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Abstract

3D Garment modeling is a critical and challenging topic in the area of computer
vision and graphics, with increasing attention focused on garment representation
learning, garment reconstruction, and controllable garment manipulation, whereas
existing methods were constrained to model garments under specific categories
or with relatively simple topologies. In this paper, we propose a novel Neural
Sewing Machine (NSM), a learning-based framework for structure-preserving
3D garment modeling, which is capable of learning representations for garments
with diverse shapes and topologies and is successfully applied to 3D garment
reconstruction and controllable manipulation. To model generic garments, we first
obtain sewing pattern embedding via a unified sewing pattern encoding module, as
the sewing pattern can accurately describe the intrinsic structure and the topology
of the 3D garment. Then we use a 3D garment decoder to decode the sewing
pattern embedding into a 3D garment using the UV-position maps with masks.
To preserve the intrinsic structure of the predicted 3D garment, we introduce an
inner-panel structure-preserving loss, an inter-panel structure-preserving loss, and
a surface-normal loss in the learning process of our framework. We evaluate
NSM on the public 3D garment dataset with sewing patterns with diverse garment
shapes and categories. Extensive experiments demonstrate that the proposed
NSM is capable of representing 3D garments under diverse garment shapes and
topologies, realistically reconstructing 3D garments from 2D images with the
preserved structure, and accurately manipulating the 3D garment categories, shapes,
and topologies, outperforming the state-of-the-art methods by a clear margin.

1 Introduction

A long-standing vision in computer vision and graphics is generic 3D garment modeling, which
can discover patterns in the clothing data, provide a better understanding of the clothing data, and
learn reconstructable and manipulable representations for the clothing data. In the past decades,
the dominant paradigm in 3D garment modeling resolves to physics-based simulators, which were
computationally expensive and time-consuming [3, 35]. Recently, deep learning has been introduced
and has made great strides [24, 49], allowing a wide range of applications, e.g., 3D virtual try-on
[48], garment design [44], and virtual digital humans [1].

Despite achieving remarkable progress, prior works can only model specific categories or clothes
with relatively simple topologies. Specifically, template-based methods [17, 49, 13, 12] use pre-
defined templates with fixed topology to model garments for each category, which have difficulty
∗Corresponding author is Liang Lin.
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Figure 1: Illustration of our NSM for modeling garments with diverse shapes and topologies. The first and third
rows denote the predicted UV-position maps with masks. The second and fourth rows denote the predicted 3D
garment shape.

in representing real garments with diverse styles and categories. SMPL-based methods [21, 32, 33]
use displacement on an SMPL model to represent different kinds of garments, assuming that the
garments share the same topology with human bodies, but this assumption doesn’t hold for generic
garments, e.g., a skirt doesn’t have legs (see Fig. 3). Recently, UV-parameterization-based methods
[11, 28, 30, 45, 46, 17] convert a garment to a UV position map representation by storing the mesh
shape and topology on a learned 2D map representation, but they use either pre-defined UV maps or
rely on human body mesh parameterization. Without generic garment modeling, existing methods
have shown inferior capability in 3D garment reconstruction and controllable garment manipulation.

Pixel2Mesh AnchorUDF NSM Ground Truth

Figure 2: Topologies of 3D garments ob-
tained from different methods (Best view via
zoom-in).

In this paper, we propose a neural sewing machine (NSM),
a learning-based approach for modeling generic garments
with diverse shapes and topologies. Mimicking a physi-
cal sewing machine that is utilized for modeling realistic
clothes, we define an NSM to model 3D garments using
sewing patterns that are widely-used terms in physical gar-
ment sewing and production. A sewing pattern describes
what atomic panels that a garment is composed of and
how these atomic panels are sewn together (see Fig. 3).
Such sewing patterns can not only truly reflect the garment
model in the physical world but also uniquely describe the
generic garments with diverse categories and shapes. With
this strong prior, our NSM approximates the garment surface by mapping the 2D atomic panels
to the surface of the 3D shape, enforcing each warped panel to be as isometric as possible to the
corresponding 3D garment (see Fig. 1), as opposed to previous methods that implicitly predict a 3D
garment from a latent code without modeling explicit local structure [38, 47, 8, 30, 39]. Our NSM
guarantees that the garment surface locally resembles the Euclidean plane and the mapping between
the 3D garment and the 2D panels is isometric when only limited stretches exist on the garment
surface (see comparisons in Fig. 2).

