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Abstract

Zero-shot coordination (ZSC) evaluates an algorithm by the performance of a
team of agents that were trained independently under that algorithm. Off-belief
learning (OBL) is a recent method that achieves state-of-the-art results in ZSC in
the game Hanabi. However, the implementation of OBL relies on a belief model
that experiences covariate shift. Moreover, during ad-hoc coordination, OBL or
any other neural policy may experience test-time covariate shift. We present two
methods addressing these issues. The first method, off-team belief learning (OT-
BL), attempts to improve the accuracy of the belief model of a target policy πT

on a broader range of inputs by weighting trajectories approximately according to
the distribution induced by a different policy πb. The second, off-team off-belief
learning (OT-OBL), attempts to compute an OBL equilibrium, where fixed point
error is weighted according to the distribution induced by cross-play between the
training policy π and a different fixed policy πb instead of self-play of π. We
investigate these methods in variants of Hanabi.

1 Introduction

A core objective of multi-agent reinforcement learning (MARL) is to develop methods for coordinat-
ing with previously unseen partners such as other artificial agents or humans. In partially observable
fully cooperative settings, policies that were learned through self play develop efficient but opaque
arbitrary conventions that make collaboration with novel partners, or even independent training runs
of the same algorithm, extremely difficult [6, 4]. To study this issue, Hu et al. [6] introduced the
zero-shot coordination (ZSC) setting in which the goal is to maximize the intra-algorithm cross-play
(intra-AXP).2 ZSC evaluates algorithms under intra-AXP, i.e. by independently training N groups
of agents and evaluating teams made up of one member of each group. For an algorithm to achieve
good intra-AXP, it must tend to find compatible strategies across different, independent training runs.

Off-belief learning (OBL) [7] is a recent MARL algorithm designed to produce high intra-AXP. OBL
takes in an input policy π0 and aims to produce a uniquely defined output policy π1. It effectively

†Work done while at Meta AI (FAIR).
2Note that the term “zero-shot coordination” is used ambiguously in the original paper[6], both informally

and as a specific problem setting. To avoid confusion, in this paper we use it strictly for the technical setting.
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uses π0 to reinterpret past actions as if they were taken by π0. When π0 is a fully random policy,
this forces π1 to only take actions based on grounded information. This also means that π1 has no
incentive to communicate private information since any behavior will be reinterpreted as having come
from π0. OBL then iterates upon this π1 by training a hierarchy where each level builds upon the
conventions induced by optimal play at the level below. For each πℓ, OBL trains a belief model B̂πℓ

through supervised learning, which is then used to interpret past actions when training πℓ+1.

While OBL achieves strong results in ZSC on Hanabi [1], there are two problems with the current
formulation of OBL [7]. First, the belief model B̂πℓ

is trained via supervised learning on the
distribution of trajectories induced by self-play between πℓ. However, it is evaluated on the trajectories
induced by self-play with the OBL policy at the next level, πℓ+1. When the distributions of πℓ and
πℓ+1 differ substantially, this will bring B̂πℓ

off-distribution, which may cause it to be unreliable and
produce undefined outcomes. Second, OBL policies may be brittle when paired with a novel test
time partner, e.g. a human or another AI agent. Note that the second problem is prevalent in most
neural policies trained with RL against specific partners.

To mitigate the covariate shift experienced by B̂πℓ
we propose off-team belief learning (OT-BL).

Rather than training B̂πℓ
only on the distribution induced by πℓ, we introduce a belief-bootstrapping

operator that allows us to train our belief model off team on the distribution partly induced by πℓ+1.
We evaluate OT-BL empirically and show that it ameliorates the covariate shift experienced by belief
models when training OBL and outperforms vanilla OBL in a 2-life variant of the card game Hanabi.

Next, to mitigate the test time covariate shift experienced by πℓ when paired with an unseen agent,
we propose off-team off-belief learning (OT-OBL). OT-OBL builds on the insight that OBL can be
applied tooff team. In another word, thanks to the reinterpretation idea of OBL, we can not only train
on data generated from self-play games of π1, but also the data generated by pairing π1 with any
other policies in cross-play mode. It allows OBL to be trained on broader distributions to reduce side
effects of the test time covariate shift.

2 Related Work

2.1 Prior Work on Zero-Shot Coordination

Zero-shot coordination (ZSC) was first introduced by Hu et al. [6] and further analyzed by Treutlein
et al. [21] and led to a series of works meant to address the challenges of the setting. In their original
paper, Hu et al. [6] introduced other-play, a method for training policies that are invariant with respect
to the symmetries of the game, thus avoiding conventions that rely on arbitrary symmetry breaking.
Other works have trained hierarchies of policies for ZSC [5], leveraged diverse populations to train a
robust common best response [12, 19], and investigated the inductive bias of different architectures
for leveraging action features [13]. One of the most significant breakthroughs in ZSC is off-belief
learning (OBL) [7], which we detail in section 3.3 and upon which our work builds directly.

