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Abstract

This paper studies multi-agent reinforcement learning in Markov games, with the
goal of learning Nash equilibria or coarse correlated equilibria (CCE) sample-
optimally. All prior results suffer from at least one of the two obstacles: the curse
of multiple agents and the barrier of long horizon, regardless of the sampling pro-
tocol in use. We take a step towards settling this problem, assuming access to a
flexible sampling mechanism: the generative model. Focusing on non-stationary
finite-horizon Markov games, we develop a fast learning algorithm called Q-
FTRL and an adaptive sampling scheme that leverage the optimism principle
in online adversarial learning (particularly the Follow-the-Regularized-Leader
(FTRL) method). Our algorithm learns an ε-approximate CCE in a general-sum
Markov game using

Õ

(
H4S

∑m
i=1Ai

ε2

)
samples, where m is the number of players, S indicates the number of states, H
is the horizon, and Ai denotes the number of actions for the i-th player. This
is minimax-optimal (up to log factor) when m is fixed. When applied to two-
player zero-sum Markov games, our algorithm provably finds an ε-approximate
Nash equilibrium with a minimal number of samples. Along the way, we derive a
refined regret bound for FTRL that makes explicit the role of variance-type quan-
tities, which might be of independent interest.

1 Introduction

The thriving field of multi-agent reinforcement learning (MARL) studies how a group of interacting
agents make decisions autonomously in a shared dynamic environment [80]. The recent develop-
ments in game playing [66, 9], self-driving vehicles [58], and multi-robot control [45] are prime
examples of MARL in action. In practice, there is no shortage of situations where the agents in-
volved have conflict of interest, and they have to act competitively in order to promote their own
benefits (possibly at the expense of one another). Scenarios of this kind are frequently modeled via
Markov games (MGs) [59, 42], a framework that has been a fruitful playground to formalize and
stimulate the studies of competitive MARL.

In view of the irreconcilable competition between individual players, solutions of competitive
MARL normally take the form of certain equilibrium strategy profiles, which are perhaps best epito-
mized by the concept of Nash equilibrium (NE) [49]. In a Nash equilibrium, no gain can be realized
through a unilateral change — assuming no coordination between players — and hence no player
has incentives to deviate from her current strategy/policy. A myriad of research has been conducted
surrounding NE, which spans various aspects like existence, learnability, computational hardness,
and algorithm design, among others [59, 20, 12, 53, 52, 22, 42, 28, 50, 33]. Given that finding NE is
notoriously expensive in general (except for special cases like two-player zero-sum MGs) [20, 21],
several more tractable solution concepts have emerged in the studies of game theory and MARL, a
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prominent example being the coarse correlated equilibrium (CCE) [47]. A key compromise made in
the CCE is that it permits the players to act in an coordinated fashion, which contrasts sharply with
the absence of coordination in the definition of NE.

One critical challenge impacting modern MARL applications is data efficiency. The players involved
often have minimal knowledge about how the environment responds to their actions, and have to
learn the dynamics and preferable actions by probing the unknown environment. For MARL to
expand into applications with enormous dimensionality and long planning horizon, the learning
algorithms must manage to make efficient use of the collected data. Nevertheless, how to learn NE
and/or CCE with optimal sample complexity remains by and large unsettled even when it comes to
the most basic setting: two-player zero-sum Markov games, as we shall discuss below.

Example: inadequacy in learning two-player zero-sum Markov games. To facilitate concrete
comparisons, let us review two representative algorithms aimed at learning NE in two-player zero-
sum MGs. These algorithms have been studied under two drastically different sampling protocols,
and we shall discuss the shortfalls of the cutting-edge sample complexity results. In a two-player
zero-sum MG, we denote by S the number of states and H the horizon or effective horizon, whereas
A1 and A2 denote respectively the number of actions for the max-player and the min-player.

• Model-based methods under either a generative model or online exploration. Assuming access
to a generative model (so that one can sample arbitrary state-action tuples), Zhang et al. [79]
investigated a natural model-based algorithm, which performs planning (e.g., value iteration) on an
empirical MG derived from samples produced non-adaptively by the generative model. Focusing
on stationary discounted infinite-horizon MGs, their algorithm finds an ε-approximate NE with

Õ

(
H3SA1A2

ε2

)
samples. (1)

In parallel, Liu et al. [43] studied non-stationary finite-horizon MGs with online exploration, and
obtained similar sample complexity bounds, i.e.,

Õ

(
H4SA1A2

ε2

)
samples or Õ

(
H3SA1A2

ε2

)
episodes (2)

for learning an ε-approximate NE. While these bounds achieve minimax-optimal dependency on
the horizonH , a major drawback emerges — commonly referred to as the curse of multiple agents;
namely, these results scale proportionally with the total number of joint actions (i.e.,

∏
1≤i≤2Ai),

a quantity that blows up exponentially with the number of players.
• V-learning for online exploration settings. Focusing on online exploration settings, Bai et al.

