
Appendix
A Other Related Work

Our algorithms have direct application in stream processing and set reconstruction. There is a number
of existing algorithms retrieving various informations from streams, such as: extracting the most
frequent elements [17, 18, 16, 59, 49], quantile tracking [15, 35, 40], or approximate histogram
maintenance and reconstruction [33, 34]. Some of these existing algorithms use Group Testing
(e.g., [18]) but in a randomized variant. This leads to a small probability of error that might become
significant in very large streams.

Solutions to Group Testing were also applied in many other domains, including pattern match-
ing [13, 43], compressed sensing [19], reconstructing graphs [11, 37], identifying genetic carriers [5],
resolving conflicts on multiple-access channels and wireless networks [6, 7, 31, 38, 39, 48, 53, 36].
Our setting of capped quantitative feedback could be applied to more subtle versions of the above-
mentioned problems, for example: in wireless communication, where the devices could filter out
up to ↵ interfering signals; in bio-chemical testing with capped scale; in streaming algorithms with
limited processing time.

The problem of Group Testing has also been considered in various different feedback models. For
instance, [8] shows that O(k log n

k) queries are sufficient for a feedback that only returns whether the
size of the intersection |Q \K| is odd or even.

B Additional Extensions and Applications of Our Results

Group testing on multi-sets. Assume instead of a hidden set, there is a hidden multi-set K,
containing at most k elements from [N]. Multi-set means that each element may have several
multiplicities. Let  be the sum of multiplicities of elements in K, and we assume it is unknown to
the algorithm. We could decode all elements in K with their multiplicities using similar approach as
in Section 4, with the following modifications.

First, we need to have a sufficiently large cap ↵ to decode each multiplicity, i.e., ↵ should be not
smaller than .

Second, in the construction Algorithm 1, instead of applying SuI’s only while ` > 3�l
↵�1 and then SSuI,

we need to keep applying SuI’s while ` > 1. Analogously in the structure of decoding Algorithm 2 –
updating the condition of the first while-loop and removing the second while-loop. This is because
the multiplicities of elements not decoded by SuI’s in the While-loop could still be larger than

p
,

therefore switching to SSuI may not be enough to decode their multipicities (note that  plays in this
part a similar role to k in the original algorithm for sets without multiplicities). The correctness still
holds, as each consecutive SuI combined with balanced IDs reveals full multiplicities of a fraction of
remaining elements in K (instead of just presence of elements, as in the original proof of Theorem 1).
The asymptotic query complexity (codeword length) stays the same as the part coming from the first
while-loop (the sum of SuI lengths multiplied by 2 log n coming from balanced IDs), since we just
add a negligible tail in the sum of lengths of SuI’s considered in Theorem 1.

Third, polynomial time is now with respect to n and log , to deal with multiplicities.

Therefore we get:
Theorem 7. There is an explicit polynomial-time (in n and log ) algorithm constructing non-
adaptive queries Q1, . . . , Qm, for m = O (min {n, k polylog n}), that correctly decode a multi-set
K of at most k elements and multiplicity  (where k is known but  could be unknown) under
feedback F↵ with polynomial-time (in n and log ) decoding, where ↵ is not smaller than the largest
multiplicity of an element in K. Moreover, every element occurs in O(polylog n) queries, and the
decoding time is O(m+ k polylog n).

Maintaining and reconstructing a (multi) set. Consider the following problem. We have an
incoming very large stream of insertion or deletions of elements from some domain N . The objective
is to propose a datastructure that processes such operations and at any step (i.e., after processing
a certain number of operations) it can answer a request and provide information about the set

16

specified by the operations that have been processes so far. This is a commonly studied setting
(see e.g., [18, 42]) and extracting information from such stream of operations has applications to
database systems. Our algorithms lead directly to an explicit formulation of a datastructure capable
of extracting the whole (multi) set, however only conditioned that (at the moment of the request) the
sum of multiplicities of the hidden set does not exceed k. The space complexity of the datastructure
would equal to the number of queries of the algorithm, which is O (min {n, k polylog n}).