While the idea of an NSM is elegant, designing it faces multiple challenges. First, unifying the
embeddings for generic garments with diverse categories, shapes, and topologies is challenging. To
achieve this goal, we statistically analyze the panels of different garment categories in the dataset
and construct basic panel groups, based on which we use PCA to build a parametric unified garment
encoder. Second, mapping sewing pattern embeddings to 3D shapes is hard, which requires a warped
panel to be isometric to the 3D garment. To solve this problem, we decouple 3D garments into
sewing-pattern-based UV-position maps with masks and use an inversed PCA and a CNN to build a
generic garment decoder. Third, existing deep models tend to filter out high-frequency signals and
ignore modeling the seams between panels, preventing them from perceiving the 3D structure. To
avoid this, we propose an inner-panel loss, an inter-panel loss, and a surface-normal loss to learn the
structure-preserved representations for the 3D garments.
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Figure 3: Definition of sewing pattern. A 3D skirt is composed of four panels, and each arrowed dashed line
indicates the two edges from different panels are stitched together.

Thanks to our NSM, we can model generic garments with reconstructable and manipulable represen-
tations, allowing rich potential applications. For example, our NSM can arbitrarily edit the category
and shape of garments as if it were a physical sewing machine. This interpretable manipulation is
quite beneficial for garment design. As another example, our NSM can reconstruct 3D garments from
2D images with high reconstruction accuracy and high-quality 3D structure preservation.

In summary, this paper makes five non-trivial contributions.

• We propose an NSM, a novel 3D garment modeling method capable of modeling generic
garments. Our NSM takes the sewing pattern as a solid prior, which can truly reflect the
fidelity and diversity of clothes in the real world, so it can model the real garment structures
and learn general garment representations.

• A unified sewing pattern encoder for generic garments with diverse categories, shapes, and
topologies is proposed in our NSM, where we statistically construct basic panel groups for
sewing patterns based on which we use PCA for encoding.

• A generic garment decoder for mapping sewing pattern embeddings to 3D shapes is proposed
in our NSM, where we decouple the 3D garment shapes into sewing-pattern-based UV-
position maps with masks and use an inversed-PCA and a CNN for decoding.

• Our NSM addresses the inability of deep models to achieve fidelity of 3D garment structure
by proposing novel structure-preserving losses, including an inner-panel loss and an inter-
panel loss.

• Extensive experiments show that our NSM achieves state-of-the-art results in multiple 3D
garment modeling tasks on the large 3D garment dataset with sewing patterns, including
representing 3D garments under diverse garment shapes and topologies, realistically re-
constructing 3D garments from 2D images with the preserved structure, and accurately
manipulating the 3D garment categories, shapes, and topologies.

2 Related Work

Physics-based simulators. Physics-based methods dating back to the 1980s required enormous
computational effort due to the large number of triangular faces that need to be processed [31]. Later,
to reduce the computational complexity, some works proposed efficient methods, such as using
low-resolution simulators and small models [14, 36, 25], but searching for optimal hyperparameters
for these simulators still required a lot of time. Later, to reduce the hyperparameter search time,
some works proposed to learn, estimate, or speculate hyperparameters [22, 37, 29], but the controlled
environment and simulator were indispensable conditions. Nevertheless, the complexity of physics-
based simulators is high, with a lot of working time required.

Template-based models. An intuitive way to model 3D clothes is to use templates. Pioneeringly,
Chen et al. [7] defined various garment part templates as a database and searched the required parts
from the database to sew them into clothes. However, this searching-and-matching is impractical
since the real world is dependent on infinite garment part templates. To solve this problem, parametric
templates were proposed [17, 49, 13, 34, 5], in which templates of the same type but different sizes
can be described by values. Although this significantly reduces the template number, designing
parametric templates is still inefficient. Hence, some works proposed using human bodies as templates
and added displacement to SMPL [20] (a typical human body model) [21, 6, 32, 33, 2]. However,
these methods assume that garments and humans share a topology, which doesn’t hold for generic
garments, e.g., a skirt doesn’t have legs. To make the templates more descriptive of real-world
clothes, recently, sewing patterns have been considered promising templates [10, 43, 28, 16, 42, 40].
However, the use of sewing patterns is still similar to ordinary parametric templates, so it still faces
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Figure 4: This is the Framework of our NSM. The sewing pattern is first encoded into an embedding by
the unified sewing pattern encoding module. Then, the UV-position maps with masks are predicted from the
embedding by a neural network D and the inverse PCA transform PCA−1. We train NSM by optimizing four
losses to ensure 3D garment structure preservation: (a) reconstruction loss; (b) inner-panel structure-preserving
loss; (c) inter-panel structure-preserving loss; (d) surface-normal loss.

