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Abstract

Novel architectures have recently improved generative image synthesis leading
to excellent visual quality in various tasks. Much of this success is due to the
scalability of these architectures and hence caused by a dramatic increase in
model complexity and in the computational resources invested in training these
models. Our work1 questions the underlying paradigm of compressing large
training data into ever growing parametric representations. We rather present
an orthogonal, semi-parametric approach. We complement comparably small
diffusion or autoregressive models with a separate image database and a retrieval
strategy. During training we retrieve a set of nearest neighbors from this external
database for each training instance and condition the generative model on these
informative samples. While the retrieval approach is providing the (local) content,
the model is focusing on learning the composition of scenes based on this content.
As demonstrated by our experiments, simply swapping the database for one with
different contents transfers a trained model post-hoc to a novel domain. The
evaluation shows competitive performance on tasks which the generative model
has not been trained on, such as class-conditional synthesis, zero-shot stylization or
text-to-image synthesis without requiring paired text-image data. With negligible
memory and computational overhead for the external database and retrieval we
can significantly reduce the parameter count of the generative model and still
outperform the state-of-the-art.

1 Introduction

Figure 1: Our semi-parametric model
outperforms the unconditional SOTA
model ADM [15] on ImageNet [13]
and even reaches the class-conditional
ADM (ADM w/ classifier), while re-
ducing parameter count. |D|: Number
of instances in database at inference;
|θ|: Number of trainable parameters.

Deep generative modeling has made tremendous leaps; espe-
cially in language modeling as well as in generative synthesis
of high-fidelity images and other data types. In particular for im-
ages, astounding results have recently been achieved [22, 15, 56,
59], and three main factors can be identified as the driving forces
behind this progress: First, the success of the transformer [88]
has caused an architectural revolution in many vision tasks [19],
for image synthesis especially through its combination with au-
toregressive modeling [22, 58]. Second, since their rediscovery,
diffusion models have been applied to high-resolution image
generation [76, 78, 33] and, within a very short time, set new
standards in generative image modeling [15, 34, 63, 59]. Third,
these approaches scale well [58, 59, 37, 81]; in particular when
considering the model- and batch sizes involved for high-quality
models [15, 56, 58, 59] there is evidence that this scalability is
of central importance for their performance.

However, the driving force underlying this training paradigm are models with ever growing numbers of
parameters [81] that require huge computational resources. Besides the enormous demands in energy
consumption and training time, this paradigm renders future generative modeling more and more
exclusive to privileged institutions, thus hindering the democratization of research. Therefore, we here
∗The first two authors contributed equally to this work.
1Code is available at https://github.com/CompVis/retrieval-augmented-diffusion-models
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’A purple salamander in the grass.’ ’A zebra-skinned panda.’ ’A teddy bear
riding a motorcycle.’

’Image of a monkey
with the fur of a leopard.’

Text repr.
only

Text repr.
and NNs

NNs only

Figure 2: As we retrieve nearest neighbors in the shared text-image space provided by CLIP, we can use text
prompts as queries for exemplar-based synthesis. We observe our RDM to readily generalize to unseen and
fictional text prompts when building the set of retrieved neighbors by directly conditioning on the CLIP text
encoding φCLIP(ctext) (top row). When using φCLIP(ctext) together with its k − 1 nearest neighbors from the
retrieval database (middle row) or the k nearest neighbors alone without the text representation, the model does
not show these generalization capabilities (bottom row).

present an orthogonal approach. Inspired by recent advances in retrieval-augmented NLP [4, 89], we
question the prevalent approach of expensively compressing visual concepts shared between distinct
training examples into large numbers of trainable parameters and equip a comparably small generative
model with a large image database. During training, our resulting semi-parametric generative models
access this database via a nearest neighbor lookup and, thus, need not learn to generate data ’from
scratch’. Instead, they learn to compose new scenes based on retrieved visual instances. This property
not only increases generative performance with reduced parameter count (see Fig. 1), and lowers
compute requirements during training. Our proposed approach also enables the models during
inference to generalize to new knowledge in form of alternative image databases without requiring
further training, what can be interpreted as a form of post-hoc model modification [4]. We show this
by replacing the retrieval database with the WikiArt [66] dataset after training, thus applying the
model to zero-shot stylization.

Furthermore, our approach is formulated indepently of the underlying generative model, allowing
us to present both retrieval-augmented diffusion (RDM) and autoregressive (RARM) models. By
searching in and conditioning on the latent space of CLIP [57] and using scaNN [28] for the NN-
search, the retrieval causes negligible overheads in training/inference time (0.95 ms to retrieve 20
nearest neighbors from a database of 20M examples) and storage space (2GB per 1M examples).
We show that semi-parametric models yield high fidelity and diverse samples: RDM surpasses
recent state-of-the-art diffusion models in terms of FID and diversity while requiring less trainable
parameters. Furthermore, the shared image-text feature space of CLIP allows for various conditional
applications such as text-to-image or class-conditional synthesis, despite being trained on images
only (as demonstrated in Fig. 2). Finally, we present additional truncation strategies to control
the synthesis process which can be combined with model specific sampling techniques such as
classifier-free guidance for diffusion models [32] or top-k sampling [23] for autoregressive models.

