
DPINITSKETCH(ε)
S ← InitSketch()
π0 ← 1− e−ε
n0 ←

⌈
kmax−1
π0

⌉

M ∼ Binomial(n0, π0)
for i = 1→M do

x← NewItem()
if hash(x) < π0 then

S.add(x)

return S, n0

(a)

DPINITSKETCHFORMERGE(ε)
S ← InitSketch()
π0 ← 1− e−ε
n0 ←

⌈
kmax−1
π0

⌉

v ← 0
repeat

x← NewItem()
S.add(x)
v ← v + 1

until π(S) ≤ π0 and v ≥ n0

return S, v

(b)

Algorithms 2: Initialization routines for generating ε-DP sketches. The function NewItem() returns
an item that is guaranteed to come from a data universe disjoint from the universe over which stream
items are drawn. In DPInitSketch, the binomial draw M simulates inserting n0 unique items into
the sketch, with downsampling probability π0.

A Omissions from Section 2

A.1 Algorithms

Due to space considerations, the algorithms for initializing ε-DP sketches has been omitted from the
main body. So too has the algorithm for constructing an existing non-private sketch from a private
sketch. These are detailed in Algorithms 2 and Algorithm 3, respectively.

Algorithm 3 Turn an existing sketch into one with an ε-DP guarantee.
MAKEDP(S, ε)
T, v ← DPInitSketchForMerge(ε) . Algorithm 2b
return S ∪ T, N̂(S ∪ T)− v

. return private sketch and associated cardinality estimate for stream S is a sketch of.

A.2 Technical Results

Our first result shows that all sketches under consideration cannot be modified by too many items.
Specifically, we show that the number of items that can change the sketch, Kr, is bounded above by b
which is the number of bits required to store the sketch. However, as shown in Section 4, this can in
fact be strengthened for many specific sketches.

Lemma A.1. Suppose that n > suprKr. Then for any distinct counting sketch with size in bits
bounded by b, suprKr ≤ b.

Proof of Lemma A.1. Consider some data set D and sketch s = Sr(D). Recall that we denote the
set of items whose removal would change the sketch by Kr(D) := {i ∈ D : Sr(D−i) 6= Sr(D)}.
Consider any subset Λ ⊂ Kr(D). Then we claim that, for any x ∈ Kr, adding x to the sketch Sr(Λ)
will change it if and only if x ∈ Kr(D) \ Λ. That is, if Λ ◦ x denotes the stream consisting of one
occurrence of each item in Λ, followed by x, then Sr(Λ) 6= Sr(Λ ◦ x) if and only if x ∈ Kr(D) \ Λ.

To see this, first observe that duplication-invariance of the sketching algorithm implies that if x ∈ Λ
then Sr(Λ) = Sr(Λ ◦x). Second if x 6∈ Λ, suppose by way of contradiction that Sr(Λ) = Sr(Λ ◦x),
and let T = D \ (Λ ∪ {x}). Since Sr(Λ) = Sr(Λ ◦ x), it holds that Sr(Λ ◦ x ◦ T) = Sr(Λ ◦ T) =
Sr(D−x). Yet by order-invariance of the sketching algorithm, Sr(Λ ◦ x ◦ T) = Sr(D). We conclude
that Sr(D−x) = Sr(D), contradicting the assumption that x ∈ Kr(D).

The above means that for any fixed r, the sketch Sr(Λ) losslessly encodes the arbitrary subset Λ of
Kr. Hence, the sketch requires at least log2(2|Kr|) = |Kr| bits to represent. Thus, any sketch with
size bounded by m bits can have at most m items that affect the sketch.

14

Next we prove Lemma 2.1 which expresses the Bayes factor from (1)

Prr(Sr(D) = s)

Prr(Sr(D−i) = s)

to a sum of conditional probabilities involving a single insertion.

Proof of Lemma 2.1. Recall from Equation (2) that

Kr := {i ∈ D : Sr(D−i) 6= Sr(D)}
denotes the set of items that would change the state of the sketch if removed, and its cardinality is
Kr := |Kr|. We also define Jr := min{i : Sr(D−i) = Sr(D)} to be the smallest index amongst the
remaining n−Kr items in D that do not change the sketch. If removing any item changes the sketch,
i.e., if Sr(D−i) 6= Sr(D) for all i ∈ D, then Kr = n. For this case, we define Jr to be a special
symbol ⊥.