2.2 Belief learning

One crucial requirement for scaling OBL to large settings is learning beliefs about the private infor-
mation of other players. Belief states can be explicitly tracked. Modern approaches to this problem
involve deep sequence models, such as recurrent networks [20] or transformers [24]. However, the
standard training setup for these models leverages Monte Carlo sampling. In contrast, OT-BL trains
beliefs models via approximate dynamic programming. In this respect, OT-BL is most similar to
the work of Sokota et al. [16], who propose a framework for belief fine-tuning. In this framework, a
belief model for the current time-step is used to bootstrap a belief model for the next time-step using
approximate dynamic programming. Sokota et al. [16] show that belief fine-tuning can improve the
quality of belief models and adapt them to new policies at inference time. Belief fine-tuning and
OT-BL are similar in that they use bootstrapping to learn beliefs; however, whereas Sokota et al. [16]
examined belief fine-tuning in an inference-time context, we present OT-BL as a mechanism for
performing off-team train-time learning.
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3 Background

3.1 Turn-Based Dec-POMDPs with Public Actions

This work considers turn-based decentralized partially observable Markov decision processes (Dec-
POMDP) [3] with public actions. Dec-POMDPs have state space s ∈ S, observation functions
oi = Ωi(s) for each agent i through which they obtain a partial observation of the underlying state,
action space A, reward function R : S×A→ R and transition function T : S×A→ ∆S that defines
the distribution of next state given current state and joint action. At each time step, exactly one of
N players takes an action; this action is observable to all players. We further denote a trajectory as
τt = (s1, a1, r1, · · · , st) and each players action observation history (AOH) τ it = (oi1, a1, r1, · · · , oit).
When t equals to terminal T , the subscript is dropped and the two notations are simplified as τ and
τ i respectively. Each agent acts according to their policy πi(a|τ it ) that returns a distribution over
actions given action observation history and the joint policy is simply defined as π = (π1, · · · , πN ).
An important quantity in Dec-POMDPs is the belief function Bπ(τt|τ it ) = P (τt|τ it , π) that returns
an agent’s belief over the distribution of the state given their AOH and the group’s joint policy.

3.2 Problem Settings

Ad-Hoc Teamplay The ad-hoc team play setting’s goal is to cooperate effectively with unknown
teammates, where each teammate can contribute meaningfully to the task [17]. This setting has been
used in numerous environments including Overcooked [4], RoboCup 2D [2], and Hanabi [5, 7]. Some
works leverage small amounts of data to guide agents towards equilibria or “social conventions"
[11, 22]. For all experiments involving ad-hoc team play, we choose policies that are amenable to
meaningful coordination.

Zero-Shot Coordination and Intra-Algorithm Cross Play Training in self play has been shown to
give rise to policies that employ “arbitrary" conventions. Inspired by this, Hu et al. [6] proposed a
zero-shot coordination (ZSC) in which the goal is to maximize intra-algorithm cross play (intra-AXP).
Intra-AXP measures the cross play score between independently trained agents under the same
algorithm.

Human-AI Coordination Multiple studies have evaluated AI agents in coordinating with humans,
including in Hanabi [6, 15], Overcooked [4, 18]. One proxy setting for human-AI coordination is to
evaluate with an agent trained on human data [4, 5, 7]. We use this proxy setting in this work.

3.3 Off-Belief Learning

Intuition. At every step, OBL reinterprets the AOH as if it is generated by playing with a fixed,
given policy π0. When π0 is a fully random policy, past actions themselves are treated as conveying
no information, since the probability of an action is independent of the trajectory.

Implementation. In practice, OBL trains a sequence of policies starting with π0 a uniform random
policy. Keeping track of the exact belief is computationally expensive. Thus, OBL is implemented
by first training a neural network belief model on π0 using supervised learning. This model is
used to sample fictitious trajectories τ ′t by evaluating it on π1’s data, i.e. τ ′t ∼ B̂π0

(τt|τ it ), where
τt ∼ Pπ1

(τ it ). At every timestep t, the policy π1 is queried to produce an action on the fictitious
trajectory. This action is used to perform a fictitious transition, which is used to calculate the target
value for training OBL. See figure 2 for a visual representation of the fictitious transition.

4 Problem Setting

We define the off-team belief learning (OT-BL) problem setting as

min
B̂∈Θ

∑
t

∑
i

Eτ i
t∼P (πb)L(B̂(· | τ

i
t ),BπT

(· | τ it )), (1)

where Θ is the hypothesis class of belief models. In words, the goal of the off-team belief learning
problem setting is to learn an accurate belief model B̂ for the policy πT , where accuracy is weighted
by the distribution over AOHs induced by a different policy πb.
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Figure 1: Visualization of belief training schemas by vanilla OBL (left) and OT-BL (right). Red arrows indicate
values used for belief training. We only illustrate one time step, but we train on all time steps in a given trajectory,
τ . Left: Vanilla OBL trains B̂πT to approximate the true conditional distribution P (τt|τ i

t ) using trajectories τ
sampled from PπT , independently for each time step t. Right: OT-BL uses πb to generate trajectories τ and
trains B̂πT on the distribution Pπb(τ

i
t ). In order to train B̂πT , we train only on fictitious transitions (indicated in

blue) sampled from B̂πT and use πT to generate the next action.