2 Related Work
Generative Models for Image Synthesis. Generating high quality novel images has long been a
challenge for deep learning community due to their high dimensional nature. Generative adversarial
networks (GANs) [25] excel at synthesizing such high resolution images with outstanding quality [5,
39, 40, 70] while optimizing their training objective requires some sort of tricks [1, 27, 54, 53] and
their samples suffer from the lack of diversity [80, 1, 55, 50]. On the contrary, likelihood-based
methods have better training properties and they are easier to optimize thanks to their ability to
capture the full data distribution. While failing to achieve the image fidelity of GANs, variational
autoencoders (VAEs) [43, 61] and flow-based methods [16, 17] facilitate high resolution image
generation with fast sampling speed [84, 45]. Autoregressive models (ARMs) [10, 85, 87, 68]
succeed in density estimation like the other likelihood-based methods, albeit at the expense of
computational efficiency. Starting with the seminal works of Sohl-Dickstein et al. [76] and Ho et
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Figure 3: A semi-parametric generative model consists of a trainable conditional generative model (decoding
head) pθ(x|·), an external database D containing visual examples and a sampling strategy ξk to obtain a subset
M(k)
D ⊆ D, which serves as conditioning for pθ . During training, ξk retrieves the nearest neighbors of each

target example fromD, such that pθ only needs to learn to compose consistent scenes based onM(k)
D , cf. Sec 3.2.

During inference, we can exchange D and ξk, thus resulting in flexible sampling capabilities such as post-hoc
conditioning on class labels (ξ1k) or text prompts (ξ3k), cf. Sec. 3.3, and zero-shot stylization, cf. Sec. 4.3.

al. [33], diffusion-based generative models have improved generative modeling of artificial visual
systems [15, 44, 90, 35, 92, 65]. Their good performance, however, comes at the expense of high
training costs and slow sampling. To circumvent the drawbacks of ARMs and diffusion models,
several two-stage models are proposed to scale them to higher resolutions by training them on the
compressed image features [86, 60, 22, 93, 63, 75, 21]. However, they still require large models and
significant compute resources, especially for unconditional image generation [15] on complex datasets
like ImageNet [13] or complex conditional tasks such as text-to-image generation [56, 58, 26, 63].
To address these issues, given limited compute resources, we propose to trade trainable parameters
for an external memory which empowers smaller models to achieve high fidelity image generation.

Retrieval-Augmented Generative Models. Using external memory to augment traditional models
has recently drawn attention in natural language processing (NLP) [41, 42, 52, 29]. For example,
RETRO [4] proposes a retrieval-enhanced transformer for language modeling which performs on par
with state-of-the-art models [6] using significantly less parameters and compute resources. These
retrieval-augmented models with external memory turn purely parametric deep learning models into
semi-parametric ones. Early attempts [51, 74, 83, 91] in retrieval-augmented visual models do not use
an external memory and exploit the training data itself for retrieval. In image synthesis, IC-GAN [8]
utilizes the neighborhood of training images to train a GAN and generates samples by conditioning
on single instances from the training data. However, using training data itself for retrieval potentially
limits the generalization capacity, and thus, we favor an external memory in this work.

3 Image Synthesis with Retrieval-Augmented Generative Models
Our work considers data points as an explicit part of the model. In contrast to common neural genera-
tive approaches for image synthesis [5, 40, 70, 60, 22, 10, 9], this approach is not only parameterized
by the learnable weights of a neural network, but also a (fixed) set of data representations and a
non-learnable retrieval function, which, given a query from the training data, retrieves suitable data
representations from the external dataset. Following prior work in natural language modeling [4], we
implement this retrieval pipeline as a nearest neighbor lookup.

Sec. 3.1 and Sec. 3.2 formalize this approach for training retrieval-augmented diffusion and autore-
gressive models for image synthesis, while Sec. 3.3 introduces sampling mechanisms that become
available once such a model is trained. Fig. 3 provides an overview over our approach.