[5], Jin et al. [31] proposed an algorithm called V-learning that leverages the advances in online
adversarial learning (e.g., adversarial bandits) to circumvent the curse of multiple agents. This
algorithm provably yields an ε-approximate NE in non-stationary finite-horizon MGs using

Õ

(
H6S(A1 +A2)

ε2

)
samples or Õ

(
H5S(A1 +A2)

ε2

)
episodes, (3)

which effectively brings down the sample size scaling (2) from A1A2 (i.e., the number of joint
actions) to A1 + A2 (i.e., the sum of individual actions). It is worth pointing out, however, that
this theory appears sub-optimal in terms of the horizon dependency, as it is a factor of H2 above
the minimax lower bound.

Key issues and our main contributions. While the above summary focuses on two-player zero-
sum MGs, it unveils a fundamental issue surrounding the sample efficiency of learning equilibria;
that is, all existing results in this front — irrespective of the sampling mechanism in use — fall short
of overcoming at least one of the two major hurdles: (i) the curse of multiple agents, and (ii) the
barrier of long horizon. A natural question to pose is:

Question: can we learn a Nash equilibrium in a two-player zero-sum Markov game
in a sample-optimal and computation-efficient fashion?

To settle this favorably, both of the above hurdles need to be crossed simultaneously. Moving beyond
two-player zero-sum MGs, it is not surprising to see that general-sum multi-player MGs have to
grapple with the aforementioned two hurdles as well. Thus, the following question also comes into
mind when learning CCE (a compromise due to the general intractability of learning NE):
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Question: can we learn a coarse correlated equilibrium in a multi-player general-sum Markov
game in a sample-optimal and computation-efficient fashion?

Note that these questions remain open regardless of the sampling scheme in use.

This paper takes a first step towards solving the problem by assuming access to the most flexi-
ble sampling protocol: the generative model (or simulator). In stark contrast to the single-agent
case where uniform sampling of all state-action pairs suffices [3, 38], the multi-agent scenario re-
quires one to take samples intelligently and adaptively, a crucial step to avoid inefficient use of data
(otherwise one cannot hope to break the curse of multiple agents). With the aim of computing an
ε-approximate equilibrium in a non-stationary finite-horizon MG, we come up with a computation-
ally efficient learning algorithm (accompanied by an adaptive sampling strategy) that accomplishes
this goal with no more thanÕ

(
H4S(A1+A2)

ε2

)
samples (learning ε-NE in two-player zero-sum MGs)

Õ
(
H4S

(∑m
i=1 Ai

)
ε2

)
samples (learning ε-CCE in multi-player general-sum MGs)

(4)

drawn from the generative model. Encouragingly, this sample complexity bound matches the min-
imax lower limit (up to a logarithmic factor) as long as the number of players m ≥ 2 is a fixed
constant or grows only logarithmically in problem parameters. Our sample complexity theory is
valid for the full ε-range (i.e., any ε ∈ (0, H]); this unveils that no burn-in cost is needed for our
algorithm to achieve sample optimality, which lends itself well to sample-hungry applications.

The proposed algorithm is inspired by two key algorithmic ideas in RL and bandit literature: (i)
optimism in the face of uncertainty (by leveraging upper confidence bounds (UCBs) in value es-
timation), and (ii) online and adversarial learning (particularly the Follow-the-Regularized-Leader
(FTRL) algorithm). Note that the optimal design of bonus terms — typically based on certain
data-driven variance estimates — is substantially more challenging than the single-agent case, as it
requires intricate adaptation in response to the policy changes of one another as well as compatibility
with the FTRL dynamics. Two points are worth emphasizing (which will be made precise later on):

• The efficacy of FTRL in breaking the curse of multiple agents has been illustrated in Jin et al.
[31], Song et al. [63], Mao and Başar [44]. To improve horizon dependency, one needs to exploit
connections between the performance of FTRL and certain variances. Towards this, we develop
a refined regret bound for FTRL that unveils the role of variance-style quantities, which was
previously unavailable.

