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A Appendix

A.1 Calculating Kullback-Leibler divergence

Based on the standard definition for the KL-divergence, we have:

KL(q(z, θ, t, r|y)||p(z, θ, t, r)) =
∑

z,θ,t,r

q(z, θ, t, r|y)log q(z, θ, t, r|y)
p(z, θ, t, r)

=
∑

z,θ,t,r

q(t, r|y)q(θ|t, r, y)q(z|t, r, y)log q(t, r|y)q(θ|t, r, y)q(z|t, r, y)
p(t, r)p(θ)p(z)

=
∑
t,r

q(t, r|y)log q(t, r|y)
p(t, r)

+

∑
z,θ,t,r

q(t, r|y)q(θ|t, r, y)q(z|t, r, y)log q(θ|t, r, y)q(z|t, r, y)
p(θ)p(z)

(1)

To simplify this equation, we define the first part of the result from Equation 1 as:

KLt,r =
∑
t,r

q(t, r|y)log q(t, r|y)
p(t, r)

(2)

The second part of the result from Equation 1 can be further expanded as:∑
z,θ,t,r

q(t, r|y)q(θ|t, r, y)q(z|t, r, y)log q(θ|t, r, y)q(z|t, r, y)
p(θ)p(z)

=
∑
t,r

q (t, r|y)

(∑
θ

q (θ|t, r, y) log q (θ|t, r, y)
p (θ)

+
∑
z

q(z|t, r, y)log q (z|t, r, y)
p (z)

)
=
∑
t,r

q (t, r|y) (KL (q (θ|t, r, y) ||p (θ)) +KL (q (z|t, r, y) ||p (z))) (3)

Assuming these definitions for KLθ and KLz:

KLθ = KL (q (θ|t, r, y) ||p (θ)) (4)

KLz = KL (q (z|t, r, y) ||p (z)) (5)
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, we can rewrite the the Equation 1 using Equations 2, 3, 4, and 5 as:

KL(q(z, θ, t, r|y)||p(z, θ, t, r)) = KLt,r +
∑
t,r

q (t, r|y) (KLθ +KLz) (6)

A.2 MNIST(N) and MNIST(U) datasets

We generated two datasets of MNIST(N) and MNIST(U), by rotating and translating digits in MNIST.
The rotation angles of digits for MNIST(N) are randomly sampled from N (0, π2

16 ), and for MNIST(U)
are randomly sampled from U(0, 2π) (Figure 1). Images in both of the datasets are 50x50 pixels.

Figure 1: Left: Instances of MNIST(N) (top), and MNIST(U) (bottom) datasets. Right: Distribution
of rotation angles in the test set of MNIST(N) (top), and MNIST(U) (bottom) datasets.

A.3 Digit-wise rotation correlation, and RMSE of the predicted rotations

Following our discussion about the difference between the predicted angles and the ground-truth
values, we measure the digit-wise rotation correlation for each dataset (Figure 2). We recognized that
some predicted rotations are off by about π from their ground-truth angles for digits 0, 1, and 8. We
suspect that this is caused by the symmetry of these digits where for example a hand-written digit 8
with rotation π, looks roughly the same as that digit with rotation zero.

To study the accuracy of the predicted rotation angles by TARGET-VAE, we calculate the mean
standard deviation of the predicted rotations, introduced in [1]. This metric basically measures the
mean square error between the rotation of the object in the input image and the predicted rotation
for that object. We rotate each image in the test set of MNIST(U), 160 times using angles uniformly
sampled from [0, 2π], and then pass them through the trained inference model to get the predicted
rotation angle for them. Since assigning predicted rotation of zero to an object is arbitrary in our
framework (model might assign predicted rotation angle of zero to the object that is actually rotated
90 degrees), we subtract the predicted rotation for the objects from the predicted rotation value when
the input object is not rotated. Table 1, shows the root mean square error (RMSE) calculated in
average for each digit’s predicted rotation. As expected, the RMSE of rotations is highest when there
is no inference done on rotations as in spatial-VAE [2], and using finer discretization in rotation
inference results in more accurate prediction of the rotation values. Some digits such as 0, 1, and 8,
due to their symmetry, have less accurate rotation predictions compared to the other ones.