3.1 Retrieval-Enhanced Generative Models of Images
Unlike common, fully parametric neural generative approaches for images, we define a semi-
parametric generative image model pθ,D,ξk(x) by introducing trainable parameters θ and non-
trainable model components D, ξk, where D = {yi}Ni=1 is a fixed database of images yi ∈
RHD×WD×3 that is disjoint from our train data X . Further, ξk denotes a (non-trainable) sam-
pling strategy to obtain a subset of D based on a query x, i.e. ξk:x,D 7→M(k)

D , whereM(k)
D ⊆ D

and |M(k)
D |= k . Thus, only θ is actually learned during training.
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Importantly, ξk(x,D) has to be chosen such that it provides the model with beneficial visual repre-
sentations from D for modeling x and the entire capacity of θ can be leveraged to compose consistent
scenes based on these patterns. For instance, considering query images x ∈ RHx×Wx×3, a valid
strategy ξk(x,D) is a function that for each x returns the set of its k nearest neighbors, measured by
a given distance function d(x, ·).
Next, we propose to provide this retrieved information to the model via conditioning, i.e. we specify
a general semi-parametric generative model as

pθ,D,ξk(x) = pθ(x | ξk(x,D)) = pθ(x | M(k)
D ) (1)

In principle, one could directly use image samples y ∈ M(k)
D to learn θ. However, since images

contain many ambiguities and their high dimensionality involves considerable computational and
storage cost2 we use a fixed, pre-trained image encoder φ to project all examples fromM(k)

D onto a
low-dimensional manifold. Hence, Eq. (1) reads

pθ,D,ξk(x) = pθ(x | {φ(y) | y ∈ ξk(x,D) }). (2)

where pθ(x|·) is a conditional generative model with trainable parameters θ which we refer to as
decoding head. With this, the above procedure can be applied to any type of generative decoding
head and is not dependent on its concrete training procedure.

3.2 Instances of Semi-Parametric Generative Image Models
During training we are given a train dataset X = {xi}Mi=1 of images whose distribution p(x) we
want to approximate with pθ,D,ξk(x). Our train-time sampling strategy ξk uses a query example
x ∼ p(x) to retrieve its k nearest neighbors y ∈ D by implementing d(x, y) as the cosine similarity
in the image feature space of CLIP [57]. Given a sufficiently large database D, this strategy ensures
that the set of neighbors ξk(x,D) shares sufficient information with x and, thus, provides useful
visual information for the generative task. We choose CLIP to implement ξk, because it embeds
images in a low dimensional space (dim = 512) and maps semantically similar samples to the same
neighborhood, yielding an efficient search space. Fig. 4 visualizes examples of nearest neighbors
retrieved via a ViT-B/32 vision transformer [19] backbone.

x ξ15(x)

Figure 4: k = 15 nearest neighbors from D for a given query x when parameterizing d(x, ·) with CLIP [57].

Note that this approach can, in principle, turn any generative model into a semi-parametric model in
the sense of Eq. (2). In this work we focus on models where the decoding head is either implemented
as a diffusion or an autoregressive model, motivated by the success of these models in image
synthesis [33, 15, 63, 56, 58, 22].

To obtain the image representations via φ, different encoding models are conceivable in principle.
Again, the latent space of CLIP offers some advantages since it is (i) very compact, which (ii) also
reduces memory requirements. Moreover, the contrastive pretraining objective (iii) provides a shared
space of image and text representations, which is beneficial for text-image synthesis, as we show in
Sec. 4.2. Unless otherwise specified, φ ≡ φCLIP is set in the following. We investigate alternative
parameterizations of φ in Sec. E.2.

Note that with this choice, the additional database D can also be interpreted as a fixed embedding
layer3 of dimensionality |D|×512 from which the nearest neighbors are retrieved.
3.2.1 Retrieval-Augmented Diffusion Models
In order to reduce computational complexity and memory requirements during training, we follow [63]
and build on latent diffusion models (LDMs) which learn the data distribution in the latent space
z = E(x) of a pretrained autoencoder. We dub this retrieval-augmented latent diffusion model
RDM and train it with the usual reweighted likelihood objective [33], yielding the objective [76, 33]

min
θ
L = Ep(x),z∼E(x),ε∼N (0,1),t

[
‖ε− εθ(zt, t, {φCLIP(y) | y ∈ ξk(x,D)})‖22

]
, (3)

2Note that D is essentially a part of the model weights
3For a database of 1M images and using 32-bit precision, this equals approximately 2.048 GB
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where the expectation is approximated by the empirical mean over training examples. In the above
equation, εθ denotes the UNet-based [64] denoising autoencoder as used in [15, 63] and t ∼
Uniform{1, . . . , T} denotes the time step [76, 33]. To feed the set of nearest neighbor encodings
φCLIP(y) into εθ, we use the cross-attention conditioning mechanism proposed in [63].