• The bonus terms entail Bernstein-style variance estimates that mimic the variance-style quantities
appearing in our refined FTRL regret bounds, and are carefully chosen so as to ensure certain
decomposability over steps. This is crucial in optimizing the horizon dependency.

Additionally, the policy returned by our algorithm is Markovian (i.e., the action selection probability
depends only on the current state s and step h), and the algorithm can be carried out in a decentralized
manner without the need of directly observing the opponents’ actions.

Notation. Let us also gather several convenient notation that shall be used multiple times. For any
positive integer n, we write [n] := {1, · · · , n}. We shall abuse notation and let 1 and 0 denote the
all-one vector and the all-zero vector, respectively. For a sequence {αk}k≥1 ⊆ (0, 1], we define

αki :=

{
αi
∏k
j=i+1(1− αj), if 0 < i < k

αk, if i = k
(5)

for any 1 ≤ i ≤ k. For a given vector x ∈ RSA (resp. y ∈ RSAB), we denote by
x(s, a) (resp. y(s, a, b)) the entry of x (resp. y) associated with the state-action combination (s, a)
(resp. (s, a, b)), as long as it is clear from the context. Next, consider any two vectors a = [ai]1≤i≤n
and b = [bi]1≤i≤n. We use a ≤ b (resp. a ≥ b) to indicate that ai ≥ bi (resp. ai ≤ bi) holds for all
i; we allow scalar functions to take vector-valued arguments in order to denote entrywise operations
(e.g., a2 = [a2

i ]1≤i≤n and a4 = [a4
i ]1≤i≤n); and we denote by a ◦ b = [aibi]1≤i≤n the Hadamard

product. For a finite set A = {1, · · · , A}, we denote by ∆(A) = {x ∈ RA |
∑
i xi = 1;x ≥ 0} the

probability simplex over A. For any function f with domain A (or B), we adopt the notation

Eπ[f ] :=
∑

a
π(a)f(a) and Varπ(f) :=

∑
a
π(a)

(
f(a)− Eπ[f ]

)2
. (6)
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2 Background and models

In this section, we introduce the basics for Markov games, as well as the solution concepts of Nash
equilibrium and coarse correlated equilibrium.

Markov games. A non-stationary finite-horizon multi-player general-sum Markov game, denoted
byMG =

{
S, {Ai}1≤i≤m, H, P, r

}
, involvesm players competing against each other, and consists

of several key elements to be formalized below. Recall that ∆(S) represents the probability simplex
over the set S.

• S = {1, · · · , S} is the state space of the shared environment, which comprises S different states.

• For each 1 ≤ i ≤ m, let Ai = {1, · · · , Ai} represent the action space of the i-th player, which
contains Ai different actions. Here and below, we denote

A := A1 × · · · × Am and A−i :=
∏
j:j 6=i

Aj (1 ≤ i ≤ m). (7)

Throughout the paper, we shall often use the boldface letter a ∈ A (resp. a−i ∈ A−i) to denote a
joint action profile of all players (resp. a joint action profile excluding the i-th player’s action).

• H stands for the horizon length of the Markov game.

• P = {Ph}1≤h≤H — with Ph : S × A → ∆(S) — denotes the probability transition kernel of
MG. Namely, for any (s,a, h, s′) ∈ S×A× [H]×S , we let Ph(s′ | s,a) indicate the probability
of MG transitioning from state s to state s′ at step h when the joint action profile taken by the
players is a.

• r = {ri,h}1≤h≤H,1≤i≤m — with ri,h : S × A → [0, 1] — represents the (deterministic) reward
function. Namely, for any (s,a, h) ∈ S ×A× [H], ri,h(s,a) stands for the immediate reward the
i-th player gains in state s at step h, if the joint action profile is a. Here and throughout, we assume
normalized rewards in the sense that ri,h(s,a) ∈ [0, 1] for any (s,a, h, i) ∈ S ×A× [H]× [m].

As an important special case, a two-player zero-sum Markov game — denoted by MG ={
S, {A1,A2}, H, P, r

}
— satisfies r2,h = −r1,h for all h ∈ [H]. Following the convention, we

assume that r1,h ≥ 0 for all h ∈ [H],1 and refer to the first (resp. second) player as the max-player
(resp. the min-player).

