This suggests the network chooses to learn the cue in ⌧d, rather

than ⌧hl, as it predicts 1 � ⌧hl on Xadv

te
, which coincides with ⌧d. We note that we keep the class

balance and sizes of the random and adversarial splits approximately the same (see Fig. 5-center).

A discovered task ⌧d, in this case, can be seen as a spurious feature [68, 33] and the adversarial split
creates a spurious correlation between ⌧hl and ⌧d on Xadv

tr
, that fools the network. Similar behaviour

was observed before on datasets where spurious correlations were curated manually [67, 47, 77]. In
contrast, the described approach using the discovered tasks allows us to find such spurious features,
to which networks are vulnerable, automatically. It can potentially find spurious correlations on
datasets where none was known to exist or find new ones on existing benchmarks, as shown below.

In Appendix F, we show how to extend this approach to multi-class classification, and provide results
for the results for the original 10-way classification task of the CIFAR-10 dataset. We also construct
and present adversarial adversarial splits for ImageNet and CelebA datasets in Appendix G.

6.2 Neural Networks Favor Learning the Task with a Higher AS.

The empirical observation made in the previous section demonstrates that a network trained on a
dataset where ⌧hl and ⌧d coincide predicts the latter. While theoretical analysis is needed to understand
the cause of this phenomenon, here, we provide an empirical clue towards its understanding.

We consider a set of 10 discovered tasks and 4 human-labelled tasks. For all pairs of tasks (⌧1, ⌧2)
from this set, we construct the adversarial split according to Eq. 6, train a network on D(Xadv

tr
, ⌧1)

and test it on D(Xadv

te
, ⌧1). Fig. 5-right shows the test accuracy against the difference in the agreement
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score of these two tasks AS(⌧1)�AS(⌧2). We find that the test accuracy w.r.t. ⌧1 correlates well with
the difference in the agreement: when AS(⌧1) is sufficiently larger than AS(⌧2), the network makes
predictions according to ⌧1, and vice-versa. When the agreement scores are similar, the network
makes test predictions according to neither of them (see Appendix I for further discussion). This
observation suggests that an adversarial split is successful, i.e., causes the network to fail, if the AS
of the target task ⌧1 is lower than that of the task ⌧2 used to create the split.

7 Conclusion

In this work, we introduce task discovery, a framework that finds tasks on which a given network
architecture generalizes well. It uses the Agreement Score (AS) as the measure of generalization
and optimizes it over the space of tasks to find generalizable ones. We show the effectiveness of this
approach and demonstrate multiple examples of such generalizable tasks. We find that these tasks are
not limited to human-labelled ones and can be based on other patterns in the data. This framework
provides an empirical tool to analyze neural networks through the lens of the tasks they generalize
on and can potentially help us better understand deep learning. Below we outline a few research
directions that can benefit from the proposed task discovery framework.

Understanding neural networks’ inductive biases. Discovered tasks can be seen as a reflection of
the inductive biases of a learning algorithm (network architectures, optimization with SGD, etc.), i.e.,
a set of preferences that allow them to generalize on these tasks. Therefore, having access to these
biases in the form of concrete tasks could help us understand them better and guide the development
of deep learning frameworks.

Understanding data. As discussed and shown, task discovery depends on, not only the learning
model, but also the data in hand. Through the analysis of discovered tasks, one can, for example, find
patterns in data that interact with a model’s inductive biases and affect its performance, thus use the
insights to guide dataset collection.

Generalization under distribution shifts. The AS turned out to be predictive of the cues/tasks a
network favors in learning. The consequent adversarial splits (Sec. 6) provide a tool for studying
the biases and generalization of neural networks under distribution shifts. They can be constructed
automatically for datasets where no adverse distribution shifts are known and help us to build more
broad-scale benchmarks and more robust models.

8 Limitations

The proposed instantiation of a more general task discovery framework has several limitations, which
we outline below, along with potential approaches to address them.

Completeness: the set of discovered tasks does not necessarily include all of the tasks with a high
AS. Novel optimization methods that better traverse different optima of the optimization objective
Eq. 3, e.g., [61, 50], and further scaling are needed to address this aspect. Also, while the proposed
encoder-based parametrization yields an efficient task discovery method, it imposes some constraints
on the discovered tasks, as there might not exist an encoder such that the corresponding set of tasks
T✓e contains all and only high-AS ones.

Scalability: the task discovery framework relies on an expensive meta-optimization, which limits
its applicability to large-scale datasets. This problem can be potentially addressed in future works
with recent advances in efficient meta-optimization methods [49, 65] as well as employing effective
approximations of the current processes.

Interpretability: As we discussed and demonstrated, analysis of discovered high-AS tasks can shed
more light on how the neural networks work. However, it is the expected behavior that not all of
these tasks may be easily interpretable or “useful” in the conventional sense (e.g. as an unsupervised
pre-training task). This is more of a consequence of the learning model under discovery, rather than
the task discovery framework itself. Having discovered tasks that exhibit such properties requires
additional inductive biases to be incorporated in the learning model. This was discussed in Sec. 5.2.

Acknowledgment: We thank Alexander Sax, Pang Wei Koh, Roman Bachmann, David Mizrahi
and Oğuzhan Fatih Kar for the feedback on earlier drafts of this manuscript. We also thank Onur
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