3.2.2 Retrieval-Augmented Autoregressive Models
Our approach is applicable to several types of likelihood-based methods. We show this by augmenting
diffusion models (Sec. 3.2.1) as well as autoregressive models with the retrieved representations.
To implement the latter, we follow [22] and train autoregressive transformer models to model the
distribution of the discrete image tokens zq = E(x) of a VQGAN [22, 86]. Specifically, as for RDM ,
we train retrieval-augmented autoregressive models (RARMs) conditioned on the CLIP embeddings
φCLIP(y) of the neighbors y, so that the objective reads

min
θ
L = −Ep(x),zq∼E(x)

[∑
i

log p(z(i)q | z(<i)q , {φCLIP(y) | y ∈ ξk(x,D)})
]
, (4)

where we choose a row-major ordering for the autoregressive factorization of the latent zq. We
condition the model on the set of neighbor embeddings φCLIP(ξk(x,D)) via cross-attention [88].

3.3 Inference for Retrieval-Augmented Generative Models
Conditional Synthesis without Conditional Training Being able to change the (non-learned) D
and ξk at test time offers additional flexibility compared to standard generative approaches: Depending
on the application, it is possible to extent/restrict D for particular exemplars; or to skip the retrieval
via ξk altogether and provide a set of representations {φCLIP(yi)}ki=1 directly. This allows us to use
additional conditional information such as a text prompt or a class label, which has not been available
during training, to achieve more fine-grained control during synthesis.

For text-to-image generation, for example, our model can be conditioned in several ways: Given a
text prompt ctext and using the text-to-image retrieval ability of CLIP, we can retrieve k neighbors
from D and use these as an implicit text-based conditioning. However, since we condition on CLIP
representations φCLIP, we can also condition directly on the text embeddings obtained via CLIP’s
language backbone (since CLIP’s text-image embedding space is shared). Accordingly, it is also
possible to combine these approaches and use text and image representations simultaneously. We
show and compare the results of using these sampling techniques in Fig. 2.

Given a class label c, we define a text such as ’An image of a t(c).’ based on its textual description
t(c) or apply the embedding strategy for text prompts and sample a pool ξl(c) , k ≤ l for each
class. By randomly selecting k adjacent examples from this pool for a given query c, we obtain an
inference-time class-conditional model and analyze these post-hoc conditioning methods in Sec. 4.2.

For unconditional generative modeling, we randomly sample a pseudo-query x̃ ∈ D to obtain the
set ξtest

k (x̃,D) of its k nearest neighbors. Given this set, Eq. (2) can be used to draw samples, since
pθ(x|·) itself is a generative model. However, when generating all samples from pθ,D,ξk(x) only
from one particular set ξtest

k (x̃), we expect pθ,D,ξk(x) to be unimodal and sharply peaked around
x̃. When intending to model a complex multimodal distribution p(x) of natural images, this choice
would obviously lead to weak results. Therefore, we construct a proposal distribution based on D
where

pD(x̃) =
|{x ∈ X | x̃ ∈ ξk(x,D)}|

k · |X |
, for x̃ ∈ D . (5)

This definition counts the instances in the database D which are useful for modeling the training
dataset X . Note that pD(x̃) only depends on X andD, what allows us to precompute it. Given pD(x̃),
we can obtain a set

P =
{
x ∼ pθ(x | {φ(y) | y ∈ ξk(x̃,D) })

∣∣∣ x̃ ∼ pD(x̃)} (6)

of samples from the our model. We can thus draw from the unconditional modeled density pθ,D,ξk(x)
by drawing x ∼ Uniform(P).
By choosing only a fraction m ∈ (0, 1] of most likely examples x̃ ∼ pD(x̃), we can artificially
truncate this distribution and trade sample quality for diversity. See Sec. D.1. for a detailed description
of this mechanism which we call top-m sampling and Sec. 4.5 for an empirical demonstration.
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ImageNet [13] FFHQ [38] ImageNet

M(k)
D (x̃)
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Figure 5: Samples from our unconditional models together with the sets ofM(k)
D (x̃) of retrieved neighbors for

the pseudo query x̃, cf. Sec. 3.3, and nearest neighbors from the train set, measured in CLIP [57] feature space.
For ImageNet samples are generated with m = 0.01, guidance with s = 2.0 and 100 DDIM steps for RDM and
m = 0.05, guidance scale s = 3.0 and top-k = 2048 for RARM . On FFHQ we use s = 1.0 ,m = 0.1.

4 Experiments
This section presents experiments for both retrieval-augmented diffusion and autoregressive models.
To obtain nearest neighbors we apply the ScaNN search algorithm [28] in the feature space of a
pretrained CLIP-ViT-B/32 [57]. Using this setting, retrieving 20 nearest neighbors from the database
described above takes ∼ 0.95 ms. For more details on our retrieval implementation, see Sec. F.1. For
quantitative performance measures we use FID [31], CLIP-FID [48], Inception Score (IS) [67] and
Precision-Recall [47], and, for the diffusion models, generate samples with the DDIM sampler [77]
with 100 steps and η = 1. For hyperparameters, implementation and evaluation details cf. Sec. F.