Markov policies. This paper focuses on the class of Markov policies, such that the action selection
strategies of the players are determined by the current state s and the step number h, without de-
pending on previously visited states. To begin with, let πi = {πi,h}1≤h≤H represent the policy of
the i-th player. Here, πi,h(· | s) ∈ ∆(Ai) for any (s, h) ∈ S × [H], where πi,h(a | s) indicates the
probability of the i-th player selecting action a in state s at step h. The joint Markov policy can be
defined analogously: we let π = (π1, . . . , πm) : S × [H]→ ∆(A) represent a joint Markov policy
of all players, where the joint actions of all players in state s and step h are chosen according to the
distribution specified by πh(· | s) = (π1,h, . . . , πm,h)(· | s) ∈ ∆(A). For any given joint policy π,
we employ π−i to represent the policies of all but the i-th player, and let π−i,h denote the policies
of all but the i-th player at step h. All policies are assumed throughout to be Markovian, except our
brief remarks on non-Markovian policies in Section 3.2.

Additionally, a joint policy π is said to be a product policy if π1, . . . , πm are executed in a statistically
independent manner (namely, under policy π the players take actions independently), and we shall
adopt the notation π = π1 × · · · × πm to indicate that π is a product policy.

Value functions. Consider a Markovian trajectory {(sh,ah)}1≤h≤H , where sh ∈ S is the state at
step h and ah ∈ A is the joint action profile at step h. For any given joint policy π and any step
h ∈ [H], we define the value function V πi,h : S → R of the i-th player under policy π as follows:

V πi,h(s) := E

[
H∑
t=h

ri,t
(
st,at

)
| sh = s

]
, ∀s ∈ S, (8)

1The careful reader might immediately note that r2,h ≤ 0, thus falling outside our assumed range for the
reward function. This, however, can be easily addressed by enforcing a positive global shift to r2,h without
changing the learning process.
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where the expectation is taken over the Markovian trajectory {(sh,ah)} with the m players jointly
executing policy π; that is, conditional on sh, we draw ah ∼ πh(· | sh) and then sh+1 ∼
Ph(· | sh,ah).

In addition, consider the case where (i) all but the i-th player executes the joint policy π−i and (ii)
the i-th player executes policy π′i independently from the other players; we shall denote by V π

′
i×π−i

i,h

the resulting value function under this joint policy π′i × π−i. By optimizing over all π′i, we can
further define

V
?,π−i
i,h (s) := max

π′i:S×[H]→∆(Ai)
V
π′i×π−i
i,h (s), ∀(s, h, i) ∈ S × [H]× [m]. (9)

It is known that there exists at least one policy, denoted by π?i
(
π−i
)

: S × [H] → ∆(Ai) and
commonly referred to as the best-response policy, that can simultaneously attain V ?,π−ii,h (s) for all
h ∈ [H] and all s ∈ S. It is worth emphasizing that the best-response policy π?i

(
π−i
)

is the best
among all policies of the i-th player executed independently of π−i. Furthermore, if we freeze π−i,
then the Bellman optimality condition for the i-th player can be expressed as [8]

V
?,π−i
i,h (s) = max

ai∈Ai

{
E

a−i∼π−i,h(·|s)

[
ri,h(s,a) +

〈
Ph(· | s,a), V

?,π−i
i,h+1

〉]}
(10)

for all (s, h, i) ∈ S× [H]× [m], where the joint action profile a is composed of ai for the i-th player
and a−i for the remaining ones.

Equilibria of Markov games. In a multi-agent Markov game, each player wishes to maximize its
own value function. Due to the competing objectives, finding some sorts of equilibria — e.g., the
Nash equilibrium [48] and the coarse correlated equilibrium [47, 2] — becomes a central topic in
the studies of Markov games. Let us introduce these solution concepts below.

• Nash equilibrium. A product policy π = π1 × · · · × πm is said to be a (mixed-strategy) Nash
equilibrium ofMG if the following holds:

V πi,1(s) = V
?,π−i
i,1 (s), for all (s, i) ∈ S × [m]. (11)

In other words, conditional on the opponents’ current policy and the assumption that all players
take actions independently, no player can harvest any gain by unilaterally deviating from its current
policy.

• Coarse correlated equilibrium. A joint policy π is said to be a coarse correlated equilibrium of
MG if

V πi,1(s) ≥ V ?,π−ii,1 (s), for all (s, i) ∈ S × [m]. (12)
While a CCE also ensures that no unilateral deviation (performed independently from others) is
beneficial, its key distinction from the definition of NE lies in the fact that it allows the policy to
be correlated across the players. Any NE ofMG is, self-evidently, also a CCE.