the dilemma of not being able to model generic clothes. Even state-of-the-art methods still rely on
physical simulators for clothing generation [16], failing to learn reconstructable and manipulable
representations. Unlike all previous template-based methods, our NSM can model garments with
complicated topologies; Novelly, our NSM uses a sewing machine to solve the generic garment
modeling problem that is intractable with existing template-based methods.

Learned UV parameterization. UV parameterization is the process of mapping a 3D surface to a
2D plane. Usually, this mapping is bijective and means that we can store the 3D vertices continuously
at a 2D UV plane. This allows 2D convolutional neural networks to operate on 3D shape, which has
been introduced into neural garment modeling called UV-position maps [28, 30, 41, 45, 46, 17, 18].
To formulate the 3D garment deformation, some works [45, 46, 17, 41, 18] introduce the UV-position
maps for enhancing and producing realistic and detailed garment surface deformation from coarse
mesh parameterization. Other works [28, 30] use UV-position maps for encoding 3D garment with
different shapes and topologies and utilize the auto-encoder structure to learn garment representation
or generation. However, existing methods use either fixed pre-defined UV maps or rely on human
body mesh parameterization. In contrast, our NSM makes flexible use of UV-position maps with
the help of sewing patterns. We observe that the sewing pattern is one solution of the UV mapping
process with low distortion as garment is simulated by sewing the panels on garment surface. Hence,
we simultaneously model the 2D panel shapes and garment 3D shapes on UV-position maps, allowing
our NSM to represent garments with diverse shapes and topologies.

3 Neural Sewing Machines

In this work, we study the problem of modeling 3D garments with diverse shapes and topologies.
Previous methods [30, 24, 32, 21] were constrained to model garments under specific categories or
with relative simple topologies, and failed to learn reconstructable and manipulable representations. To
this end, we propose Neural Sewing Machine (NSM), a learning framework for structure-preserving
3D garment modeling capable of learning representations for garments with diverse shapes and
topologies, as shown in Fig. 4. As sewing patterns accurately describe the intrinsic structure and the
topology of the 3D garment, we first use a unified garment encoding module to obtain an embedding
from the sewing pattern. Then, we use a 3D garment decoding module to decode sewing pattern
embeddings to 3D garment shape using the representation of UV-position maps with masks [30]. To
allow 3D structure-preserving learning, we introduce an inner-panel loss, an inter-panel loss, and a
surface-normal loss. In the following, we will demonstrate the components of NSM in detail.
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3.1 Unified Sewing Pattern Encoding

We first introduce the definition of the sewing pattern, then we demonstrate how to encode the sewing
patterns from different garment categories into a shared latent space.

Previously, [15] defined a sewing pattern by a set of 2D panels along with the stitch information
about how the panels are stitched together. For example, in Fig. 3, a sewing pattern of a skirt had
4 panels named top front, top back, dress front and dress back. Each panel corresponded to a part
of the 3D garment, and the correspondences were featured by the colors. The stitch information of
how panels were stitched together on the 3D garment shape was featured by the arrowed dashed lines
between panel edges.

To obtain unified sew pattern embeddings for generic garments with different categories and shapes,
we extend the definition in [15] to a hierarchical graph (see Fig. 5). Formally, a garment is defined by
a sewing pattern, and a sewing pattern is defined by a graph G = (V,E), where the graph node V
represents the set of all seamed edges of all panels in a garment; the graph adjacencies E represents
the stitch information of how panels were stitched together. Then, the previous definition of a sewing
pattern can be rewritten by G = (P (V ), E), where P (V ) is a panel containing several seamed
edges. However, using (V,E) or (P,E) to describe a garment could be too specific and will overfit a
garment, which is unsuitable for describing generic garments and for getting generic sewing pattern
embeddings. To obtain generic sewing pattern embeddings, we introduce basic panel groups. As
shown in Fig. 5, a basic panel group B(V ) or B is a combination of several panels, and thus a
garment (i.e., a sewing pattern) can be represented as a combination of the basic panel groups B(V ).
For example, the skirt in Fig. 5 contains two basic panel groups; the three garments in the left concern
of Fig. 4 (each column is a garment) contain three, two, two basic panel groups, respectively. Finally,
a sewing pattern is rewritten by G = (B(V ), E). Note that the basic panel groups are statistically
collected from all garment categories in the sewing patterns dataset [15].

