
A Appendix

A.1 Visualization of Coreset

Figure 5 shows the visualization of coreset in the memory bank. PatchCore reserve too many noisy
features, which are obviously outliers. Though replacing the greedy sampling with random sampling,
PatchCore avoids most noisy features but is poor at model training set and still misled by some noise.
The coreset of SoftPatch is clean and decentralized. Our coreset saves some features from noisy
samples because we believe that abnormal images also contain a large number of normal patches. So
the features conforming to the normal distribution are reserved to enhance the model perception.

(b) PatchCore-Random(a) PatchCore (c) Ours

Figure 5: Comparison between corsets of AD methods with same noisy train set, MVTecAD-Pill
with noise-0.1. We use t-SNE for dimension reduction for visualization. The yellow dots represent
patch features from noisy sample, while the purple dots are nominal. Compared with the other two,
SoftPatch wipe off the noisy patch and model the nominal data properly.

A.2 Details of Experimental Results

Table 6: Anomaly localization performance details of all classes. The results are evaluated on
MVTecAD-noise-0.1.

Noise=0.1 No overlap | Overlap

Category PaDiM CFLOW PatchCore SoftPatch-
nearest

SoftPatch-
gaussian

SoftPatch-
lof PaDiM* PatchCore PatchCore-

random
SoftPatch-

lof

bottle 0.986 0.984 0.987 0.987 0.986 0.987 0.981 0.714 0.979 0.975
cable 0.916 0.958 0.843 0.915 0.981 0.983 0.946 0.670 0.969 0.971
capsule 0.986 0.985 0.986 0.988 0.977 0.990 0.984 0.883 0.984 0.989
carpet 0.992 0.989 0.992 0.992 0.993 0.992 0.980 0.765 0.951 0.989
grid 0.974 0.947 0.991 0.990 0.989 0.990 0.879 0.482 0.882 0.974
hazelnut 0.987 0.991 0.990 0.990 0.991 0.990 0.978 0.418 0.957 0.924
leather 0.994 0.994 0.991 0.994 0.994 0.993 0.992 0.683 0.987 0.993
metal_nut 0.933 0.956 0.842 0.894 0.964 0.984 0.911 0.779 0.938 0.983
pill 0.956 0.983 0.971 0.974 0.972 0.981 0.960 0.608 0.971 0.976
screw 0.989 0.977 0.995 0.991 0.969 0.994 0.974 0.745 0.953 0.969
tile 0.956 0.953 0.953 0.960 0.962 0.954 0.921 0.700 0.919 0.954
toothbrush 0.991 0.988 0.989 0.988 0.988 0.985 0.954 0.692 0.984 0.985
transistor 0.960 0.887 0.847 0.965 0.954 0.942 0.939 0.317 0.914 0.936
wood 0.973 0.964 0.969 0.947 0.946 0.939 0.946 0.522 0.896 0.929
zipper 0.986 0.978 0.986 0.989 0.988 0.988 0.978 0.823 0.975 0.986

Average 0.972 0.969 0.956 0.971 0.977 0.979 0.955 0.654 0.951 0.969
Gap -0.007 -0.006 -0.025 -0.008 -0.001 -0.002 -0.013 -0.327 -0.021 -0.012

A.3 Performance Trends in Noise

Figure 6 and 7 show the performance trends of SOTA AD methods and SoftPatch in different noisy
scenes. Since overconfident in the training data and the greedy subsampling algorithm, PatchCore
performance decreases most obviously with the noise increase. In contrast, CFLOW and PaDiM

1



are also affected by noise, but the amplitudes are smaller. SoftPatch maintains a consistent level
of performance at all noise levels. Unfortunately, SoftPatch is slightly weaker than PatchCore in
noiseless scenes, which may be due to the excessively conservative threshold setting.

0.950 0.947 0.948 0.946 0.943 
0.940 

0.969 

0.955 

0.939 

0.992 0.991 0.988 0.989

0.985

0.981
0.986 0.984 0.984 0.984

0.986 0.988

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0 0.02 0.04 0.06 0.1 0.15

Im
ag

e 
L

ev
el

 A
U

R
O

C

PaDiM

Noise Ratio

CFLOW PatchCore Ours

0.979 0.977 0.974 0.973 0.972 0.973 0.975 
0.972 

0.969 

0.981

0.971 0.97

0.958

0.946 0.944

0.981 0.981 0.982 0.982 0.979
0.974

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0 0.02 0.04 0.06 0.1 0.15

Pi
xe

l L
ev

el
 A

U
R

O
C

PaDiM

Noise Ratio

CFLOW PatchCore Ours

Figure 6: Performance in different level of no overlap noise.