In practice, it might be challenging to compute an “exact” equilibrium, and instead one would seek
to find approximate solutions. Towards this end, we find it helpful to define the sub-optimality gap
of a policy π as follows (measured in an `∞-based manner)

gap(π) := max
s∈S

gap(π; s), (13a)

where
gap(π; s) := max

1≤i≤m

{
V
?,π−i
i,1 (s)− V πi,1(s)

}
. (13b)

With this sub-optimality measure in place, a product policy π = π1 × · · · × πm is said to be
an ε-approximate NE — or more concisely, ε-Nash — if the resultant sub-optimality gap obeys
gap(π) ≤ ε. Similarly, a joint (and possibly correlated) policy π is said to be an ε-approximate CCE
— or more concisely, ε-CCE — if gap(π) ≤ ε.
Generative model / simulator. In reality, we oftentimes do not have access to perfect descriptions
(e.g., accurate knowledge of the transition kernel P ) of the Markov game under consideration; in-
stead, one has to learn the true model on the basis of data samples. When it comes to the data gener-
ating mechanism, this paper assumes access to a generative model (also called a simulator) [35, 34]:
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in each call to the generative model, the learner can choose an arbitrary (s,a, h) ∈ S × A × [H]
and obtain an independent sample generated based on the true transition kernel:

s′ ∼ Ph(· | s,a).

In words, a generative model facilitates query of arbitrary state-action-step tuples, which helps al-
leviate the sampling constraints arising in online episodic settings for exploration. The goal of the
current paper is to compute an ε-approximate equilibrium (either NE or CCE) ofMG with as few
samples as possible, i.e., using a minimal number of calls to the generative model.

3 Sample-efficient learning with a generative model

In this section, we put forward an efficient algorithm aimed at learning an ε-approximate equilibrium
with the assistance of a generative model, and demonstrate its sample optimality for the full ε-range.

3.1 Algorithm description

We now describe the proposed algorithm, which is inspired by the optimism principle and the FTRL
algorithm for online/adversarial learning. Following the dynamic programming approach [8], our
algorithm employs backward recursion from step h = H back to h = 1; in fact, we shall finish
the sampling and learning processes for step h before moving backward to step h − 1. For each h,
the i-th player calls the generative model for K rounds, with each round drawing SAi independent
samples; as a result, the total sample size is given by KSH

∑m
i=1Ai. In what follows, let us first

introduce some convenient notation that facilitates our exposition of the algorithm.

Notation. Consider any step h ∈ [H], any player i ∈ [m], and any data collection round k ∈ [K].
The algorithm maintains the following iterates, whose notation is gathered here with their formal
definitions introduced later.

• V̂i,h ∈ RS represents the final estimate of the value function at step h by the i-th player; in
particular, we set V̂i,H+1 = 0.

• Qki,h ∈ RSAi represents the Q-function estimate of the i-th player at step h after the k-th round of
data collection.

• qki,h ∈ RSAi stands for a certain “one-step-look-ahead” Q-function estimate of the i-th player at
step h using samples collected in the k-th round.

• rki,h ∈ RSAi denotes the sample reward vector for step h received by the i-th player in the k-th
round.

• P ki,h ∈ RSAi×S denotes the empirical probability transition matrix for step h constructed using
the samples collected by the i-th player in the k-th round.

• βi,h ∈ RS denotes the bonus vector chosen by the i-th player at step h during final value estima-
tion.

• πki,h : S → ∆(Ai) denotes the policy iterate of the i-th player at step h before the beginning of the
k-th round of data collection; in particular, we set π1

i,h to be uniform, namely, π1
i,h(ai | s) = 1/Ai

for any (s, ai) ∈ S ×Ai.

Crucially, the above objects are all constructed from the perspective of a single player, and hence
resemble those needed to operate a “single-agent” MDP (as opposed to MARL). As such, the com-
plexity of storing/updating the above objects only scales with the aggregate size of the individual
action space, rather than the size of the product action space.

Main steps of the proposed algorithm. As mentioned above, our algorithm collects multiple
rounds of independent samples for each h. In what follows, let us describe the proposed proce-
dure for the i-th player in the k-th round for step h.