4.1 Semi-Parametric Image Generation
Drawing pseudo-queries from the proposal distribution proposed in Sec. 3.3 and Eq. (6) enables
semi-parametric unconditional image generation. However, before the actual application, we compare
different choices of the database Dtrain used during training and determine an appropriate choice for
the value k of the retrieved neighbors during training.

Figure 6: Comparing performance metrics of RDMs with different train databases Dtrain with those of an LDM
baseline on the dogs-subset of ImageNet [13]; we find that having a database of diverse visual instance from
visual domains similar to the train dataset X (as RDM -COCO) improves performance upon fully-parametric
baseline. Increasing the size of the database further boosts performance, leading to significant improvements of
RDMs over the baseline despite having less trainable parameters.

Finding a train-time database Dtrain. Key to a successful application of semi-parametric models is
choosing an appropriate train database Dtrain, as it has to provide the generative backbone pθ with
useful information. We hypothesize that a large database with diverse visual instances is most useful
for the model, since the probability of finding nearby neighbors in Dtrain for every train example is
highest for this choice. To verify this claim, we compare the visual quality and sample diversity
of three RDMs trained on the dogs-subset of ImageNet [13] with i) WikiArt [66] (RDM-WA), ii)
MS-COCO [7] (RDM-COCO) and iii) 20M examples obtained by cropping images (see App. F.1)
from OpenImages [46] (RDM-OI) as train database Dtrain with that of an LDM baseline with 1.3×
more parameters. Fig 6 shows that i) a database Dtrain, whose examples are from a different domain
than those of the train set X leads to degraded sample quality, whereas ii) a small database from the
same domain as X improves performance compared to the LDM baseline. Finally, iii) increasing
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the size of Dtrain further boosts performance in quality and diversity metrics and leads to significant
improvements of RDMs compared to LDMs.

Method FID↓ CLIP-FID↓ Precision↑ Recall↑
train val train val

RDM-IN 5.91 5.32 3.92 4.44 0.74 0.51
RDM-OI 12.28 11.31 4.09 4.59 0.69 0.55
RDM-IN/OI 17.23 16.82 8.86 9.75 0.52 0.60
RDM-OI/IN 10.81 12.01 3.84 4.41 0.81 0.39

Method FID↓ CLIP-FID↓ CLIP-score↑ IS↑
LAFITE [94] 26.94 - - 26.02
RDM-IN 27.28 18.12 0.29 24.17
RDM-OI 22.08 13.16 0.30 24.31

Table 1: Generalization to new databases. Left: We train RDMs on ImageNet with OpenImages (RDM-OI) and
the train dataset itself (RDM-IN). By exchanging the train and inference databases between the two models we
see that RDM-OI which is trained with a database disjoint from the train set generalizes better to new inference
databases. Right: Quantitative comparison against LAFITE [94] on zero-shot text-to-image synthesis.

For the above experiment we used Dtrain ∩ X = ∅. This is in contrast to prior work [8] which
conditions a generative model on the train dataset itself, i.e., Dtrain = X . Our choice is motivated
by the aim to obtain a model as general as possible which can be used for more than one task
during inference, as introduced in Sec. 3.3. To show the benefits of using Dtrain ∩ X = ∅ we use
ImageNet [13] as train set X and compare RDM-OI with an RDM conditioned on X itself (RDM-
IN). We evaluate their performance on the ImageNet train- and validation-sets in Tab. 1, which
shows RDM-OI to closely reach the performance of RDM-IN in CLIP-FID [48] and achieve more
diverse results. When interchanging the test-time database between the two models, i.e., conditioning
RDM-OI on examples from ImageNet (RDM-OI/IN) and vice versa (RDM-IN/OI) we observe strong
performance degradation of the latter model, whereas the former improves in most metrics and
outperforms RDM-IN in CLIP-FID, thus showing the enhanced generalization capabilities when
choosing Dtrain ∩ X = ∅. To provide further evidence of this property we additionally evaluate the
models on zero-shot text-conditional on the COCO dataset [7] in Tab. 1. Again, we observe better
image quality (FID) as well as image-text alignment (CLIP-score) of RDM-OI which furthermore
outperforms LAFITE [94] in FID, despite being trained on only a third of the train examples.

Figure 7: Effect of ktrain.

How many neighbors to retrieve during training?
As the number ktrain of retrieved nearest neighbors
during training has a strong influence on the prop-
erties of the resulting model after training, we first
identify hyperparameters obtain a model with opti-
mal synthesis properties. Hence, we parameterize
pθ with a diffusion model and train five models for
different ktrain ∈ {1, 2, 4, 8, 16} on ImageNet [13]. All models use identical generative backbones and
computational resources (details in Sec. F.2.1). Fig. 7 shows resulting performance metrics assessed
on 1000 samples. For FID and IS we do not observe significant trends. Considering precision and
recall, however, we see that increasing ktrain trades consistency for diversity. Large ktrain causes recall,
i.e. sample diversity, to deteriorate again.