A.4 TARGET-VAE identifies multiple objects without supervision

We created a new dataset using multiple rotated and translated digits from MNIST(U). We call this
new dataset MNIST(multi) which we created by randomly sampling rotated and translated digits
from MNIST(U) and inserting them in random offsets of a 150x150 pixel image. We use the model
trained on MNIST(U) to identify the translation, rotation, and the content latent for the digits in
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Figure 2: The predicted rotation values (x axis) and the ground-truth rotation angles (y axis) for digits
in MNIST(N) (top), and MNIST(U) (bottom) using TARGET-VAE with model P8 and z_dim=2.
Some predicted rotations for digits 0, 1, and 8 are off by π from their ground-truth values.

Table 1: The RMSE of the predicted rotations over MNIST(U) with z-dim=2

Digits 0 1 2 3 4 5 6 7 8. 9 AVG

Spatial-VAE [2] 96.50 98.73 97.83 97.88 98.59 98.06 97.82 98.10 97.62 98.55 97.97
TARGET-VAE P4 31.57 33.86 32.36 11.66 27.08 20.94 6.26 8.15 28.95 6.68 20.75
TARGET-VAE P8 32.81 22.04 16.69 6.36 20.71 16.24 13.00 15.84 16.97 7.80 16.85
TARGET-VAE P16 17.39 18.47 14.74 5.79 7.65 12.09 3.40 4.63 17.75 2.74 10.47

MNIST(multi). We find that the model correctly identifies and reconstructs the objects (Figure 3).
Even though the model, can identify non-overlapping objects in this approach, it struggles to identify
the overlapping objects. We believe these preliminary results show the potential of our model to be
used in multiple objects detection.

A.5 TARGET-VAE predicts the rotation of the shapes in dSprites and clusters them with high
accuracy

The dSprites dataset was introduced to benchmark unsupervised disentangled representation learning
methods [3]. It contains 64x64 images of three shapes: squares, ellipses, and hearts. Each shape is
rotated by one of 40 values linearly spaced in [0, 2π], translated across both x and y dimensions,
and scaled using one of six linearly spaced values in [0.5, 1]. We train TARGET-VAE with P8

group convolution and z_dim=2 on dSprites, using a uniform prior over r and N (0, π) prior over θ.
TARGET-VAE learns content representations that capture the type and scale of the objects, but is
invariant from their location and rotation (Figure 4). Furthermore, TARGET-VAE accurately predicts
the rotation of the shapes, and, interestingly, the symmetry groups of the shapes become immediately
apparent when examining the correlation between the predicted and ground truth rotations.
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Input Image from MNIST(multi) Probability distribution over t

Figure 3: Left: Input image with multiple rotated and translated digits from MNIST(multi); Right:
Probability distribution over t (q(t|y)), the reconstructed objects and their predicted rotation angles.
We marginalized q(t, r|y) over r to obtain q(t|y) for visualization purposes. The high probability
values in this attention map show the predicted locations of the objects. We use the peaks in q(t, r|y)
to sample from q(θ|t, r, y) and q(z|t, r, y), the predicted rotation and content values for each object.
The sampled θ, t, and z values are used to reconstruct each individual object.

Figure 4: Left: Two-dimension latent space of dSprites using TARGET-VAE with P8. Right:
Correlation between rotations given by TARGET-VAE and ground truth rotations for squares, ellipses,
and hearts.

A.6 TARGET-VAE learns transformation-invariant representations in the galaxy zoo dataset

Galaxy zoo contains images of galaxies gathered by Sloan Digital Sky Survey [4]. This dataset
contains more than 61,000 RGB images, which we cropped and downsampled to 64x64 pixels. The
galaxies appear with different rotations and translations in the images. We train TARGET-VAE with
P8 group convolution on the train set. TARGET-VAE learns to accurately predict the rotation and
translation of the galaxies and reconstructs centered and aligned galaxy images when generating with
t and θ set to zero (Figure 5).

A.7 Ablation studies

We conducted extensive ablation study to validate the effectiveness of the main components of our
proposed method.
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Figure 5: Left: Images of galaxy dataset used for testing. Right: Reconstructed images by TARGET-
VAE with P8 and z_dim=2 and using the transformation-invariant representations, where rotation and
translation are set to 0.