First, let us rewrite Prr(Sr(D) = s) as a sum over all possible values of Jr:

Pr
r

(Sr(D) = s) =
∑

j∈D∪{⊥}
Pr
r

(Jr = j ∧ Sr(D) = s). (12)

Next, we split the right hand side of Equation (12) into the distinct cases wherein Jr =⊥ and j ∈ D,
as we will ultimately deal with each case separately:

∑

j∈D∪{⊥}
Pr
r

(Jr = j ∧ Sr(D) = s) =

Pr
r

(Jr =⊥ ∧Sr(D) = s) +
∑

j∈D
Pr
r

(Jr = j ∧ Sr(D−j) = s). (13)

Next, the summands over j ∈ D are decomposed via conditional probabilities. Specifically, the right
hand side of Equation (13) equals:

Pr
r

(Jr =⊥ ∧Sr(D) = s) +
∑

j∈D
Pr
r

(Jr = j |Sr(D−j) = s) Pr
r

(Sr(D−j) = s). (14)

For any hash-based, order-invariant sketch, the distribution of S(D) depends only on the number of
distinct elements in D, and hence the factor Prr(Sr(D−j) = s) appearing in the jth summand of
Equation (14) equals Prr(Sr(D−i) = s), where i is the element of D referred to in the statement of
the lemma. Accordingly, we can rewrite Expression (14) as:

Pr
r

(Jr =⊥ ∧Sr(D) = s) +
∑

j∈D
Pr
r

(Jr = j |Sr(D−j) = s) Pr
r

(Sr(D−i) = s). (15)

Clearly, Jr 6=⊥ whenever the number of items in the data set, n, exceeds Kr. Hence, if n > suprKr,
Prr(Jr =⊥ ∧Sr(D) = s) = 0. We obtain Equation (4) as desired, namely:

Prr(Sr(D) = s)

Prr(Sr(D−i) = s)
=
∑

j∈D
Pr
r

(Jr = j |Sr(D−j) = s).

We subsequently prove Lemma 2.2 which bounds the sum
∑
j∈D Prr(Jr = j |Sr(D−j) = s) in

terms of two parameters that we need to control. The first is related to the “sampling probability”
of the sketch, π(s) and the second is an unwieldy expectation. Although the expectation may be
difficult to compute, we will later show a more practical variant that will be easier for us to leverage
algorithmically. For clarity, Lemma A.2 is a restatement of Lemma 2.2 from the main body.
Lemma A.2. Under the same assumptions as Lemmas 2.1 and A.1,

∑

j∈D
Pr
r

(Jr = j |Sr(D−j) = s) = (1− π(s))Er
(

1 +
Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
. (16)

15

Proof of Lemma 2.2. We begin by writing

Pr
r

(Jr = j |Sr(D−j) = s) =

n∑

k=1

Pr
r

(Jr = j |Kr = k, Sr(D−j) = s) Pr
r

(Kr = k|Sr(D−j) = s). (17)

To analyze Expression (17), we first focus on the Prr(Jr = j |Kr = k, Sr(D−j) = s) term. Given
that Kr = k and Sr(D−j) = s, we know that Jr = j if and only if the items {1, . . . , j − 1} are all

in Kr and item j is not in Kr. The first condition occurs with probability
(n−(j−1)
k−(j−1))

(nk)
=

(k
j−1)

(n
j−1)

. This is

because there are
(
n−(j−1)
k−(j−1)

)
subsets Kr of {1, . . . , n} of size k that contain items 1, . . . , j − 1, out

of
(
n
k

)
subsets of Kr of size k. Meanwhile, j /∈ Kr means that Sr(D−j) = Sr(D), which occurs

with probability that is exactly the complement of the sampling probability π(s) (see Equation (3)).