G

B

P

V

Figure 5: Definition of a sewing pattern in
terms of basic panel groups.

With the definition of sewing patterns in terms of basic
panel groups, we are able to compute unified sewing
pattern embeddings for a garment. First, we discrete
each seamed edge into m points, with each point repre-
sented by a 2D coordinate, and for a given basic panel
group Bi having l seamed edges, we have a raw repre-
sentation Bi ∈ Rl×m×2. Second, assume that there are
a total of N data containing this basic panel group Bi

in the whole dataset; then, we compute the mean shape
B̄i ∈ Rl×m×2 for theseN samples. Third, we compute
a PCA subspace for these N samples after subtracting
the mean shape B̄i and we obtain the PCA coefficients
γni ∈ Rh (1 ≤ n ≤ N ) for each sample and PCA components Ai ∈ Rl×m×2×h, where h is the num-
ber of PCA components. Fourth, an embedding γ of a sewing pattern is obtained by concatenating
all the PCA coefficients γi of the basic panel groups (leaving blank if a garment or a sewing pattern
does not contain some basic panel groups). Fig 4 presents a detailed illustration of these processes.

3.2 3D Garment Decoding

Given the embedding γ for a sewing pattern sample, we decode the 3D garment shape that is
draped on the T-pose human body. To represent 3D garment under diverse categories and encrypt
the topologies and shape details of the garments, UV-position maps with mask maps [28, 30] are
introduced to represent the 3D garment shape, which store the 3D coordinates of the garment at its
UV coordinates and the masks indicate the 2D panels shapes of the 3D garment, as shown in Fig. 4.
Note that previous methods only use a single map to store 3D garment by registering the 3D garment
onto human body, which has limitation for representing loose garment or garment with complex
topology. In contrast, we introduce multiple maps with each map individually representing one panel
of the garment, which is capable of representing garment with arbitrary topology and shape.

Specifically, we use a CNN-based network D to predict the UV-position maps for panels {Y t}Tt=1
from the garment representation γ, where Y t ∈ RH×W×3 is the UV-position map for the panel and
T is the panel number. The network D paraterized by θD uses the Decoder architecture in [27]:

{Y t}Tt=1 = D(γ ; θD). (1)
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Figure 6: Illustration of the losses in structure preserving learning. Linn is benefit for learning reasonable
inner-panel deformation. Lint helps to preserve the inter-panel topology structure. Lnor helps to preserve local
structure on the garment.

The mask maps are introduced to represent the detailed 2D panel shape of the garment. Instead of
predicting the mask maps by a neural network, which tends to miss the small parts of the masks.
We use the inverse PCA transform PCA−1 to decode the mask maps {M t}Tt=1 from the garment
representation γ, where M t ∈ {0, 1}H×M indicate the 2D panel shape:

{M t}Tt=1 = PCA−1(γ). (2)

The 3D garment mesh can be readout from the UV-position maps {Y t}Tt=1 and the mask maps
{M t}Tt=1 in 3D space. The garment readout process is provided in the Appendix.

3.3 Structure Preserving Learning

It is not trivial to learn the structured deformable 3D garment with diverse shapes and topologies
from the embedding that is encoded from the 2D sewing patterns. To preserve the intrinsic structure
of the predicted 3D garment, except from the 3D reconstruction loss, we introduce an inner-panel
structure-preserving loss, an inter-panel structure-preserving loss, and a surface-normal loss in the
learning process of our NSM. In the following, we introduce the training losses in our NSM.