Similarly, we define the general OT-OBL problem setting as follows

min
q̂∈Θ

∑
t

∑
i

Eτ i
t ,at∼P (πi

T ,π−i
b )L

(
q̂(τ it , at),Eτt∼PπT

(τt|τ i
t )

[
R(τt, a) + Eτt+1∼T (τt,at)v̂(τt+1)

])
,

(2)

where Θ is the hypothesis class of action-value functions and

v̂(τ) = max
a

q̂(τ i, a) (3)

where i is the acting player. In words, the goal of the off-team off-belief problem setting learning
is to learn an action value function q̂ that has low OBL TD-error assuming that teammates played
according to joint policy πT in the past, where error is weighted by the distribution over AOHs for
agent i is induced by the joint policy (πi

T , π
−i
b ).

5 Off-Team Learning

Off-team learning is a difficult problem because it requires weighting the loss values by the reach
probabilities induced by πb. However, we can’t simply naively train our learned belief model, B̂πT

,
on data generated by πb, since this would result in a belief model for πb rather than πT . Similarly,
we cannot simply naively train our policy on data generated by πb because such a policy would
leverage the correlations between πb’s actions and its private information. We give rough heuristics
for approximating solutions for these problems under the names off-team belief learning (OT-BL) and
off-team off-belief learning (OT-OBL), which use bootstrapping to perform forward induction on the
beliefs and backward induction the values (respectively), and trajectory resampling.

Say we have learned a belief model B̂πT
up to time t − 1, and a value function q̂ for time t and

thereafter. We describe off-team learning’s procedure for generating data for time t in three steps.

1. Off-team learning samples trajectories according to the behavior policy πb, thereby guaranteeing
that the samples τ it−1 are weighted by the behavior distribution.

2. Off-team learning corrects for the fact that τt−1 was played to t− 1 by πb, rather than πT . It does
so by resampling τ ′t−1 using the learned belief model, B̂πT

(τt−1 | τ it−1), taking advantage of the
belief model being accurate up to time t− 1.

3. We propagate this trajectory forward in time by sampling an action a ∼ πT (τ
′
t−1) from the

target policy, πT , and sampling a trajectory for the next time step τ ′t ∼ T (τ ′t−1, a) using this
sampled action. This τ ′t is distributed approximately according to BπT

(τ i′t ). Furthermore, with
the exception of the last action, which is generated with probability dictated by πb. Finally, we
train B̂ to maximize the likelihood of τ ′t given τ i′t and perform a TD-update between q̂(τ i′t−1, a)

and R(τ ′t−1, a) + maxa′ q̂(τ i′t , a
′).
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Figure 2: Visualization of policy training schemas for vanilla OBL (left), and OT-OBL on Pπ,πb(τ
i
t ) (right)

in a 2-player environment. Here superscript i indicates the active player while −i refers to their partner. The
red arrow is the computed target value. The blue colors represent a fictitious transition. Left: Vanilla OBL
generates trajectories by unrolling the training policy π for both players. It then samples fictitious trajectories
from τ ′

t ∼ B̂πT (·|τ
i
t ) to compute the training target. Right: OT-OBL instead generates data using π for only

one of the players and allows its partner to use a different policy πb. It performs the same OBL training but only
at time steps when π is the active player.

These procedures are rough heuristic approximations for the problems described in the previous
section but do not solve them exactly. We give pseudocode in Algorithms 1 and 2, and visualizations
are provided in Figure 1 and Figure 2.

Algorithm 1 OT-BL: Train a belief model B̂πT
for target policy πT that is robust when evaluated on

behavioral policy πb (i.e. to mitigate out-of-distribution errors when used to reinterpret trajectories
generated by πb). The main difference between OT-BL and normal belief training is marked in red.

1: procedure OT-BL(πT , πb, d)
▷ πT : the target policy for which we want to train a belief model.
▷ πb: the behavioral policy on which the belief model may be evaluated at test time.
▷ d: size of the dataset

2: Initialize belief model B̂πT

3: Initialize dataset D = ∅
4: Initialize environment τ = τ0 ∼ P (τ0)
5: while len(D) < d do
6: Sample fictitious trajectory τ ′t ∼ B̂πT

(·|τ it )
7: Unroll the fictitious trajectory τ ′t+1 = T (τ ′t , a′t) with target policy a′t ∼ πT

8: Add training data from the unrolled fictitious trajectory (τ ′it+1, τ
′
t+1) to dataset D