By the above reasoning, the left hand side of Expression (16) equals:

∑

j∈D

n∑

k=1

Pr
r

(Jr = j |Kr = k, Sr(D−j) = s) Pr
r

(Kr = k|Sr(D−j) = s)

=

n∑

k=1

∑

j∈D

(
k
j−1

)
(
n
j−1

) (1− π(s)) Pr
r

(Kr = k|Sr(D−1) = s)

= (1− π(s))

n∑

k=1

(
1 +

k

n− k + 1

)
Pr
r

(Kr = k|Sr(D−1) = s)

= (1− π(s))Er
(

1 +
Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
. (18)

By comparing the LHS of (4) to the right hand side of (18), overall, Lemmas 2.1 and 2.2 show:

Prr(Sr(D) = s)

Prr(Sr(D−i) = s)
= (1− π(s))Er

(
1 +

Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
.

Hence, ε-DP is a consequence of ensuring

(1− π(s))Er
(

1 +
Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
∈ [e−ε, eε]

and Corollary 2.3 presents the conditions under which this is true.

Proof of Corollary 2.3. Since 1− π(s) ≤ 1 for all s and n+1
n−Kr+1 = 1 + Kr

n−Kr+1 ≥ 1, it follows
from Lemma 2.2, (6) and (7) that the right hand side of Equation (4) lies in the interval [e−ε, eε], as
required for an ε-DP guarantee.

For the necessity of Condition 6, note that if the universe of possible items is infinite, then for any
possible sketch state s, there exists an arbitrarily long sequence of distinct items that results in state
s if π(s) < 1. One simply needs to search for a sequence of items which do not change the sketch.
Combining Lemma 2.1 with Equation (16) in Lemma 2.2 therefore implies that

e−ε < inf
s

(1− π(s)) (19)

and hence sups π(s) < 1− e−ε as claimed.

As previously described, because the expected value in Lemma 2.2 depends on the unknown cardinal-
ity n, it is difficult to use. However, we know from Lemma A.1 that there are only a bounded number

16

of items that actually change the sketch. Thus, we introduce a sketch specific parameter kmax ≥ Kr

which is a bound on the maximum number of items that can change the sketch. Although we trivially
have kmax ≤ b from Lemma A.1, Section 4 in fact shows that kmax = k, the number of “buckets”
used in the sketch for many popular algorithms.

Proof of Theorem 2.4. We can upper bound the expectation on the right hand side of Condition (7)
using kmax and n0. Corollary 2.3 and solving for n0 then gives the desired result. Specifically, by
Corollary 2.3, the sketch satisfies ε-DP if:

eε > sup
n≥n0

Er
(

1 +
Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
(20)

≥ sup
n≥n0

(
1 +

kmax
n− kmax + 1

)
(21)

= 1 +
kmax

n0 − kmax + 1
. (22)

This is satisfied if n0 − kmax + 1 > kmax
eε−1 so that

n0 > kmax

(
1 +

1

eε − 1

)
− 1 =

kmax
1− e−ε − 1 (23)

In summary, all of the technical results leading to Theorem 2.4 are used to show that, provided
sups π(s) < 1− e−ε and at least n0 items appear in the stream, then any sketching algorithm from
the hash-based order-invariant class will satisfy ε-DP. Theorem 2.5 concludes the subsection and
shows that if π(s) is too large, then there is a small, δ probability that the sketch is privacy violating.
In other words, if there are at least n0 items in the stream, but the hash-based downsampling rate π(s)
is not small enough, then there is a tiny δ chance the sketch may not be ε-DP, and hence the sketch in
this case is (ε, δ)-DP.

A.3 Algorithmic Approach: Sections 2.1 and 2.2

We separate our algorithms into three regimes described by Algorithms 1a, 1b, 1c. Algorithm 1a
is a “base” sketching algorithm chosen from the hash-based, order-invariant class, for example, a
HyperLogLog or Bottom-k sketch. No modifications are made to the inner workings of the algorithm
but it must be implemented using a perfectly random hash function (see the final paragraph of Section
1.1). We show in Theorem 2.6 that on streams with at least n0 items that the quality of the estimator
is related to the downsampling probability as presented in Theorem 2.5. It is used to relate the
probability of a privacy-violation back to the estimate quality, rather than simply the state of the
sketch.