3D Reconstruction Loss: We optimize the predicted UV-position maps {Y t}Tt=1 using the 3D
reconstruction loss Lrec as following, where Ŷ t is the ground truth UV-position map and M̂ t is the
ground truth mask map for the panel. The loss Lrec constrains the 3D coordinates of the prediction
and the ground truth should be the same at the corresponding UV-coordinates:

Lrec =

T∑
t=1

∥∥∥Y t ∗ M̂ t − Ŷ t
∥∥∥
1
. (3)

Inner-panel Structure Preserving Loss: In practice, the neural networks tend to learn the low
frequency signal [24] and a garment usually has folds on its surface. The 3D Reconstruction loss
solely cannot guarantee the network D to learn an isometric mapping between the UV-coordinates
and the 3D coordinates, as shown in Fig. 6. The garment surface is flat as the panels are deformed
with a wrong scale. Hence, we introduce the inner-panel structure preserving loss Linn to learn an
isometric mapping, which helps to preserve the intrinsic structure within each deformed panel, where
s is a constant that indicates the scaling between the 3D coordinate and the UV coordinate. The loss
Linn constrains that the length of a curve on a panel should be consistent no matter how the panel is
deformed in 3D space:

Linn =

T∑
t=1

H−1∑
i=1

W−1∑
j=1

∥∥∥ ∥∥Y t
i,j − Y t

i+1,j

∥∥
2
− s

∥∥∥
1

+
∥∥∥ ∥∥Y t

i,j − Y t
i,j+1

∥∥
2
− s

∥∥∥
1
. (4)

Inter-panel Structure Preserving Loss: The above losses only model the inner-panel geometry and
topology. As a garment consists of different panels that are stitched together following the stitch
information, we use the inter-panel structure preserving loss Lint to encode this inter-panel topology
knowledge. As shwon in Fig. 6, when the loss Lint is removed, there exists a gap between two
edges that should be stitched together. Specifically, given two stitched edges et1l1 and et2l2 on the panels
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P t1 and P t2 using the stitch information E, illustrated in Figure 5, we use bilinear interpolation
Φ to obtain their 3D coordinates on their UV-position maps Y t1 and Y t2 , where et1l1 ∈ Rm×2 and
et1l1 ∈ Rm×2 denote the UV coordinates of m points on the two edges. The loss Lint demonstrates
that two stitched edges are point-wise stitched together:

Lint =
∑

(e
t1
l1

,e
t2
l2

)∈S

∥∥∥ Φ(et1l1 , Y
t1)− Φ(et2l2 , Y

t2)
∥∥∥
1
. (5)

Surface Normal Loss: To further approximate the deformation on the 3D garment surface, we
introduce the surface norm loss Lnor as following. As shown in Fig. 6, the loss Lnor helps to
preserve local structure on the garment surface. The normal map N t is first calculated from the
predicted UV-position map Y t by finding the normal vector that is perpendicular to the tangential
plane of each 3D point from the UV-position map Y t. Then we calculate the cosin loss for each
point on the 3D garment surface as following with ground truth normal map N̂ t and the mask map
M̂ t:

N t = −∂Y
t

∂u
× ∂Y t

∂v
/(‖∂Y

t

∂u
‖‖∂Y

t

∂v
‖). (6)

Lnor = −
T∑

t=1

W∑
i=1

H∑
j=1

cos(N t
i,j ∗ M̂ t

i,j , N̂
t
i,j). (7)

The total training loss L in the learning process of NSM is given as following:

L = αrecLrec + αinnLinn + αintLint + αnorLnor. (8)

4 Experiments

Dataset. Here we use the largest 3D garment dataset with sewing patterns introduced in [15]. It
covers a variety of garment designs, including variations of t-shirts, jackets, dresses, skirts, jumpsuits,
and pants. Compared with the previous 3D garment datasets [32, 4], this dataset contains more
diverse 3D garment shapes and topologies. We use about 22400 samples from 12 base categories in
the experiments; each sample contains a sewing pattern, 3D garment mesh draped on T-pose SMPL
[20] and a rendered image of the 3D garment. We use the first 90% part of the data for each base
type as the training set and the remaining as the test set.

Evaluation Metrics. To evaluate the quality of 3D garment reconstruction, following [47, 38], we
calculate the Chamfer distance (Chamfer) and the average point-to-surface Euclidean distance (P2S)
between the predicted and ground truth 3D point clouds. Furthermore, to evaluate the quality of
the topology structure of the 3D garment, we introduce the mean geodesic length error (MGLE) to
measure the topology structure difference between two 3D meshes. Given two points xi and xj on
the ground truth 3D mesh surface, we find two points x′i and x′j on the predicted 3D mesh surface
that are closet to points xi and xj respectively. The geodesic length error is calculated as follows:

MGLE =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

∥∥g(xi,xj)− g(x′i,x
′
j)
∥∥
1
, (9)

where g is the geodesic length between two points on the mesh computed using the algorithm in
[9]. For each garment, as the calculation of geodesic length is relatively slow, we sample K = 20
points and calculate MGLE between every two points. The sensitivity analysis of K is provided in
the Appendix.