1. Sampling and model estimation. For each (s, ai) ∈ S × Ai, draw an independent sample as
follows

s′k,h,s,ai ∼ Ph
(
· | s,a(k, h, s, ai)

)
and rk,i,h,s,ai = ri,h

(
s,a(k, h, s, ai)

)
, (14a)
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where a(k, h, s, ai) = [aj(k, h, s, ai)]1≤j≤m ∈ A consists of independent individual actions
drawn from

aj(k, h, s, ai)
ind.∼ πkj,h(· | s) (j 6= i) and ai(k, h, s, ai) = ai. (14b)

These samples are then employed to construct the sample reward vector rki,h ∈ RSAi and empirical
probability transition kernel P ki,h ∈ RSAi×S such that

rki,h(s, ai) = rk,i,h,s,ai and P ki,h(s′ | s, ai) =

{
1, if s′ = s′k,h,s,ai
0, else

(14c)

for all (s, ai, s
′) ∈ S ×Ai×S . Note that the i-th player only needs to compute (14c), without the

need of directly observing the other players’ actions.
2. Q-function estimation. Following the dynamic programming approach, we first compute the “one-

step-look-ahead” Q-function estimate as follows

qki,h = rki,h + P ki,hV̂i,h+1. (15)

We then adopt the update rule of Q-learning:

Qki,h = (1− αk)Qk−1
i,h + αkq

k
i,h, (16)

where 0 < αk < 1 is the learning rate. Applying (16) recursively and using the quantities defined
in (5), we easily arrive at the following expansion:

Qki,h =

k∑
j=1

αkj q
j
i,h. (17)

3. Policy updates. Once the Q-estimates are updated, we adopt the exponential weights strategy to
update the policy iterate of the i-th player as follows

πk+1
i,h (ai | s) =

exp
(
ηk+1Q

k
i,h(s, ai)

)∑
a′∈Ai exp

(
ηk+1Qki,h(s, a′)

) , ∀(s, ai) ∈ S ×Ai, (18)

where ηk+1 > 0 is another learning rate associated with policy updates (to be specified shortly).
In fact, this subroutine implements the Follow-the-Regularized-Leader strategy [56]:

πk+1
i,h (· | s) = arg min

µ∈∆(Ai)

{
−
〈
µ,Qki,h(s, ·)

〉
+

1

ηk+1
F (µ)

}
, (19)

where the regularizer F (·) is chosen to be the negative entropy function F (µ) :=∑
a∈Ai µ(a) log

(
µ(a)

)
.

After carrying out K rounds of the above procedure, our final policy estimate π̂ : S × [H]→ ∆(A)

and the value estimate V̂i,h : S → R for step h are taken respectively to be

V̂i,h(s) = min

{
K∑
k=1

αKk

〈
πki,h(· | s), qki,h(s, ·)

〉
+ βi,h(s), H − h+ 1

}
and (20a)

π̂h(a | s) =

K∑
k=1

αKk

m∏
i=1

πki,h(ai | s) (20b)

for any
(
s,a = [a1, . . . , am]

)
∈ S×A, where {αKk } is defined in (5) and βi,h(s) ≥ 0 is some bonus

term (taking the form of some data-driven upper confidence bound) to be specified momentarily. It
is worth pointing out that the final policy (20b) takes the form of a mixture of product policies. In
the special case of two-player zero-sum MGs, we can alternatively output a product policy

(two-player zero-sum MGs) π̂ = π̂1 × π̂2, (21)

where for each i = 1, 2, we take π̂i = {π̂i,h}1≤h≤H with π̂i,h =
∑K
k=1 α

K
k π

k
i,h.

7



Algorithm 1: Q-FTRL.
1 Input: number of rounds K for each step, learning rates {αk} (cf. (22)) and {ηk+1} (cf. (23)).
// set initial value estimates to 0, and initial policies to uniform

distributions.

2 Initialize: for any i ∈ [m] and any (s, ai, h) ∈ S ×Ai × [H], set V̂i,H+1(s) = Q0
i,h(s, ai) = 0

and π1
i,h(ai | s) = 1/Ai.

3 for h = H to 1 do
4 for k = 1 to K do
5 for i = 1 to m do

// draw independent samples, and construct empirical models.
6

(
rki,h, P

k
i,h

)
← sampling

(
i, h, πkh = {πkj,h}j∈[m]

)
. /* see Algorithm 2.

*/
// update Q-estimates with upper confidence bounds.

7 Compute qki,h = rki,h + P ki,hV̂i,h+1, and update Qki,h according to (16).
// update policy estimates using FTRL.

8 Update πk+1
i,h according to (18).

// output the final value estimate for step h.
9 for i = 1 to m do

10 Update V̂i,h according to (20a), where βi,h is given in (24).

11 if MG is a two-player zero-sum Markov game then
12 output: π̂1 × π̂2, where for any i = 1, 2, π̂i = {π̂i,h}1≤h≤H with π̂i,h =

∑K
k=1 α

K
k π

k
i,h.