Proof of Theorem 2.6. As Ñ is invertible and decreasing, P (N̂(Sr(D)) < Ñ(π0)) =
P (π(Sr(D)) > π0) = δ.

The final result of Section 2, Corollary 2.7, shows that by modifying Algorithm 1a, we can strictly
enforce Conditions 8 and 9 to guarantee ε-DP. Namely, by appropriately downsampling using
π0 = 1− e−ε, Algorithm 1b is ε-DP if we have an a prior guarantee that the number of items in the
stream is at least n0. If this guarantee is not known in advance, then the same π0 is used for sampling,
alongside the insertion of “phantom” elements to satisfy the minimum cardinality condition.

Proof of Corollary 2.7. Under their respective assumptions, Algorithms 1b and 1c,
DPSketchLargeSet and DPSketchAnySet respectively, satisfy Conditions (8) and (9) of
Theorem 2.4.

17

A.4 Private Sketches via Merging: Section 2.3

Algorithm 3 converts a non-private sketch, Sr into an ε-DP sketch by merging it with a noisy sketch
T . Merging requires the same seed to be used so we suppress this notation in the subsequent writing.
The merge step is a property of the specific sketching algorithm used and operates on the sketch states
s and s′ so we also overload the notation to denote the merge over states by s ∪ s′.
Since sketch s is already constructed, items cannot be first downsampled in the building phase the
way they are in Algorithms 1b and 1c. To achieve the stated privacy, Algorithm 3 constructs a
noisily initialized sketch, t, which satisfies both the downsampling condition (Condition (8)) and the
minimum stream cardinality requirement (Condition (9)) and returns the merged sketch s ∪ t. Hence,
the sketch will satisfy both conditions for ε-DP, as shown in Corollary A.3

Corollary A.3. Regardless of the sketch s provided as input to the function MakeDP (Algorithm 3),
MakeDP yields an ε-DP distinct counting sketch.

Proof. Given sketches S, T with states s and t, respectively, we claim that any item that does not
modify T also cannot modify the merged sketch S∪T by the order-invariance of S, T . To see this, let
DS and DT respectively denote the streams that were processed by sketches S and T , and consider
an item i that does not appear in DS or DT and whose insertion into DT would not change the sketch
T . Since the state of the sketch T is the same after processing DT ◦ i as it was after processing DT ,
S ∪ T is also the sketch of DT ◦ i ◦ DS , where ◦ denotes stream concatenation. By order-invariance,
S ∪ T is also a sketch for DT ◦ DS ◦ i. Also by order-invariance, S ∪ T is a sketch for DT ◦ DS .
Hence, we have shown that the insertion of i into DT ◦ DS does not change the resulting sketch.

It follows that π(s ∪ t) ≤ π(t) ≤ π0, where the last inequality holds by the stopping condition of the
loop in DPInitSketchForMerge (Algorithm 2b). Hence, MakeDP also satisfies Condition (8). The
requirement that v ≥ n0 in DPInitSketchForMerge also ensures that S ∪ T is a sketch of a stream
satisfying Condition (9). Hence, Theorem 2.4 implies that the sketch S ∪ T returned by MakeDP
satisfies ε-DP. Since the additional value v that affects the estimate returned by MakeDP does not
depend on the data, there is no additional privacy loss incurred by returning it.

B Utility Proofs: Section 3

in this section we present the proofs showing that differentially private sketches have the same
asymptotic performance as non-private sketches. Namely, they remain unbiased and have the same
variance as the number of unique items in the stream grows. These results apply to Algorithms 1a-1c
and Algorithm 3. First we will show unbiasedness.

Proof of Theorem 3.1. Trivially, Algorithm 1a is unbiased by assumption, as it does not modify the
base sketch. Given V , there are Z ∼ Binomial(n+ V, p) items added to the base sketch. Since the
base sketch’s estimator is unbiased, E(N̂base|Z) = Z. Algorithms 1b, 1c, and Algorithm 3 all have
expectation:

E (N̂(Sr(D))|V) = E

(
E

(
N̂base
p
− V

∣∣∣∣V,Z
))

= E
(
Z

p
− V

∣∣∣∣V
)

= n+ V − V = n.