Implementation Details. The weights {αrec, αinn, αint, αnom} in the training loss L are set to
{1, 10−3, 10−4, 10−2}. The number of PCA components h is set to 12, which guarantees the sewing
pattern shape is reconstructed with small errors. The basic panel group number are set to 10 and the
total panel number is set to 33. The scaling s between the 3D coordinate and the UV coordinate is set
to 1.5. The width W and height H of the UV-position maps and the mask maps are set as 128. Our
model is trained with a GTX 2080 GPU with the learning rate as 1e−3 and the batch size as 8 for 40
epochs.
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4.1 Comparison of Single-view Reconstruction

To validate the generalization ability of our framework, we conduct experiments on single-view
3D shape reconstruction. We first train NSM on the training set with paired sewing patterns and
the 3D garment annotations. Then we train an encoder for mapping the input image to the sewing
pattern embedding γ using a CNN-based architecture [27] as the backbone of the encoder. More
details about training process are provided in Appendix. [38], AnchorUDF [47] and BCNet [13].

Table 1: Chamfer, P2S errors and MGLE (cm) for different
single-view reconstruction methods on the 3D garment dataset.

Methods Chamfer ↓ P2S ↓ MGLE ↓
Pixel2Mesh [38] 5.23 3.84 10.81
AnchorUDF [47] 3.31 4.17 4.61

BCNet [13] 4.69 4.33 3.42
NSM 2.08 1.90 3.73

The results are shown in Table 1. We
compare our NSM with three state-of-
the-art single-view reconstruction meth-
ods, i.e., Pixel2Mesh Pixel2Mesh rep-
resents 3D objects as deformable 3D
meshes, and AnchorUDF uses Unsigned
Distance Function (UDF) to represent 3D
garments, and BCNet uses a template
mesh to represent garments for each cate-
gory. Our NSM achieves a 2.08cm error for chamfer, a 1.90cm error for P2S, and a 3.73cm error
for MGLE, achieving better performance than all methods for Chamfer and P2S, achieving better
performance than Pixel2Mesh and AnchorUDF for MGLE. Note that BCNet uses template meshes
with predefined topology and our method achieves compatible performance with BCNet for MGLE.

Visually, as the three competitors implicitly model 3D garment shapes from compressed features or
use registered template mesh, they may have limitations for recovering detailed garment structures,
as shown in Fig. 7. In contrast, our NSM explicitly models the garment structure by introducing
the sewing patterns, which helps to preserve the detailed garment structures. Besides, these three
methods either use topology templates or recover the topology via post-process, which brings errors
in modeling complicatedly-structured garments (e.g., wrinkled clothes and fine structures), as shown
in Fig. 7. Differently, our NSM can recover detailed garment topology structures thanks to the
learnable UV-position maps with masks.

4.2 Reconstruction from Sewing Pattern

To validate the garment representation ability of our NSM, we evaluate NSM for reconstructing
3D garments from sewing patterns. We train NSM on the training set with sewing patterns and 3D
garment annotations. In the testing, given a sewing pattern, we first obtain the embedding by PCA
transform using the PCA components pre-computed at the training phase. Then, the UV-position
maps with masks (= 3D garments) are predicted from the embedding using the 3D garment decoder.

Table 2: Chamfer, P2S errors and MGLE (cm) obtained by our
framework for 3D garment reconstruction from sewing pattern
on the 3D garment dataset.

NSM t-shirt jacket dress skirt jumpsuit pants All
Chamfer ↓ 1.48 2.17 1.77 1.61 0.66 1.53 1.65

P2S ↓ 1.17 2.08 1.27 1.19 0.73 2.13 1.46
MGLE ↓ 3.13 4.13 4.26 3.46 2.32 2.65 3.54

We report the experimental results
in Table 2; the Chamfer distance
error is 1.65cm, the P2S error is
1.46cm, and the MGLE error is
3.54cm. Fig. 1 presents the qual-
itative visualization, showing that
our framework can effectively rep-
resent 3D garments from different
categories with diverse shapes and topologies. More comparisons are provided in the Appendix.