Maintaining and reconstructing a graph with dynamically added or removed edges. Consider
a graph G with a fixed set of nodes and an online stream of operations on G, where a single operation
could be either adding or removing an edge to/from G. Assume for the ease of presentation that after
each operation, the maximum node degree is bounded by some parameter k. 3 Consider a sequence
of queries from Theorem 1 on the set of all possible n(n�1)

2 edges. For each added/removed edge, we
increase/decrease (resp.) a counter associated with each query containing this edge. As each edge
occurs in O(k↵ log2 n+ polylog n) queries, and thus this is an upper bound (up to some additional
logarithmic factor) on the time of each graph update, which is polylogarithmic for ↵ close to k.
Whenever one would like to recover the whole graph, a reconstruction algorithm is applied, which
takes O(m+ k2

↵ log2 n+ k polylog n) steps, which for ↵ close to k is O(nk polylog n). Note that
the latter formula corresponds to (the upper bound on) the number of edges in G. To summarize, we
implemented graph updates operations in polylog n time per (edge-)operation, and the whole graph
recovery in time proportional to the graph size (number of edges) times polylog n.

Private Parallel Information Retrieval (PPIR). One of techniques to speed-up Information
Retrieval from a large dataset is to employ autonomous agents searching parts of the datasets,
c.f., [30]. Our Capped Quantitative Group Testing algorithms could be applied to achieve this
goal, additionally providing a level of privacy. Assume that there are m = O(k polylog n) simple
autonomous agents, where m also denotes the number of queries in our Capped QGT system. Each
agent i is capable to search only through records captured by the corresponding query set Qi, and
only count the number of occurrences of records satisfying the search criteria, but only up to

p
k.

If all agents share privately their results with the user, he can decompose the set K of at most k
elements satisfying the searching criteria, while each of the agents has knowledge about at mostp
k of these elements. It follows from the construction of our queries that each of them is of size

O(n/
p
k polylog n), which is worst-case number of records that a single agent needs to check – thus

equal to parallel time. Note also that agents perform very simple counting operations, thus the PPIR
algorithm could be efficient in practice.

Non-adaptive QGT as codes. Alternatively, we can reformulate the problem of non-adaptive
Group Testing under F↵ feedback into the language of codes. A query sequence translates to code
as follows: each element v 2 [N] corresponds to a binary codeword with i-th position being 1 or 0
depending on whether v belongs to the i-th query or not. Then the hidden set K is a subset of at
most k codewords, for which we calculate the feedback vector by taking the function min{·,↵} from
elementwise sum of all the codewords corresponding to set K. I.e., the feedback is computed for
each position i, and the whole feedback vector is an input to the decoding algorithm. The objective is
to decode the elements of K from the feedback vector.

C Constructions of Combinatorial Tools

C.1 Polynomial-time Construction of Selectors-under-Interference

In this section, we show how to construct, in time polynomial in n, an (n, `, ✏,,↵)-SuI S of
size O(min {n, ` polylog n}), for any integer parameters `,  n, ↵  , and any (arbitrarily
small) constant ✏ 2 (0, 1/2). Let `⇤ denote `✏. The construction combines dispersers with strong
selectors, see also the pseudocode Algorithm 3. We start from reminding the disperser needed for the
construction (defined in Section 4.1), and then specifying the strong selectors.

3This assumption could be waved by using Group Testing codes for different parameters k, depending on the
actual size of G, hence k could play role of an average size of a neighborhood.

17

The disperser. We will use a bipartite (`⇤, d, ✏)-disperser graph G = (V,W,E) with entropy loss
�, where |V | = n. It has left-degree d, |W | = `d/�, and satisfies the following dispersion condition:
for each L ✓ V such that |L| � `

⇤, the set NG(L) of neighbors of L in graph G is of size at least
(1� ✏)|W |. Note that it is enough for us to take as ✏ in the dispersion property the same value as in
the constructed (n, `, ✏,,↵)-SuI S – ff someone considers ✏ � 1/3, we could use construction for
✏ = 1/4 to get solution with better guarantees. An explicit construction (i.e., in time polynomial in n)
of dispersers was given by [57], for any n � `, and some � = O(log3 n), where d = O(polylog n).
Optimal dispersers have � = O(1) and d = O(log n), but their polynomial-time construction is an
open problem.