9: Unroll the real trajectory τt+1 = T (τt, at) with behavioral policy at ∼ πb

10: Reset τ = τ0 ∼ P (τ0) if τt+1 is terminal
11: end while
12: repeat
13: Train B̂πT

with loss: − log p(τt|τ it ) witht mini-batch from dataset {τ it , τt} ∼ D
14: until B̂πT

converges
15: return B̂πT

16: end procedure

6 Experimental Setup

6.1 Hanabi

Hanabi [1] is a benchmark for Dec-POMDP research. It is a cooperative game for 2-5 players played
with 8 hint tokens, 3 life tokens, and a deck of 50 cards, each having a rank between 1 and 5 and
one of five colors. In the 2-player variant, on which this paper focuses, each player holds 5 cards,
backwards, such that they can see their partners’ hand but not their own. On their turn, a player can
either play, discard or hint. The goal is to play cards in rank order for each color, with each correctly
played card providing one point for a maximum score of 25. The team loses a life token each time
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Algorithm 2 OT-OBL: Train a Q-function under the OBL setting, but also make it less prone to
out-of-distribution errors when evaluated with different partners such as πb. For simplicity, we show
the procedure for data collection and policy update with a single transition, omitting the complicated
distributed RL setup. We assume there are two players, i (current) and−i (next). The main difference
between OT-OBL and normal OBL is marked in red.

1: procedure OT-OBL(q̂, π, B̂πT
, πb)

▷ q̂, π: the Q-function we are training and its associated (greedy) policy
▷ B̂πT

: The belief model of the input policy πT (π0 in original OBL)
▷ πb: the policy that may potentially be a partner at test time
▷ Note: assume that player i uses policy π and −i uses policy πb

2: Generate a t-step partial trajectory τt ∼ P(π,πb)(τt) using joint policy (π, πb), t ≥ 0.
3: Sample fictitious trajectory τ ′t ∼ B̂πT

(·|τ it )
4: Unroll the fictitious trajectory τ ′t+1 = T (τ ′t , a′t) with a′t ∼ π(a|τ it ), get reward r′t
5: Unroll the fictitious trajectory τ ′t+2 = T (τ ′t+1, a

′
t+1) with a′t+1 ∼ π(a|τ ′−i

t+1), get reward
r′t+1

6: Update Q-function q̂(a′t|τ it )← r′t + γr′t+1 + γ2 maxa q̂(a|τ ′it+2)
7: end procedure

a player attempts to play an unplayable card. Hinting consumes a hint token and can be used to
point all cards of a chosen color or rank in a partner’s hand3. The team regains a hint token when a
player discards a card or completes a stack by successfully playing the 5 of the corresponding color.
A player draws a new card after playing or discarding. The game terminates when all 5 stacks are
completed, the deck is empty, or all three lives are lost. In the latter case the team loses all the points
they have earned.

6.2 Training Details

We implement our algorithms based on the open-sourced code for OBL 4 and extend it with ideas
from synchronous training [10, 5], training all models simultaneously, thus enabling effective imple-
mentations of OT-BL and OT-OBL. When synchronously training OBL models, every n = 50 steps
we save a copy of the model then query for and update all dependencies.

We follow practices in the original OBL paper [7] to train each policy and belief model. The
backbone is R2D2 [8], a distributed recurrent Q-learning method with parallel environment workers
and centralized replay buffer and trainer. We briefly describe the loss functions for the Q-network
and belief models here. For more details, please refer to Appendix A.1 or the OBL paper [7].

The Q-network is trained to minimize the TD-error between its Q-value and targets from fictitious
transition: L(θ|τ) = 1

2

∑T
t=1 [G

′
t −Qθ(at|τt)]2 where the target G′

t is calculated on the ‘imagined’
fictitious transitions G′

t = r′t+γr′t+1+γ2max
a

Qθ̂(a|τ ′t+2) and θ̂ is a slightly outdated target network.

We pre-compute the fictitious target G′
t and store them into the replay buffer to avoid branching

LSTM rollouts into fictitious transitions at training time.

The belief models are trained to predict the player’s hand given τ i. At a given timestep t, the
belief model will take in τ it as input and predict the hand of player i auto-regressively from oldest
card to newest. We train all OBL models as recurrent models via supervised learning to optimize
L(h|τ it ) = −

∑n
k=1 log p(hk|τ it , h1:k−1) where hk is the k-th card in hand and n is the hand size.

6.3 Evaluation

We repeat each training method five times with different seeds. For SP and XP, every team is evaluated
on 5000 games and then averaged over five seeds. The XP score is the average score of all teams
formed by all independently trained agents. To better reflect improvement in intra-AXP, we introduce
the self-play cross-play gap (SXG) metric, which is computed as SXG = 100 · (SP−XP )

SP . This

3e.g. "Your first and third card are rank 3."
4https://github.com/facebookresearch/off-belief-learning
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Figure 3: Comparison between belief models trained with vanilla OBL (greens) and with OT-BL (blues) in
2-life Hanabi with and without penalty for invalid samples. Experiments with and without penalty sample
p = 1, 10 hands respectively. We plot the % of timesteps with a valid fictitious sample (standard error is shaded)
when training OBL level 1. Normally trained belief models struggle to gather a valid sample; it steadily declines
in unpenalized cases and drops to only ∼ 83% of timesteps in the penalty cases. OT-BL is able to consistently
gather a valid sample during training (> 99.5% of the time), regardless of penalty. OT-BL mitigates the covariate
shift experienced during OBL training.

normalizes increases in XP score relative to the theoretical maximum self-play score. Additionally,
SXG acts as a proxy for the covariate shift as it compares the evaluated training distribution (SP) with
the test distribution (XP). The higher the SXG the larger the covariate shift.