0.891 
0.860 

0.829 
0.800 

0.740 

0.679 

0.959 
0.954 0.945 0.935 

0.910 0.901 

0.992

0.934

0.874

0.811

0.685

0.533

0.986
0.984 0.983 0.983 0.982 0.982

0.500

0.550

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0 0.02 0.04 0.06 0.1 0.15

Im
a

g
e 

L
ev

el
 A

U
R

O
C

PaDiM

Noise Ratio

CFLOW PatchCore Ours

0.968 0.965 0.962 0.958 0.955 0.946 

0.973 0.969 0.969 0.962 0.962 0.956 

0.981

0.923

0.878
0.769

0.693

0.558

0.981 0.978 0.974 0.974 0.969
0.947

0.500

0.550

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0 0.02 0.04 0.06 0.1 0.15

P
ix

el
 L

ev
el

 A
U

R
O

C

PaDiM

Noise Ratio

CFLOW PatchCore Ours

Figure 7: Performance in different level of overlap noise.

A.4 Image-level Denoising V.S. Patch-level Denoising

A simple strategy to eliminate the noisy data is to delete the anomaly samples before training, which
is an unsupervised outlier detection task. However, the existing outlier detection methods do not work
well because the distance between abnormal and normal images is much smaller than the distance
between different classes. Meanwhile, we found that some AD methods could also detect outliers
in the training set. Following [41], we apply PaDiM* as the image-level denoising method which
give consideration to the costs and effects. PaDiM* is a simplified version of PaDiM, which uses
ResNet18 as the backbone with faster computing speed. PaDiM* scores all training samples and
then removes the pieces with high outliers based on the threshold. The comparison in Table 7 and
Table 8 show that image-level denoising dramatically improves the performance of existing SOTA
AD methods in the noisy scene. But there is still a gap when compared with SoftPatch.

A.5 Computational Analysis

SoftPatch does not require more runtime than PatchCore, according to theoretical analysis. The
complexity of the greedy sampling process in PatchCore is O(N2h2w2), which is most expensive
part. The complexity of the noise discrimination process in SoftPatch-LOF is O(N2hw), since
features are grouped before. So the computational complexity of SoftPatch is equal PatchCore by
O(N2hw +N2h2w2) = O(N2h2w2). In fact, SoftPatch will be faster because it removes a part of
the patch as noise.

Excluding the loading time of data, the comparison of the remaining time overhead between SoftPatch
and PatchCore is shown in Figure 9. The GPU used in this experiment is RTX TITAN 24G. Both spend
almost the same amount of time training and testing, which means that our patch-level denoising does
not bring unacceptable overhead. On the contrary, the image-level denoising dramatically increases
training time.

2



Table 7: The anomaly detection performance of image-level denoising and patch-level denoising. The
PaDiM*+PaDiM*, PaDiM*+CFLOW, and PaDiM*+PatchCore are AD methods with image-level
denoising. PaDiM* is used in image level denoising, where we use the same threshold (0.15) as it
in SoftPatch. And we also tried the tricky threshold-0.1 as the noise ratio, but it works worse. The
results are evaluated on MVTecAD-noise-0.1 with overlap.

Category PaDiM* PaDiM*+
PaDiM* CFLOW PaDiM*+

CFLOW PatchCore PaDiM*(threshold
-0.1)+PatchCore

PaDiM*+
PatchCore SoftPatch-lof

bottle 0.937 0.994 1.000 1.000 0.692 0.984 1.000 1.000
cable 0.680 0.741 0.916 0.841 0.756 0.890 0.888 0.994
capsule 0.796 0.854 0.945 0.939 0.783 0.892 0.909 0.955
carpet 0.890 0.937 0.960 0.950 0.681 0.963 0.974 0.993
grid 0.674 0.765 0.799 0.830 0.526 0.850 0.870 0.969
hazelnut 0.543 0.725 0.999 0.990 0.441 0.871 0.929 1.000
leather 0.964 0.979 0.996 1.000 0.739 0.957 0.989 1.000
metal_nut 0.820 0.949 0.957 0.986 0.765 0.965 0.977 1.000
pill 0.722 0.745 0.897 0.924 0.770 0.898 0.913 0.955
screw 0.567 0.542 0.570 0.639 0.710 0.916 0.907 0.923
tile 0.830 0.906 0.980 0.981 0.716 0.939 0.957 0.981
toothbrush 0.700 0.869 0.878 0.928 0.800 0.981 0.997 0.994
transistor 0.471 0.770 0.872 0.788 0.491 0.777 0.825 0.999
wood 0.831 0.966 0.954 0.970 0.579 0.943 0.976 0.986
zipper 0.679 0.678 0.931 0.873 0.792 0.909 0.914 0.974

Average 0.740 0.828 0.910 0.909 0.683 0.916 0.935 0.982

Table 8: The anomaly localization performance of image-level denoising and patch-level denoising.