We attribute this to a regularizing influence of non-redundant, additional information beyond the
single nearest neighbor, which is fed to the respective model during training, when ktrain > 1. For
ktrain ∈ {2, 4, 8} this additional information is beneficial and the corresponding models appropriately
mediate between quality and diversity. Thus, we use k = 4 for our main RDM . Furthermore, the
numbers of neighbors has a significant effect on the generalization capabilities of our model for
conditional synthesis, e.g. text-to-image synthesis as in Fig. 2. We provide an in-depth evaluation of
this effect in Sec. 4.2 and conduct a similar study for RARM in Sec. E.4.

Qualitative results. Fig. 5 shows samples of RDM /RARM trained on ImageNet as well as
RDM samples on FFHQ [38] for different sets M(k)

D (x̃) of retrieved neighbors given a pseudo-
query x̃ ∼ pD(x̃). We also plot the nearest neighbors from the train set to show that this set is disjoint
from the database D and that our model renders new, unseen samples.

Quantitative results. Tab. 2 compares our model with the recent state-of-the-art diffusion model
ADM [15] and the semi-parametric GAN-based model IC-GAN [8] (which requires access to the
training set examples during inference) in unconditional image synthesis on ImageNet [13] 256×256.

To boost performance, we use the sampling strategies proposed in Sec. 3.3 (which is also further
detailed in Sec. D.1). With classifier-free guidance (c.f.g.), our model attains better scores than
IC-GAN and ADM while being on par with ADM-G [15]. The latter requires an additional classifier
and the labels of training instances during inference. Without any additional information about
training data, e.g., image labels, RDM achieves the best overall performance.
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Method FID↓ IS↑ Precision↑ Recall↑ Nparams
train val train val train val

IC-GAN [8] 18.17 15.60∗ 59.00∗ 0.77 0.73 0.21 0.23 191M conditioned on train set, add. aug.
ADM [15] 26.21 32.50∗ 39.70 0.61 - 0.63 - 554M 250 steps
ADM-G [15] 33.03 - 32.92 0.56 - 0.65 - 618M 250 steps, c.g., s=1.0
ADM-G [15] 12.00 - 95.41 0.76 - 0.44 - 618M 250 steps, c.g., s=10.0
RDM-OI (ours) 24.50 21.28 45.29 0.60 0.54 0.65 0.66 400M 100 steps, m = 0.1
RDM-OI (ours) 19.08 16.89 62.78 0.57 0.62 0.56 0.57 400M 100 steps, m = 0.01
RDM-OI (ours) 13.22 12.29 70.64 0.72 0.65 0.56 0.51 400M 100 steps, c.f.g., s = 1.75, m = 0.1
RDM-OI (ours) 13.60 13.11 87.58 0.79 0.73 0.51 0.50 400M 100 steps, c.f.g., s = 1.5, m = 0.02
RDM-OI (ours) 12.21 11.31 77.93 0.75 0.69 0.55 0.55 400M 100 steps, c.f.g., s = 1.5, m = 0.05
RDM-IN (ours) 5.91 5.32 158.76 0.74 0.74 0.51 0.53 400M 100 steps, c.f.g., s = 1.5, m = 0.05

Table 2: Comparison of RDM with recent state-of-the-art methods for unconditional image generation on
ImageNet [13]. While c.f.g. denotes classifier-free guidance with a scale parameter s as proposed in [32], c.g.
refers to classifier guidance [15], what requires a classifier pretrained on the noisy representations of diffusion
models to be available. ∗: numbers taken from [8].

Method CLIP-FID CLIP-Prec CLIP-Rec
P-GAN [69] 4.87 - -
Style-GAN2 [39] 2.90 - -
LDM [63] 2.12 0.81 0.48
LDM (equal Nparams) 2.63 0.87 0.44
RDM-OI 1.92 0.93 0.35

Table 3: Quantiative results on FFHQ [38].
RDM-OI samples generated with m = 0.1
and without classifier-free guidance.

For m = 0.1, our retrieval-augmented diffusion model
surpasses unconditional ADM for FID, IS, precision and,
without guidance, for recall. For s = 1.75, we observe
bisected FID scores compared to our unguided model
and even reach the guided model ADM-G, which, unlike
RDM , requires a classifier that is pre-trained on noisy
data representations. The optimal parameters for FID are
m = 0.05, s = 1.5, as in the bottom row of Tab. 2. Using
these parameters for RDM-IN results in a model which even achieves similar FID scores than state of
the class-conditional models on ImageNet [63, 15, 70] without requiring any labels during training or
inference. Overall, this shows the strong performance of RDM and the flexibility of top-m sampling
and c.f.g., which we further analyze in Sec. 4.5. Moreover we train an exact replicate of our ImageNet
RDM-OI on the FFHQ [38] and summarize the results in Tab. 3. Since FID [31] has been shown to be
“insensitive to the facial region” [48] we again use CLIP-based metrics. Even for this simple dataset,
our retrieval-based strategy proves beneficial, outperforming strong GAN and diffusion baselines,
albeit at the cost of lower diversity (recall).