4.3 Controllable Garment Editing

We demonstrate our framework is capable of controllable garment editing. Given a source 3D garment
and the predicted sewing pattern (obtained using a PointNet [26] trained on paired 3D garments and
sewing pattern embeddings), we can accurately edit the 2D panel shapes or classes, from which our
NSM recovers the corresponding edited 3D garment. Previous methods [28, 30] model and edit 3D
garments via the implicit neural representation, having difficulty with controllable garment editing.
In contrast, sewing pattern embedding is more interpretable, and the structure-preserving 3D garment
modeling guarantees that the editing on 2D panels can be accurately reflected on 3D garments.

As shown in Fig. 8, NSM supports freely editing on the 3D garment shape and topology with
preserved intrinsic structure. And NSM can edit garments with significant shape variations or transfer
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Input Pixel2Mesh AnchorUDF NSM Ground truthBCNet

Figure 7: Visual comparison of the learned topology and geometry of different single-view reconstruction
methods on the 3D garment dataset.
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Figure 8: Illustration of controllable garment editing. Given a source 3D garment and the predicted sewing
pattern, we obtain the edited target garment by editing the panel shape or panel class of the sewing pattern.

garments from one category to another by editing on the 2D panels, even for some categories that are
not shown in the training set.

4.4 Model Analysis

Ablation Study. We conduct ablation studies to provide insights into the effectiveness of each
component in our framework, as shown in Table 3.

Table 3: Quantitative ablation study.
Lrec Linn Lint Lnor Chamfer ↓ P2S ↓ MGLE ↓
! 1.81 1.69 4.38
! ! 1.80 1.76 4.69
! ! ! 1.80 1.68 3.62
! ! ! ! 1.65 1.46 3.54

Only using the 3D reconstruction loss
Lrec for training, the framework achieves
an MGLE error of 4.38cm. When the
inner-panel structure-preserving loss Linn

is added, the MGLE error increases from
4.38cm to 4.69. This might be because inner-
panel structure-preserving loss Linn affects the inter-panel topology structure. When the inter-panel
structure-preserving loss Lint is added, the MGLE error drops from 4.69cm to 3.62. When the
surface normal loss Lnor is added, our full model achieves the MGLE error as 3.54cm. Note that the
changes in Chamfer and P2S error are not obviously in our ablation study. But as shown in Figure 6,
when the losses used for structure-preserving learning are removed, the model can not output 3D
garments with correct structures. This indicates that chamfer and P2S errors cannot truly reflect
the quality of the topology structure of the 3D object. On the contrary, the MGLE error can reflect
the topology structure of the 3D object since it evaluates the geodesic length error on the 3D object
surface.

Interpolation Results. We also show the results of our NSM for interpolating in the sewing pattern
embedding space, as shown in Fig. 9. Given the a source embedding γs and a target embedding γt,
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Figure 9: Visualization of the interpolation in the sewing pattern embedding space of NSM. The first and third
rows denote the predicted UV-position maps with masks. The second and forth rows denote the predicted 3D
garment shapes.

the interpolated embedding is given as γi = αγs + (1 − α)γt. We predict the UV-position maps
with masks (= 3D garments) from the interpolated embedding γi. As we can see, the changes in 2D
panels and 3D garment shapes are consistent.

5 Conclusion
We present a Neural Sewing Machine (NSM) for structure-preserving 3D garment modeling. The
sewing pattern embedding is obtained by the unified sewing pattern encoder. Then the UV-position
maps with masks are predicted from the embedding. To preserve the intrinsic structure of the 3D
garment, we introduce inner-panel structure loss, inter-panel structure loss, and surface-normal loss.
Experiments show that NSM is capable of representing garments with diverse shapes and topologies,
reconstructing 3D garments from single images, and editing 3D garments by controlling the panel
shape and class.
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Limitations and broader impact

The method in this paper aims to build 3D garment models as realistic as possible, which has
significant positive effects on the real world, such as facilitating garment design, virtual try-on, and
virtual human design in the metaverse. Currently, we do not model the garment deformation with
different human pose. This is a challenge problem for loose garments with diverse shape variations.
Our solution is to use "virtual garment bones" [23] or diffused skinning [19]. Another limitation of
our work is that our NSM encoder requires the panels to be relatively regular. While some garments
may have irregular panels, like the several garments found in South Asia, East Asia and Africa. We
will expand this in our future work. We believe that this work does not have any negative impact on
society.
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