6.4 Experimental Design for OT-BL

We design experiments for OT-BL to emphasize its advantage over the normal belief learning
procedure when evaluated off-team. In normal OBL, the belief model is trained on trajectories from
πℓ but utilized on trajectories from πℓ+1 to produce fictitious transitions, making it vulnerable to
covariate shift. With OT-BL, half of environments used to train B̂πℓ

follow typical belief model
training. The other half uses OT-BL to train B̂πℓ

off-team on Pπℓ+1
(τ it ).

Ideally, we want to evaluate our algorithm on environments with a larger covariate shift. Therefore,
we make a few modifications to the Hanabi environment to exacerbate the covariate shift. First,
we reduce the total number of life tokens from 3 to 2, making the game harder so that the average
score and average trajectory length of different OBL levels differ more significantly. It is particularly
challenging for the belief model only trained on shorter trajectories to generalize to longer unseen
trajectories. Second, we consider sampling valid hands. Prior works including OBL utilize a checker
provided in the Hanabi challenge [1] to check if a hand satisfies the known public knowledge. If a
hand is invalid, the environment can fail to produce key input features. We further modify the 2-life
Hanabi environment to remove the checker and allow invalid samples to corrupt the environment as
is, which only affects the fictitious transition. Specifically, if a sampled card contradicts the public
knowledge of that card, the observation encoder will just encode the card knowledge for that card to
be all zero instead of rejecting the sampled hand. We call this invalid card penalty.

Finally, we measure the belief improvements through the percentage of valid samples for fictitious
transitions. For this we focus on the level 1 policy training process in the OBL hierarchy, where there
is the largest covariate shift. To train the level 1 policy, we need to unroll a belief model B̂π0 on
trajectories generated by the learning policy π1. At convergence, π1 can achieve 20 points. However,
the belief model is trained on π0, a uniform random policy with average score close to zero. We
compute the percentage of timesteps where B̂π0

is able to produce a valid sample when training π1 as
a proxy for the amount the belief model has deteriorated due to covariate shift.
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without penalty with penalty
Level OBL (XP & SXG) OT-BL (XP & SXG) OBL (XP & SXG) OT-BL (XP & SXG)

1 20.17± 0.15 (0.84) 21.05± 0.02 (0.05) 16.71± 0.06 (1.56) 21.15± 0.02 (0.09)
2 22.92± 0.21 (2.18) 23.41± 0.02 (0.56) 21.24± 0.11 (4.28) 23.48± 0.02 (0.38)
3 23.05± 0.30 (3.27) 23.76± 0.02 (0.46) 22.53± 0.23 (4.43) 23.83± 0.01 (0.33)

Table 1: XP and SXG (in parentheses) for OBL and OT-BL in 2-life Hanabi with and without invalid card
penalty. OT-BL always achieves higher XP scores. OT-BL also has a very small SXG < 1% which is 4− 18×
lower than corresponding vanilla OBL. The ± represents the team’s standard error.

Level OBL (XP & SXG) OT-OBL(XP & SXG) OT-OBL+ Robust Belief (XP & SXG)

1 21.50± 0.05 (0.42) 21.31± 0.01 (0.19) 21.61± 0.03 (0.32)
2 23.75± 0.02 (0.46) 23.72± 0.01 (0.17) 23.78± 0.01 (0.21)
3 24.10± 0.02 (0.41) 24.10± 0.01 (0.17) 24.22± 0.01 (0.17)
4 24.03± 0.10 (0.91) 24.22± 0.01 (0.21) 24.29± 0.01 (0.16)
5 23.99± 0.11 (1.28) 24.24± 0.01 (0.12) 24.30± 0.01 (0.16)

Table 2: XP and SXG (in parentheses) for vanilla OBL, OT-OBL, and OT-OBL with belief models trained on
broader distributions in 3-life Hanabi. Vanilla OBL overfits leading to a drop in XP scores. OT-OBL prevents
overfitting and continues to improve its XP score. OT-OBL almost always has a higher XP scores than vanilla
OBL. OT-OBL has a very small SXG < 1% and this gap is up to 10 times lower than that of vanilla OBL. By
training our belief models on broader distributions, we further increase our XP score while maintaing a low
SXG. The ± represents the team’s standard error.

6.5 Experimental Design for OT-OBL

OT-OBL for Intra-AXP We design experiments to evaluate OT-OBL’s performance in intra-AXP.
For normal OBL, the policy, πℓ, is trained on trajectories from Pπℓ

(τ it ) but evaluated on Pπℓ,πb
(τ it ).