13 if MG is a multi-player general-sum Markov game then
14 output: π̂ = {π̂h}1≤h≤H , where π̂h =

∑K
k=1 α

K
k

(
πk1,h × · · · × πkm,h

)
.

The whole procedure is summarized in Algorithm 1.

Choices of learning rates. Thus far, we have not yet specified the two sequences of learning rates,
which we describe now. The learning rates associated with Q-function updates are set to be rescaled
linear, namely,

αk =
cα logK

k − 1 + cα logK
, k = 1, 2, . . . (22)

for some constant cα ≥ 24. In addition, the learning rates associated with policy updates are chosen
to be:

ηk+1 =

√
logK

αkH
, k = 1, 2, . . . (23)

Choices of bonus terms. It remains to specify the bonus terms, which are selected based on fairly
intricate upper confidence bounds. This constitutes a key — and perhaps the most challenging —
component of our algorithm design. Specifically, we take

βi,h(s) = cb

√
log3

(KS∑
i Ai

δ

)
KH

K∑
k=1

αKk

{
Varπki,h(·|s)

(
qki,h(s, ·)

)
+H

}
(24)

for any (i, s, h) ∈ [m] × S × [H], where cb > 0 is some sufficiently large constant; see also (6)
for the definition of the variance-style quantity. As in previous works, the bonus terms, which are
chosen carefully in a data-driven fashion, need to compensate for the uncertainty incurred during
the estimation process.

3.2 Main results

As it turns out, the proposed algorithm is tractable and provably sample-efficient. We begin by
characterizing its sample complexity when learning Nash equilibria in two-player zero-sum MGs,
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Algorithm 2: Auxiliary function sampling
(
i, h, πh = {πj,h}j∈[m]

)
.

1 Initialize: r = 0 ∈ RSAi , and P = 0 ∈ RSAi×S .
2 for (s, ai) ∈ S ×Ai do
3 Draw an independent sample from the generative model: s′s,ai ∼ Ph

(
· | s,a(s, ai)

)
, where

a(s, ai) = [aj(s, ai)]1≤j≤m is composed of independent individual actions drawn from

aj(s, ai)
ind.∼ πj,h(· | s) (j 6= i) and ai(s, ai) = ai. (25)

4 Set r(s, ai) = ri,h
(
s,a(s, ai)

)
and P

(
s′s,ai | s, ai

)
= 1.

5 Return:
(
r, P

)
.

and then shift attention to learning CCE in multi-player general-sum MGs (given the intractability
of learning NEs in general).
Theorem 1 (NE for two-player zero-sum MGs). Consider a two-player zero-sum Markov game,
and consider any ε ∈ (0, H] and any 0 < δ < 1. Suppose that

K ≥
ckH

3 log4
(KS(A1+A2)

δ

)
ε2

(26)

for some large enough universal constant ck > 0. With probability at least 1− δ, the product policy
π̂1× π̂2 computed by Algorithm 1 is an ε-approximate Nash equilibrium, i.e., its sub-optimality gap
(cf. (13)) obeys gap

(
π̂1 × π̂2

)
≤ ε.

Theorem 2 (CCE for multi-player general-sum MGs). Consider an m-player general-sum Markov
game, and consider any ε ∈ (0, H] and any 0 < δ < 1. Suppose that

K ≥
ckH

3 log4
(KS∑m

i=1 Ai
δ

)
ε2

(27)

for some large enough universal constant ck > 0. With probability at least 1 − δ, the joint policy
π̂ returned by Algorithm 1 is an ε-approximate CCE, i.e., its sub-optimality gap (cf. (13)) obeys
gap
(
π̂
)
≤ ε.

Theorems 1-2 establish sample complexity upper bounds for the proposed algorithm, which we take
a moment to interpret as follows. The proofs of these two theorems are postponed to Appendix C in
the supplementary material.

Sample complexity. When a generative model is available, Theorems 1-2 assert that the total num-
ber of samples (i.e., KSH

∑
iAi) needed for Algorithm 1 to work is{

Õ
(H4S(A1+A2)

ε2

)
, for learning an ε-NE in two-player zero-sum MGs;

Õ
(H4S

∑m
i=1 Ai

ε2

)
, for learning an ε-CCE in multi-player general-sum MGs.