4.2 Conditional Synthesis without Conditional Training

Figure 8: We observe that the num-
ber of neighbors ktrain retrieved
during training significantly impacts
the generalization abilities of RDM .
See Sec. 4.2.

Text-to-Image Synthesis In Fig. 2, we show the zero-shot text-
to-image synthesis capabilities of our ImageNet model for user
defined text prompts. When building the set M(k)

D (ctext) by di-
rectly using i) the CLIP encodings φCLIP(ctext) of the actual textual
description itself (top row), we interestingly see that our model
generalizes to generating fictional descriptions and transfers attri-
butions across object classes. However, when using ii) φCLIP(ctext)
together with its k − 1 nearest neighbors from the database D
as done in [2], the model does not generalize to these difficult
conditional inputs (mid row). When iii) only using the k CLIP
image representations of the nearest neighbors, the results are even
worse (bottom row). We evaluate the text-to-image capabilities of RDMs on 30000 examples from
the COCO validation set and compare with LAFITE [94]. The latter is also based on CLIP space,
but unlike our method, the image features are translated to text features by utilizing a supervised
model in order to address the mismatch between CLIP text and image features. Tab. 1 summarizes
the results and shows that our RDM-OI obtains better image quality as measured by the FID score.

Similar to Sec. 4.1 we investigate the influence of ktrain on the text-to-image generalization capability
of RDM. To this end we evaluate the zero-shot transferability of the ImageNet models presented in
the last section to text-conditional image generation and, using strategy i) from the last paragraph,
evaluate their performance on 2000 captions from the validation set of COCO [7]. Fig. 8 compares
the resulting FID and CLIP scores on COCO for the different choices of ktrain. As a reference
for the train performance, we furthermore plot the ImageNet FID. Similar to Fig. 7 we find that
small ktrain lead to weak generalization properties, since the corresponding models cannot handle
misalignments between the text representation received during inference and image representations it
is trained on. Increasing ktrain results in setsM(k)

D (x) which cover a larger feature space volume, what
regularizes the corresponding models to be more robust against such misalignments. Consequently,
the generalization abilities increase with ktrain and reach an optimum at ktrain = 8. Further increasing
ktrain results in decreased information provided via the retrieved neighbors (cf. Fig. 4) and causes
deteriorating generalization capabilities.
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Figure 9: Text-to-image general-
ization needs a generative prior or
retrieval. See Sec. 4.2.

We note the similarity of this approach to [59], which, by directly
conditioning on the CLIP image representations of the data, es-
sentially learns to invert the abstract image embedding. In our
framework, this corresponds to ξk(x) = φCLIP(x) (i.e., no external
database is provided). In order to fix the misalignment between
text embeddings and image embeddings, [59] learns a conditional
diffusion model for the generative mapping between these represen-
tations, requiring paired data. We argue that our retrieval-augmented
approach provides an orthogonal approach to this task without requir-
ing paired data. To demonstrate this, we train an “inversion model”
as described above, i.e., use ξk(x) = φCLIP(x) with the same number
of trainable parameters and computational budget as for the study in
Fig. 8. When directly using text embeddings for inference, the model renders samples which generally
resemble the prompt, but the visual quality is low (CLIP score 0.26± 0.05, FID ∼ 87). Modeling the
prior with a conditional normalizing flow [18, 62] improves the visual quality and achieves similar
results in terms of text-consistency (CLIP score 0.26± 0.3, FID ∼ 45), albeit requiring paired data.
See Fig. 9 for a qualitative visualization and Appendix F.2.1 for implementation and training details.

’Tench’ ’Vulture’ ’Grey Fox’ ’Tiger’ ’Teddy Bear’ ’Moped’ ’Harvester’ ’Espresso’

Figure 10: RDM can be used for class-conditional generation on ImageNet despite being trained without class
labels. To achieve this during inference, we compute a pool of nearby visual instances from the database D for
each class label based on its textual description, and combine it with its k− 1 nearest neighbors as conditioning.

Class-Conditional Synthesis Similarly we can apply our model to zero-shot class-conditional
image synthesis as proposed in Sec. 3.3. Fig. 10 shows samples from our model for classes from
ImageNet. More samples for all experiments can be found in Sec. G.

4.3 Zero-Shot Text-Guided Stylization by Exchanging the Database

’A stag.’ ’A basket
full of fruits.’

’A woman
playing piano.’ ’A table set.’

D
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Figure 11: Zero-shot text-guided stylization with our
ImageNet-RDM . Best viewed when zoomed in.