Strong selector. Let T = {T1, . . . , Tm} be an explicit (n, 3�)-strong-selector (also called strongly-
selective family) of length m  min{n, 2 · (3�)2 log2 n} = O(min{n, �2 log2 n}), as constructed
by Kautz and Singleton [46].

Construction of (n, `, ✏,,↵)-SuI S. We define an (n, `, ✏,,↵)-SuI S of size min{n,m|W |},
which consists of sets Si, for 1  i  min{n,m|W |}. There are two cases to consider, depending
on the relation between n and m|W |. The case of n  m|W | is simple: take the singleton
containing only the i-th element of V as Si. Consider a more interesting case when n > m|W |. For
i = am+ b  m|W |, where a and b are non-negative integers satisfying a+ b > 0, let Si contain
all the nodes v 2 V such that v is a neighbor of the a-th node in W and v 2 Tb.

Algorithm 3: Construction of (n, `, ✏,,↵)-Selectors-under-Interference (SuI).
Data: (`✏, d, ✏)-disperser G = (V,W,E), V = {v1, . . . , vn}, W = {w1, . . . , w|W |},

|W | = `d/�, � = O(log3 n), d = O(polylog n),
(n, 3�)-strong-selector T = {T1, . . . , Tm}

Result: (n, `, ✏,,↵)-SuI S
1 for i 1 to min{n,m|W |} do

2 if n > m|W | then

3 Si {vi}
4 else

5 Find a, b > 0, such that i = am+ b  m|W | ;
6 Si Tb \NG(wa)

7 return hS1, S2, . . . , Smin{n,m|W |}i

Proof. of Theorem 3 First we show that the constructed S is an (n, `, ✏,,↵)-SuI. The case n 
m|W | is clear, since each element in a set K1 of size at most ` occurs as a singleton in some set Si

(here it does not matter what the set K2 is).

Consider the case n > m|W |. Let a set K1 ✓ V be of size at most ` and a set K2 of at most 
elements. Suppose, to the contrary, that there is a set L ✓ K1 of size `

⇤ such that none among
the elements in L is K1-selected by S under ↵-interference from K2, that is, Si \ L 6= {v} or
|Si \K2| � ↵, for any v 2 L and 1  i  m|W |. (Recall that `⇤ = `✏.)

Claim: Every w 2 NG(L) has more than 3� neighbors in K1 or at least ↵ neighbors in K2.

The proof is by contradiction. Suppose, to the contrary, that there is w 2 NG(L) which has
at most 3� neighbors in K1 and less than ↵ neighbors in K2, that is, |NG(w) \ K1|  3� and
|NG(w) \K2| < ↵. By the former property and the fact that T is an (n, 3�)-strong-selector, we get
that, for every v 2 NG(w) \K1, the equalities

Sw·m+b \K1 = (Tb \NG(w)) \K1 = Tb \ (NG(w) \K1) = {v}

hold, for some 1  b  m. This holds in particular for every v 2 L \ NG(w) \K1. There is at
least one such v 2 L \NG(w) \K1 because set L \NG(w) \K1 is nonempty, since w 2 NG(L)
and L ✓ K1. Additionally, recall that NG(w) \K2 is smaller than ↵. The existence of such v is in
contradiction with the choice of L. Namely, L contains only elements which are not K1-selected by
sets from S under ↵-interference from K2, but v 2 L \NG(w) \K1 is selected from K1 by some

18

set Sw·m+b and the interference from K2 on this set is smaller than ↵. This contradiction makes the
proof of the Claim complete. ⌅
Recall that |L| = `

⇤ = `✏. By dispersion, the set NG(L) is of size larger than (1� ✏)|W |. Consider
two cases below – they cover all possible cases because of the above Claim.