Variant 1 - Inference only on translation We evaluated the importance of the rotation equivariant
features, by modifying the inference model to use regular convolutional layers instead of the group
convolutional ones. As a result, the posterior distributions will be q(t|y), q(z|t, y), and q(θ|t, y),
where they only depend on the input y and the translation value t. We observed that, as expected,
eliminating inference on the discretized rotation dimension has a significant negative effect on
identifying transformation-invariant representations and the clustering accuracy on MNIST(U) is
only 33.8% (Table 2).

Variant 2 - Inference only on translation + using group convolutional layers In this variant, we
use the group convolutional layers in the inference model, but we do not perform any inference on the
rotation dimension. We apply a fully-connected layer on the output of the group convolutional layers
to map the rotation values at every location to a single value. As a result, the posterior distribution
are the same as variant 1 and they do not depend on r. We experiment with this variant to identify
how effective is the use of the group convolution layers. It turns out that if we do not perform any
inference on the rotation dimension, just using the group convolutional layers for feature extraction,
only slightly improves the clustering accuracy.

Variant 3 - Inference on both translation and rotation without adding θoffset: In this variant,
we use group convolutional layers and we perform inference on both translation and rotation. The
difference between this variant and our proposed framework is that we are not adding θoffset of
kernels in each rotation dimension to the q(θ|t, r, y). Adding θoffset to the posterior on θ, allows us
to break down the rotation space among the r discretized rotations, and without it, the model proves
not capable of identifying the rotation of the digits in the MNIST(U) dataset.

Variants 4 to 6 - Increasing the level of discretization of the rotation space In these variants, we
perform inference on both rotation and translation, and we add θoffset of each rotation dimension to
the mean of its corresponding q(θ|t,r,y) distribution. In these variants, we show that by increasing the
level of discretization of the rotation space, model can have a better estimate of the actual rotation
values, and this in turn helps the model with improving the clustering accuracy.

Table 2, shows the translation and rotation correlation, along with the clustering accuracy of the
mentioned variants on the MNIST(U) dataset. Performing inference on rotation plus adding θoffset
to the posterior on θ, significantly increases the rotation correlation and the clustering accuracy.
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Table 2: Performace of variants in the ablation study on MNIST(U)

Model Group Conv Translation Corr Rotation Corr Clustering Accuracy

Variant 1 - 0.966, 0.967 0.005 33.8%
Variant 2 p4 0.967, 0.967 0.005 37.1%
Variant 3 p4 0.968, 0.972 0.008 36.6%
Variant 4 p4 0.975, 0.976 0.80 56.6%
Variant 5 p8 0.972, 0.971 0.859 57.1%
Variant 6 p16 0.974, 0.971 0.93 63.4%

A.8 Learning translation-rotation-invariant representations of proteins with TARGET-VAE

In cryo-EM images, rotation and translation are the major transformations that cause variations in
particles in the micrograph. Here, we show the result of our experiments with TARGET-VAE to learn
the translation-rotation-invariant representations, for two cryo-EM datasets.

Identifying hinge motion of 5HDB We train our model on a dataset of 20,000 simulated projections
of integrin α-IIb in complex with integrin β-3 (5HDB) [5]. We aim to identify the translation and
rotation invariant representations of the protein to be able to identify the variations in its structure.
We train TARGET-VAE with P8 and uniform prior over θ. Since there is less variation in the data, we
set z_dim to 1. After training, we sample from the representation latent space and reconstruct the
images with no rotation and translation. Figure 6 shows some examples of the reconstructed particles.
We observe that the reconstructed images identify the hinge motion of the particle.

Figure 6: Reconstructed proteins from 5HDB dataset by sampling from 1D representation space,
shows the movement in the lower part of the particle.

Learning arm motion of particle in CODH/ACS We have about 14,000 40x40 pixels images of
the CODH/ACS protein complex. We train TARGET-VAE with P8 and z_dim = 2, for 100 epochs.
The prior over θ is uniform and we set the generator to have 6 fully-connected layers with 512 hidden
units in each. After training, we sample from the transformation-invariant representation space and
reconstruct the particle to identify the different conformations of the protein. Figure 7 shows the
movement on the upper and lower parts of the particle.

Figure 7: Reconstructed proteins from CODH/ACS dataset, where the motion in the upper and lower
arms of the particle can be captured.
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