Next we establish the variance properties of the sketching algorithms. This involves expressing the
variance of estimates from the algorithms in terms of the “base sketch” estimator.

Corollary B.1. The variance of the estimates produced by Algorithms 1a-1c and 3 is given by

Var
(
N̂(Sr(D))

)
= E

(
Var

(
N̂base
p

∣∣∣∣V
))

. (24)

18

Proof. This follows from the law of total variance and the fact that the estimators are unbiased.

Finally, we can leverage Corollary B.1 to show there is no asymptotic increase in variance caused by
the extra steps added to make a sketch private.

Proof of Theorem 3.2. Let Z ∼ Binomial(n+ v, π0) denote the actual number of items inserted
into the base sketch. From Corollary B.1 and since V is constant, the variance is

Var N̂(Sr(D)) =

(
Var

(
N̂base
π0

∣∣∣∣V = v

))

=

(
EVar(N̂base|Z) + VarE(N̂base|Z)

π2
0

)

≤
(
EZ2/c+ Var(Z)

π2
0

)

=
(EZ)2

cπ2
0

+
Var(Z)(c+ 1)

c π2
0

=
(n+ v)2

c
+

(n+ v)(1− π0)

cπ0
.

Trivially, Varn(N̂)

Varn(N̂base,n)
= (n+v)2

n2 +O(1/n)→ 1 as n→∞.

Corollary B.2. Assume that the conditions of Theorem 3.2 hold. Further assume the base sketching
algorithm satisfies an (ε, δn) privacy guarantee where δn → 0 as n→∞. For any given n∗ > n0,
we say Algorithm 3 succeeded if V < n∗. Then with probability at least 1− δn∗

Varn(N̂ |Success) ≤ (n+ n∗)2

c
+

(n+ n∗)(n0 + π−1
0)

kmax

and

Varn(N̂ |V)

Varn(N̂base,n)

p→ 1 as n→∞,

where Xn
p→ 1 denotes convergence in probability: P (|Xn − 1| < ∆) → 1 as n → ∞ for any

∆ > 0.

C Concrete Examples: Section 4

In this section we provide the proofs for results showing that popular sketches are (ε, δ)-DP. We also
provide further discussion for Adaptive Sampling that is omitted from the main body.

C.1 FM85

Proof of Theorem 4.1. To obtain an (ε, δ) guarantee, note that bit sij in the sketch has probability
2−i/k of being selected by any item. If v = d− log2 π0e and all bits sij with j ≤ v are flipped, then
π(s) < π0. The probability Prr(sij = 0) = (1− 2−i/k)n ≤ exp(−2−in/k). A union bound gives
that Prr(π(Sr(D)) ≥ π0) ≤ k

∑v
i=1 exp(−2−in/k) ≤ kv exp(−2−vn/k) = kv exp

(
−π̃0

n
k

)

where π̃0 = 2−v ≤ π0.

Recall that the quantity kmax for FM85 is larger than all other sketches by either 32 or 64, the
number of bits used in the hash function. Thus, FM85 requires a larger minimum number of items
in the sketch to guarantee privacy, see Equation (9). However, the sketch is highly compressible
as, for large n, each bitmap has entropy of approximately 4.7 bits [16]. More recent works have
placed this numerical result on firmer theoretical footing [19], and in fact shown that the resulting
space-vs.-error tradeoff is essentially optimal amongst a large class of sketching algorithms. A

19

practical implementation of the compressed sketch can be found in the Apache DataSketches library
[1].5 It achieves close to constant update time by buffering stream elements and only decompressing
the sketch when the buffer is full.

Our results imply the above compressed sketches can yield a relaxed (ε, δn)-differential privacy
guarantee when the number of inserted items is n ≥ n0 (Equation (23)). If the size of the sketch in
bits is b, the sketch is ε-differentially private if n > b

1−exp(−ε) or equivalently b < n(1− exp(−ε)).
Thus, δn = Prr(b ≥ n(1− exp(−ε)).

C.2 Linear Probabilistic Counting

Proof of Theorem 4.2. Sr(D) is not privacy violating (i.e., π(s) < π0) if π(Sr(D)) = p(1 −
B/k) < π0 or, equivalently, B > k(1− π0/p). Note that Gi ∼ Geometric(p(1− i/k)) items must
be added for the number of filled bits to go from i to i+ 1.