This means πℓ experiences test time covariate shift. To evaluate OT-OBL in intra-AXP, when training
a given policy πℓ, we train on real trajectories from from Pπℓ−1,πℓ

(τ it ), Pπℓ
(τ it ), Pπℓ,πℓ+1

(τ it ) and
use OT-OBL to train off-team. By training on broader distributions, we increase the support of our
policies. Since πℓ−1 and πℓ+1 are OBL policies, they are also reasonable and do well in Hanabi. We
also test a variant where we use OT-OBL and robustify the belief by also training the belief model on
Pπℓ−1,πℓ

(τ it ), Pπℓ
(τ it ), Pπℓ,πℓ+1

(τ it ). We refer to this variant as OT-OBL + robust belief.

OT-OBL for ad-hoc teamplay and human-AI coordination This set of experiments aims to
demonstrate the ability for OT-OBLto improve test time performance with only a small amount
of data from test time agents. These experiments address the ad-hoc teamplay and human-AI
coordination settings where there are large covariate shifts. We utilize rank bot for the ad-hoc
teamplay setting and clone bot, a bot trained via supervised learning on human data, as a proxy for
human-AI coordination. See Appendix A.3 and A.4 for more details on training rank and clone
bot respectively. Each setting we assume access to only a small number, 3200, of full trajectories
generated by the target agents. We retrain a new policy, π, with a belief model trained on level 3 of
sequentially trained OBL with the typical OBL training procedure. In this case half of the games
in our distributed RL environment are the real target trajectories and we train π in an off-policy
manner with OT-OBLon these trajectories. By training on these target trajectories, we can partially
mitigate the covariate shift experienced when π is evaluated. We compare our results with a vanilla
sequentially trained OBL level 4.

7 Results and Discussion

7.1 OT-BL

The the XP and SXG results of OT-BL on 2-life Hanabi is shown in Table 1. Without the invalid card
penalty, both OBL with vanilla belief learning and OT-BL are able to achieve reasonably high XP
scores in 2-life Hanabi. However, OT-BL consistently achieves higher XP scores in 2-life Hanabi
across all levels. At level 3, OT-BL is able to achieve a final XP score of 23.76± 0.02. Lastly, the
SXG for OT-BL is always lower than that of vanilla OBL (8-16x lower).
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Training Type XP & SXG w/ rank bot w/ clone bot w/ Vanilla OBL

Vanilla OBL 23.66± 0.06 (1.42) 14.47± 0.67 16.19± 0.21 -
OT-OBL w/ Rank Bot 23.59± 0.08 (1.38) 15.66± 0.56 16.36± 0.23 23.67± 0.04
OT-OBL w/ Clone Bot 23.54± 0.06 (1.13) 14.33± 0.63 16.64± 0.20 23.64± 0.04

Table 3: Evaluating OT-OBL in ad-hoc teamplay (w/ rank bot), proxy human-AI coordination, and w/ vanilla
OBL. By training on a small number of target trajectories, we can improve ad-hoc teamplay scores with rank bot
and proxy human-AI coordination scores. OT-OBL also doesn’t significantly hurt XP scores, the SXG, or the
unseen target policies in ad-hoc teamplay or human-AI coordination. Additionally, by training with OT-OBL,
we still achieve very similar scores with vanilla OBL, indicating we are only broadening the policies support.
The ± here represents the team’s standard error.

In Table 1, we also show the performance of OT-BL on 2-life Hanabi with invalid card penalty on
the right. Similarly, OT-BL consistently achieves higher XP scores across all levels. OT-BL is able
to achieve a small SXG (always < 1%) and this gap is up to 18× lower than vanilla OBL. OT-BL
achieves similar results between the penalized and unpenalized environments since the belief model
is more on distribution, thus it almost always samples valid samples (> 99.5% of the time). However,
OBL with vanilla belief learning suffers significantly from the penalty, especially for level 1 where
the covariate shift from a uniform random policy to a learned OBL policy is the largest. This indicates
that the test time covariate shift is lower for OT-BL when compared to vanilla OBL. The reduced
covariate shift improves training and leads to better test time results.

We plot the percentage of timesteps B̂π0
is able to produce a valid sample when training π1 in Figure

3, to illustrate the deteriorating belief model in normal OBL and show the benefit of OT-BL. Without
penalty, vanilla OBL steadily decreases in the percentage of timesteps producing valid samples. With
penalty, vanilla OBL is unable to produce a high percentage of valid samples and can never recover.
This high percentage of invalid samples contributes to the steep score drop for OBL level 1 in the
invalid state experiments. On the other hand, OT-BL mitigates the belief model’s training covariate
shift and consistently samples valid states (over 99.5% of the time). This contributes to the high
scores for OT-BL and explains why OT-BL maintains high scores in penalized Hanabi.