Category PaDiM* PaDiM*+
PaDiM* CFLOW PaDiM*+

CFLOW PatchCore PaDiM*(threshold
-0.1)+PatchCore

PaDiM*+
PatchCore SoftPatch-lof

bottle 0.981 0.983 0.984 0.986 0.714 0.984 0.985 0.975
cable 0.946 0.954 0.950 0.956 0.670 0.738 0.739 0.971
capsule 0.984 0.982 0.986 0.985 0.883 0.851 0.876 0.989
carpet 0.980 0.984 0.986 0.988 0.765 0.960 0.988 0.989
grid 0.879 0.876 0.961 0.948 0.482 0.797 0.818 0.974
hazelnut 0.978 0.977 0.982 0.987 0.418 0.798 0.825 0.924
leather 0.992 0.993 0.993 0.995 0.683 0.966 0.979 0.993
metal_nut 0.911 0.968 0.960 0.984 0.779 0.784 0.834 0.983
pill 0.960 0.956 0.976 0.984 0.608 0.706 0.713 0.976
screw 0.974 0.968 0.973 0.970 0.745 0.887 0.889 0.969
tile 0.921 0.927 0.945 0.946 0.700 0.924 0.968 0.954
toothbrush 0.954 0.986 0.984 0.983 0.692 0.977 0.986 0.985
transistor 0.939 0.965 0.834 0.908 0.317 0.932 0.945 0.936
wood 0.946 0.947 0.934 0.943 0.522 0.800 0.918 0.929
zipper 0.978 0.973 0.979 0.967 0.823 0.875 0.878 0.986

Average 0.955 0.963 0.962 0.969 0.654 0.865 0.889 0.969

Table 9: Mean training and inference time per category on MVTecAD. The unit of time is second.

Training time Inference time

SoftPatch-LOF 21.2958 15.6146
PatchCore 21.3869 15.8763

PaDiM*+PatchCore 74.2912 15.5386

3



"MVTec/pill/train/good/003.png" "MVTec/carpet/train/good/034.png"

thread

crack

(a)

“BTAD/02/train/ok/0000.png" " BTAD/02/train/ok/0001.png "

(b)

scratchcrack

Figure 8: Noisy examples in (a) MVTecAD dataset and (b) BTAD dataset.

Table 10: Performance on MVTecAD in augmented overlap setting.

Setting Overlap with gaussian noise Overlap with noise and blur Overlap with rotation Overlap with affine transformation

Method PatchCore / Ours PatchCore / Ours PatchCore / Ours PatchCore / Ours

Detection 0.760 / 0.984 0.848 / 0.984 0.950 / 0.984 0.933 / 0.984
Localization 0.790 / 0.969 0.864 / 0.970 0.924 / 0.978 0.915 / 0.978

A.6 The Noise in Existing Datasets

Although existing research datasets are well organized, some abnormal samples are misclassified.
Fig. 8 show anomaly samples in normal set in two wide-used datasets. In the actual production data,
the noise interference will be more serious.

A.7 Performance in Augmented Overlap Setting

We do another experiment where the overlap images are augmented in the train set to make them
different from the images in the test set. We experiment with varying degrees of appearance and
structural augmentation. The result in Table 10 shows that our method still presents better robustness
when the overlap samples have been transformed, though the performance of PatchCore is improved.

A.8 Performance on BTAD with noise

The performance comparisons are provided in table 11 and 12. Since the anomaly samples in
category BTAD-03 are not enough to meet the requirement of the number of noise samples, we
experience the other two.

Table 11: Anomaly detection performance on BTAD-noise-0.1.

Noise = 0.1 No overlap | Overlap

Category PatchCore SoftPatch-LOF PatchCore SoftPatch-LOF

01 1.000 1.000 0.522 1.000
02 0.860 0.922 0.738 0.912
Mean 0.930 0.961 0.630 0.956

4



Table 12: Anomaly localization performance on BTAD-noise-0.1.

Noise = 0.1 No overlap | Overlap

Category PatchCore SoftPatch-LOF PatchCore SoftPatch-LOF

01 0.982 0.999 0.319 0.815
02 0.949 0.953 0.754 0.936
Mean 0.966 0.976 0.536 0.875

5