We can use a tail bound for the sum of geometric random variables [15]. Assume that n ≥
k−1

1−exp(−ε) ≥ n0 so that Condition 9 is satisfied. If n > µ0 then

δ ≤ P
(

b0∑

i=0

Gi > n

)
(25)

≤ exp (−π̃0(n/µ0 − 1− log(n/µ0))) (26)

=
µ0

n
exp (−π̃0(n/µ0 − 1)) . (27)

(28)

The number of expected items needed to fill b0 bits if b0 ≥ 1 is

µ0 :=

b0−1∑

i=0

1

p

1

1− i/k (29)

<
k

p

(
log

(
k

k − b0

)
+ 1/(2k)− 1/(2(k − b0)) +

1

12(k − b0)2

)
(30)

=
k

p
log

(
k

k − b0

)
− 1

p

b0
2(k − b0)

+
1

p

k

12(k − b0)2
(31)

=
k

p
log

(
k

k − b0

)
− 1

p

6b0(k − b0)− k
12(k − b0)2

(32)

<
k

p
log

(
k

k − b0

)
. (33)

C.3 Bottom-k / KMV

Proof of Theorem 4.3. The value π(s) is equal to the kth minimum value. If X > k, then the kth
minimum value is < π0 and Condition 8 is satisfied. Thus, δ is the failure probability. The bound
follows directly from Bernstein’s inequality:

P (X ≤ k) = P (n−X > n− k) = P ((n−X)− n(1− π0) > nπ0 − k) (34)

≤ 1

2

(nπ0 − k)2

nπ0(1− π0) + 1/3
(35)

=
1

2

(π0 − k/n)2

π0(1− π0) + 1/3n2
n (36)

5It is referred to as CPC, short for compressed probabilistic counting.

20

Table 2: Comparison of the utility bounds for related work. The only corresponding result to ours
in [5] is Theorem 4.2, which shows that the LogLog sketch is (ε, δ′)-DP provided n ≥ n′0 for n′0
at least a factor 8 larger than our n0 from (23). Our approaches, Algorithms 1a-1c simultaneously
achieve the best utility and update time,as well as a tighter privacy bound.

Algorithm Privacy Utility (Relative Error): γ Update Time

1a (ε, δ) for n ≥ n0
1.04√
k

O(1)

1b, 1c ε-DP for n ≥ n0, 1, respectively 1.04√
k

O(1)

[22] (ε, 0) and (ε, δ)-DP 10 ln(1/β)1/4√
k

O(k)

[5] (ε, δ) for n ≥ n′0 ≥ 8n0
1.3√
k

O(1)

C.4 Adaptive Sampling

Wegman’s adaptive sampling is similar to the bottom-k sketch but does not require the sketch to store
exactly k hashes. Instead, it maintains a threshold p and stores all hash values less than p. Whenever
the sketch size exceeds k, then the threshold is cut in half and only values under the threshold are
retained. This ensures that processing a stream of length n takes expected O(n) time rather than
O(n log k) as in a max-heap-based implementation of Bottom-k.

It is order invariant since the sketch only depends on the number of hash values under each of the
potential thresholds and not the insertion order. Since at most k hashes are stored, and the sketch is
modified only if one of these hashes is removed, like KMV a.k.a. Bottom-k, the maximum number of
items that can modify the sketch by removal is kmax = k. In Corollary 4.4 we showed that Adaptive
Sampling with k buckets has the same privacy behavior as a Bottom-k sketch.

Proof of Corollary 4.4. Consider sketches SATr (D), SKMV
r (D) using the same hash function.

Since the threshold in adaptive sampling is at most the kth minimum value, π(SATr (D)) ≤
π(SKMV

r (D)). So π(SKMV
r (D)) < π0 =⇒ π(SATr (D)) < π0.

C.5 HyperLogLog

Proof of Theorem 4.5. In HLL, the sampling probability π(s) = k−1
∑k
i=1 2−si here si is the

value in each bin. Thus, if all bins have value si > − log2 π0, then π(s) < π0. Let Ci be the
event that si > − log2 π0. Then P (¬Ci|n) ≤ (1− π0/k)n ≤ exp(−π0n/k). A union bound gives
Prr(π(Sr(D)) ≥ π0) ≤ k exp(−π0n/k).