7.2 OT-OBL

Intra-AXP Results We present the XP and SXG results of OT-OBL in table 2. All variants, normal
OBL, OT-OBL , and OT-OBL + robust belief all achieve high XP scores. However, at level 4 vanilla
OBL starts to overfit, whereas OT-OBL and OT-OBL + robust belief continue to improve. This
results in OT-OBL achieving a XP score of 24.24± 0.01 and OT-OBL + robust belief achieves a XP
score of 24.30± 0.01. As Vanilla OBL overfits, the SXG increases, indicating an increase in the test
time covariate shift. On the other hand, both OT-OBL and OT-OBL + robust belief always have a
SXG< 1% and at level 5 the SXG is almost 0. By level 5, the SXG of OT-OBL and OT-OBL + robust
belief are at least 8 times lower than that of vanilla OBL. Overall, by training on broader distributions,
we reduce the test time covariate shift, achieve goof intra-AXP performance, and improve OBL in
off-team evaluation.

Ad-Hoc Teamplay and Proxy Human-AI Coordination Results We present the results appling
OT-OBL Ad-hoc teamplay and Human-AI coordination in table 3. With OT-OBL and only 3200
target policy trajectories, we can increase rank bot to 14.47 ± 0.67 to 15.66 ± 0.56 and increase
clone bot scores from 16.19± 0.21 to 16.64± 0.20 without heavily impacting XP scores or the SXG.
Additionally, vanilla OBL in XP achieves near identical scores to OT-OBL trained on additional
trajectories is paired with vanilla OBL. Therefore, the additional trajectories merely broaden the
training policies support and don’t negatively impact policy training. Overall, by training on target
distributions off-policy and off-team with OT-OBL we are able to reduce the test time covariate shift
and increase ad-hoc teamplay and proxy human-AI coordination scores.

Failure Cases Bombing Out Bombing out is an important failure case in Hanabi, where if three
unplayable cards are played then team loses all of their points and the game ends prematurely. In
Hanabi, an agent always has alternatives to playing a card (e.g. discarding or hinting), thus a bombout
occurs when an agent misunderstood the hints given by a partner or if its Q-value predictions are
inaccurate. Both of which can be caused by covariate shifts. We present bombing out results in the
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Cross-play Pair Total number Number of bombouts % Bombouts
of bombouts by OBL/OT-OBL by OBL/OT-OBL

Vanilla OBL × Rank Bot 6891 1619 23.49%
OT-OBL w/ Rank × Rank Bot 6048 1208 19.97%

Vanilla OBL × Clone Bot 6144 663 10.79%
OT-OBL w/ Clone × Clone Bot 5239 473 8.28%

Table 4: Evaluating total number of bombouts and percentage of bombouts by vanilla OBL or OT-OBL in
ad-hoc teamplay with two different partners. Each pair is first evaluated with 5000 games and then averaged
over 5 independently trained OBL or OT-OBL models. By training with OT-OBL, we are able to significantly
reduce instances where our trained agent causes bombouts.

ad-hoc teamplay and proxy-human AI coordination setting in table 4. Notice, that OT-OBL reduces
the instances where our agent causes bombouts by 25.38% when partnered with rank bot and 28.66%
when partnered with clone bot.

8 Limitations

The largest set of limitations of the approaches proposed in this work is that they are only heuristic
approximations for solving the problems that this work introduced and do not converge to the exact
solutions. Additional limitations include the fact that OT-BL assumes π is also on distribution when
we produce fictitious moves with OT-BL. As a result, if π is too off distribution OT-BL might not
mitigate covariate shift. Moreover, although our work provides a positive step to mitigate the large
covariate shift that can occur in ad-hoc teamplay and human-AI coordination with little target policy
data, there is still exists covariate shift.

9 Conclusion

We present off-team belief learning, a method that allows us to approximate training beliefs off-team.
Belief models are very ubiquitous in POMDPs and Dec-POMDPs. However, they can experience
covariate shift when deployed on unseen distributions. We demonstrate that standard belief model
training can suffer from covariate shift, but OT-BL reduces it. Overall, by training OBL with OT-BL,
we are able to achieve strong results in intra-AXP in 2-life Hanabi and minimize the gap between SP
and XP.

We also present off-team off-belief learning, a method that allows us to approximate train action
values functions off-team. The goal of off-team training is to train with various teams with the goal
of improving performance with unseen teams. With OT-OBL, we can train policies on broader
distributions, increase their support, and improve test time performance. By training OBL with
OT-OBL we were able to achieve near-optimal intra-AXP performance and improve ad-hoc teamplay
and proxy human-AI coordination.

10 Broader Impact

We do not believe this work raises broader impact concerns.

References
[1] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song, E. Parisotto, V. Dumoulin,

S. Moitra, E. Hughes, I. Dunning, S. Mourad, H. Larochelle, M. G. Bellemare, and M. Bowling.
The hanabi challenge: A new frontier for ai research. Artificial Intelligence, 280:103216, 2020.
ISSN 0004-3702.

[2] S. Barrett, A. Rosenfeld, S. Kraus, and P. Stone. Making friends on the fly: Cooperating with
new teammates. Artificial Intelligence, 242:132–171, 2017. ISSN 0004-3702. doi: https:

10



//doi.org/10.1016/j.artint.2016.10.005. URL https://www.sciencedirect.com/science/
article/pii/S0004370216301266.