In our semi-parametric model, the retrieval
database D is an explicit part of the syn-
thesis model. This allows novel applica-
tions, such as replacing this database after
training to modify the model and thus its
output. In this section we replace Dtrain

of the ImageNet-RDM built from Open-
Images with an alternate database Dstyle,
which contains all 138k images of the
WikiArt dataset [66]. As in Sec. 4.2 we
retrieve neighbors from Dstyle via a text
prompt and use the text-retrieval strategy
iii). Results are shown in Fig. 11 (top row).
Our model, though only trained on Ima-
geNet, generalizes to this new database and is capable of generating artwork-like images which depict
the content defined by the text prompts. To further emphasize the effects of this post-hoc exchange of
D, we show samples obtained with the same procedure but using Dtrain (bottom row).

4.4 Increasing Dataset Complexity

To investigate their versatility for complex generative tasks, we compare semi-parametric models to
their fully-parametric counterparts when systematically increasing the complexity of the training data
p(x). For both RDM and RARM, we train three identical models and corresponding fully parametric
baselines (for details cf. Sec. F.2) on the dogs-, mammals- and animals-subsets of ImageNet [13],
cf. Tab. 7, until convergence. Fig. 12 visualizes the results. Even for lower-complexity datasets
such as IN-Dogs, our semi-parametric models improve over the baselines except for recall, where
RARM performance slightly worse than a standard AR model. For more complex datasets, the
performance gains become more significant. Interestingly, the recall scores of our models improve
with increasing complexity, while those of the baselines strongly degrade. We attribute this to
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Figure 12: Assessing our approach when increasing dataset complexity as in Sec. 4.4. We observe that
performance-gaps between semi- and fully-parametric models increase for more complex datasets.
the explicit access of semi-parametric models to nearby visual instances for all classes including
underrepresented ones via the pD(x̃), cf. Eq. (6), whereas a standard generative model might focus
only on the modes containing the most often occurring classes (dogs in the case of ImageNet).

4.5 Quality-Diversity Trade-Offs

Top-m sampling. In this section, we evaluate the effects of the top-m sampling strategy introduced in
Sec. 3.3. We train a RDM on the ImageNet [13] dataset and assess the usual generative performance
metrics based on 50k generated samples and the entire training set [5]. Results are shown in Fig. 13a.
For precision and recall scores, we observe a truncation behavior similar to other inference-time
sampling techniques [5, 15, 32, 23]: For small values of m, we obtain coherent samples, which all
come from a single or a small number of modes, as indicated by large precision scores. Increasing m,
on the other hand, boosts diversity at the expense of consistency. For FID and IS, we find a sweet spot
for m = 0.01, which yields optima for both of these metrics. Visual examples for different values of
m are shown in the Fig. 16. Sec. E.5 also contains similar experiments for RARM .

(a) Quality-diversity trade-offs when applying top-m sampling. (b) Assessing the effects of classifier free guidance.

Figure 13: Analysis of the quality-diversity trade-offs when applying top-m sampling and classifier-free guidance.

Classifier-free guidance. Since RDM is a conditional diffusion model (conditioned on the neighbor
encodings φ(y)), we can apply classifier-free diffusion guidance [32] also for unconditional modeling.
Interestingly, we find that we can apply this technique without adding an additional ∅-label to account
for a purely unconditional setting while training εθ, as originally proposed in [32] and instead use
a vector of zeros to generate an unconditional prediction with εθ. Additionally, this technique can
be combined with top-m sampling to obtain further control during sampling. In Fig. 13b we show
the effects of this combination for the ImageNet-model as described in the previous paragraph, with
m ∈ {0.01, 0.1} and classifier scale s ∈ {1.0, 1.25, 1.5, 1.75, 2.0, 3.0}, from left to right for each
line. Moreover we qualitatively show the effects of guidance in Fig. 18, demonstrating the versatility
of these sampling strategies during inference.

5 Conclusion
This paper questions the prevalent paradigm of current generative image synthesis: rather than
compressing large training data in ever-growing generative models, we have proposed to efficiently
store an image database and condition a comparably small generative model directly on meaningful
samples from the database. To identify informative samples for the synthesis tasks at hand we follow
an efficient retrieval-based approach. In the experiments our approach has outperformed the state
of the art on various synthesis tasks despite demanding significantly less memory and compute.
Moreover, it allows (i) conditional synthesis for tasks for which it has not been explicitly trained, and
(ii) post-hoc transfer of a model to new domains by simply replacing the retrieval database. Combined
with CLIP’s joint feature space, our model achieves strong results on text-image synthesis, despite
being trained only on images. In particular, our retrieval-based approach eliminates the need to train
an explicit generative prior model in the latent CLIP space by directly covering the neighborhood of
a given data point. While we assume that our approach still benefits from scaling, it shows a path to
more efficiently trained generative models of images.
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