D Further Empirical Details

Experiment 1: Update Time. We implement the regular, non-private HLL using a 32-bit non-
cryptographic MurmurHash. Our Private HLL (PHLL) is implemented in the Algorithm 1b setting
with a 256-bit cryptographic hash function, SHA-256. In this model, PHLL employs the same
algorithm as HLL but uses an extra downsampling step and rescales the estimator. QLL, the ε-DP
algorithm of [22] also uses SHA-256. We record the time to populate every sketch with 210 updates
with k ∈ {27, 28, . . . 212} buckets. Each marker represents the mean update time over all updates
and the curves are the evaluated mean update time over 10 trials.

We only implement [22] with γ = 1.0 because the running time is independent of γ. Since the
running time is independent of the privacy parameter for all methods, we test the total privacy budget
ε = 1.0. All methods are implemented in Python so the speed performance could be optimized using
a lower-level implementation. In absolute terms, we find that for 210 updates, HLL needs 8× 10−6

seconds compared to 9× 10−6 seconds for PHLL. Both methods have a standard deviation of about
5× 10−7. On the other hand, [22] needs between 2× 10−4 and 5× 10−3 seconds with a standard
deviation on the order of 10−7 which is imperceptible on the scale of Figure 1a.

Experiment 2: Utility-space tradeoff (Figure 3). We simulate each of the algorithms (HLL, PHLL,
QLL) on an input stream of cardinality n = 220 over 100 independent trials. The privacy budget is

21

fixed at ε = ln(2) meaning π0 = 1/2 (6). The number of buckets was varied in k ∈ {27, 28, . . . 212}
and we record the simulated total sketch size := k · log2 maxi si, which is the space for the largest
bin value si for a sketch with k buckets. In this example, kmax = k for HLL (Table 1) so that (9)
n0 = 2(k − 1). As n ≥ n0 PHLL is ε-DP in this setting by Theorem 2.4. Essentially, PHLL under
Algorithm 1b employs HLL as the base sketch with a stream downsampled by π0 = 1/2.

For QLL, the relative error γQLL = 10 ln(1/β)0.25√
k

[22, Theorem 2.6] depends on the sketching failure
probability β and the number of buckets. This is a factor 10 ln(1/β)0.25/1.04 worse than our bound
for γPHLL and occurs with probability at least 1− β. We set β = 0.05 so that γQLL ≈ 7.49/

√
k for

[22], while our method has γPHLL = 1.04/
√
k. Only the base-(1 + γQLL) harmonic estimator was

tested for closest comparison to HLL and our work.

Figure 3 plots the utility in relative error against the total space usage of the methods. We see that
PHLL is indistinguishable from HLL. The utility of QLL appears comparable to (P)HLL and is
better than its worst-case relative error guarantees, yet this comes at the cost of using more space
than our sketch, PHLL. In absolute terms PHLL consumes approximately 90% of the space used
by QLL when k = 27, which decreases to roughly 65% when k = 212. The fractional reduction
in space usage of PHLL over QLL is because γ decreases as k grows and reducing γ affects the
Geometric(γ

1+γ) hash function used to select the bin values in QLL; smaller γ result in larger bin
values which inflate the size of the QLL sketch. In fact, we find that the mean total space usage of
QLL compared to PHLL, is larger by a factor of O(log k). This agrees with the ratio of theoretical
space bounds of [22] and our work, as illustrated in Figure 1b.

22

29 210 211 212 213 214 215

−0.2

−0.1

0

0.1

0.2

Total space in bits: k · log2 max
i
si

R
el

at
iv

e
E

rr
or

:
n̂
−
n

n

HLL
PHLL
QLL

Figure 3: The curves represent empirical standard deviations of the estimates. For our method, PHLL,
this matches the error bound 1.04/

√
k as indicated from Table 1. Empirically, QLL has a nearly

matching standard deviation to PHLL, despite a suboptimal utility bound as seen in Table 2.

23