(28)

As far as we know, our theorems deliver the first results that uncover the plausibility of simultane-
ously overcoming the long-horizon barrier and the curse of multi-agents. Let us compare (28) with
prior art.

• NE in two-player zero-sum MGs. First, consider learning ε-NE policies in two-player zero-sum
MGs. In comparison to Zhang et al. [79] (cf. (1)), our result reveals that what ultimately matters
is the total number of individual actions (i.e., A1 + A2) as opposed to the total number A1A2 of
possible joint actions; additionally, our results exhibit improved horizon dependency (by a factor
of H2) compared to Bai et al. [5], Jin et al. [31] (see (3)), although we remark that the online
sampling protocol therein is clearly more restrictive than a generative model.

• CCE in multi-player general-sum MGs (for a fixed m). Similar messages carry over to the task
of learning multi-player general-sum MGs when the number of players m is a fixed constant. Liu
et al. [43] provided the first non-asymptotic result on learning CCE in the exploration setting; the
model-based algorithm studied therein learns an ε-CCE using

Õ

(
H5S2

∏m
i=1Ai

ε2

)
samples or Õ

(
H4S2

∏m
i=1Ai

ε2

)
episodes (29)
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which is sub-optimal in terms of the dependency on both H and S and suffers from the curse of
multiple agents. A more recent strand of works focused on a type of online RL algorithms called V-
learning, which exploited the effectiveness of adversarial learning subroutines in overcoming the
curse of multi-agents [44, 63, 31]; along this line, the state-of-the-art sample complexity bound is
[31]:

Õ

(
H6Smax1≤i≤mAi

ε2

)
samples or Õ

(
H5Smax1≤i≤mAi

ε2

)
episodes, (30)

which remains suboptimal in terms of the horizon dependency. As a drawback of these works,
the policy returned by V-learning is non-Markovian, an issue that has been recently addressed by
Daskalakis et al. [23] at the price of a much higher sample complexity. It is worth emphasizing that
all these works assume the online exploration setting as opposed to the scenario with a generative
model.

Minimax optimality. To assess the tightness of our result (28), it is helpful to look at the
information-theoretic limit. Following the minimax lower bound for single-agent MDPs [3, 41],
one can develop a minimax sample complexity lower bound for Markov games (w.r.t. finding either
an ε-NE or an ε-CCE) that scales as

(minimax lower bound)
H4Smax1≤i≤mAi

ε2
(31)

modulo some logarithmic factor; see Appendix E.3 in the supplementary material for a formal state-
ment and its proof. Taking this together with (28) confirms the minimax optimality of our algorithm
(up to logarithmic terms) when the number m of players is fixed or grows only logarithmically in
problem parameters.

No burn-in sample size and full ε-range. It is noteworthy that the validity of our sample com-
plexity bound (28) is guaranteed for the entire range of ε-levels (i.e., any ε ∈ (0, H]). This feature is
particularly appealing in the data-starved applications, as it implies that there is no burn-in sample
size needed for our algorithm to work optimally.

Miscellaneous properties of our algorithm. Finally, we would like to remark in passing that
our learning algorithm enjoys several properties that might be practically appealing. For instance,
the output policies are Markovian in nature, which depend only on the current state s and step
number h. This is enabled thanks to the availability of the generative model, which allows us to
settle the sampling and learning process for step h + 1 completely before moving backward to
step h; in contrast, the online sampling protocol studied in Bai et al. [5], Jin et al. [31] cannot
be implemented in this way without incurring information loss. In addition, our algorithm can be
carried out in a decentralized fashion (except that the final estimate π̂ needs to aggregate policy
iterates from all players), with each player acting in a symmetric yet independent manner (without
the need of knowing each other’s individual action). Our algorithm is also “rational” in the sense
that it converges to the best-response policy of a player if all other players freeze their policies. All
this is achieved under minimal sample complexity with the aid of the generative model.

4 Discussion

The primary contribution of this paper has been to develop a sample-optimal paradigm that simulta-
neously overcomes the curse of multiple agents and optimizes the horizon dependency when solving
multi-player Markov games. This goal was not accomplished in any of the previous works, regard-
less of the sampling mechanism in use. The adoption of the adversarial learning subroutine helps
break the curse of multiple agents compared to the prior model-based approach [79, 43], whereas the
availability of the generative model in conjunction with the variance-aware bonus design improves
horizon dependency compared to Bai et al. [5], Jin et al. [31].
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