[3] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentralized
control of markov decision processes. Math. Oper. Res., 27(4):819–840, Nov. 2002. ISSN
0364-765X. doi: 10.1287/moor.27.4.819.297. URL https://doi.org/10.1287/moor.27.
4.819.297.

[4] M. Carroll, R. Shah, M. K. Ho, T. Griffiths, S. Seshia, P. Abbeel, and A. Dragan. On the
utility of learning about humans for human-ai coordination. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf.

[5] B. Cui, H. Hu, L. Pineda, and J. Foerster. K-level reasoning for (human-ai) zero-shot coordina-
tion in hanabi. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 35, pages
4190–4203. Curran Associates, Inc., 2021.

[6] H. Hu, A. Lerer, A. Peysakhovich, and J. Foerster. “Other-play” for zero-shot coordination. In
H. D. III and A. Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 4399–4410. PMLR,
13–18 Jul 2020.

[7] H. Hu, A. Lerer, B. Cui, L. Pineda, D. Wu, N. Brown, and J. N. Foerster. Off-belief learning.
ICML, 2021. URL https://arxiv.org/abs/2103.04000.

[8] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney. Recurrent experience
replay in distributed reinforcement learning. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[9] D. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.

[10] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Perolat, D. Silver, and
T. Graepel. A unified game-theoretic approach to multiagent reinforcement learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30, pages 4190–4203.
Curran Associates, Inc., 2017.

[11] A. Lerer and A. Peysakhovich. Learning existing social conventions via observationally
augmented self-play. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, AIES ’19, page 107–114, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450363242.

[12] A. Lupu, B. Cui, H. Hu, and J. Foerster. Trajectory diversity for zero-shot coordination. In
International Conference on Machine Learning, pages 7204–7213. PMLR, 2021.

[13] M. Ma, J. Liu, S. Sokota, M. Kleiman-Weiner, and J. N. Foerster. Learning to coordinate with
humans using action features. CoRR, abs/2201.12658, 2022. URL https://arxiv.org/abs/
2201.12658.

[14] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In Y. Bengio
and Y. LeCun, editors, 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1511.05952.

[15] H. C. Siu, J. Peña, E. Chen, Y. Zhou, V. Lopez, K. Palko, K. Chang, and R. Allen.
Evaluation of human-ai teams for learned and rule-based agents in hanabi. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 16183–16195. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

11

https://www.sciencedirect.com/science/article/pii/S0004370216301266
https://www.sciencedirect.com/science/article/pii/S0004370216301266
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297
https://proceedings.neurips.cc/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://arxiv.org/abs/2103.04000
https://arxiv.org/abs/2201.12658
https://arxiv.org/abs/2201.12658
http://arxiv.org/abs/1511.05952
https://proceedings.neurips.cc/paper/2021/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf


[16] S. Sokota, H. Hu, D. J. Wu, J. Z. Kolter, J. N. Foerster, and N. Brown. A fine-tuning approach
to belief state modeling. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=ckZY7DGa7FQ.

[17] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, AAAI’10, page 1504–1509. AAAI Press, 2010.

[18] D. Strouse, K. McKee, M. Botvinick, E. Hughes, and R. Everett. Collaborating with humans
without human data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 14502–14515.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/
file/797134c3e42371bb4979a462eb2f042a-Paper.pdf.

[19] D. Strouse, K. McKee, M. Botvinick, E. Hughes, and R. Everett. Collaborating with humans
without human data. Advances in Neural Information Processing Systems, 34, 2021.

[20] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

[21] J. Treutlein, M. Dennis, C. Oesterheld, and J. Foerster. A new formalism, method and open
issues for zero-shot coordination. arXiv preprint arXiv:2106.06613, 2021.

[22] M. Tucker, Y. Zhou, and J. Shah. Adversarially guided self-play for adopting social conventions.
ArXiv, abs/2001.05994, 2020.

[23] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In
D. Schuurmans and M. P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 2094–2100. AAAI
Press, 2016. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/
12389.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL http://arxiv.
org/abs/1706.03762.

[25] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas. Dueling network
architectures for deep reinforcement learning. In M. Balcan and K. Q. Weinberger, editors,
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 1995–2003. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/wangf16.
html.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets?

• Did you include the license to the code and datasets? [No]

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

12

https://openreview.net/forum?id=ckZY7DGa7FQ
https://proceedings.neurips.cc/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf
http://arxiv.org/abs/1409.3215
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html


(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13


	Introduction
	Related Work
	Prior Work on Zero-Shot Coordination
	Belief learning

	Background
	Turn-Based Dec-POMDPs with Public Actions
	Problem Settings
	Off-Belief Learning

	Problem Setting
	Off-Team Learning
	Experimental Setup
	Hanabi
	Training Details
	Evaluation
	Experimental Design for OT-BL
	Experimental Design for OT-OBL

	Results and Discussion
	OT-BL
	OT-OBL

	Limitations
	Conclusion
	Broader Impact