Case 1: At least half of the nodes w in NG(L) have more than 3� neighbors in K1.

In this case, the total number of edges between the nodes in K1 and NG(L) in graph G is larger than

1

2
(1� ✏)|W | · 3� =

1

2
(1� ✏)(`d/�) · 3� > `d ,

since 1
2 (1� ✏) · 3 > 1 for ✏ < 1/3. This is a contradiction, since the total number of edges in graph

G incident to nodes in K1 is at most |K1|d = `d.

Case 2: More than half of the nodes w in NG(L) have at least ↵ neighbors in K2.

In this case, the total number of edges between the nodes in K2 and NG(L) in graph G is larger than

1

2
(1� ✏)|W | · ↵ =

1

2
(1� ✏)(`d/�) · ↵ > d ,

because of assumptions ✏ < 1/3 and ` >  · (3�)/↵. This is a contradiction, since the total number
of edges in graph G incident to nodes in K2 is at most |K2|d = d.

Thus, it follows from the contradictions in both cases that S is an (n, `, ✏,,↵)-SuI.

The size of this selector is

min{n,m|W |} = O
�
min

�
n, �

2 log2 n · `⇤d/�
 �

= O
�
min

�
n, `�d log2 n

 �
,

since ` = ⇥(`⇤). It follows directly from the construction that each element is in O(d� log n)
queries: d neighbors in the disperser multiplied by the number O(� log n) of occurrences in the
strong selector.

Sparser SuI for small ` compared to /↵ – Modification and proof of Theorem 4. What
if ↵`  3�? We could modify the above construction as follows. If ↵`

  3�, we take the
(n, 3�/↵, ✏,,↵)-SuI S from Theorem 3 and partition each set S 2 S into the smallest number of
sets of size at most ↵ each. We denote the new sequence obtained from S by S|↵. To bound the
total number ⌘ of sets in S|↵ we first note that ⌘  |S|+

P
S2S |S|
↵ . The total number of occurrences

of elements in sets S 2 S is upper bounded by O(n · d� log n), by Theorem 3. Therefore, we
obtain that ⌘ =O

�
min

�
n, (/↵)d� log2 n

+ nd�

↵ log n
�
. To show that S|↵ is an (n, `, ✏,,↵)-SuI,

note that if in the original (n, 3�/↵, ✏,,↵)-SuI S an element v is ↵-selected from a set K1 under
interference from K2 by some set Si 2 S, where |K1|  `  3�/↵, it occurs in some of the new
sets being in the partition of the original selecting set Si. Since each partition (made during the
construction of S|↵) is a subset of the original set, element v is also ↵-selected in S|↵ from K1 under
interference from K2. Note that in the above decoding, the number of queries containing any element
remains O(d� log n), as in the original SuI from Theorem 3 (as in the construction we only partition
sets). Hence, by taking the construction of family S|↵, we proved Theorem 4.

C.2 Polynomial-time Construction of Strong-Selectors-under-Interference

In order to construct an (n, `,,↵)-SSuI S, we use the following variation of a Reed-Solomon
superimposed code, analogous to the construction used in [46], however here we prove an additional
property of these objects.

1. Let deg = dlog` ne and q = c · ` · deg for some constant c > 0 such that qdeg+1 � n and
q is prime. Note that, by distribution of prime numbers, we could assume c 2 [3/2, 3).

2. Consider all polynomials of degree deg over field Fq; there are q
deg+1 such polynomi-

als. Remove q
deg+1 � n arbitrary polynomials and denote the remaining polynomials by

P1, P2, . . . , Pn.

19

3. Create the following matrix M of size q ⇥ n. Each column i, for 1  i  n, stores values
Pi(x) of polynomial Pi for arguments x = 0, 1, . . . , q � 1; the arguments correspond to
rows of M . Next, matrix M

⇤ is created from M as follows: each value y = Pi(x) 2
{0, 1, . . . , q � 1} is represented and padded in q consecutive rows containing 0s and 1s,
where 1 is exactly in y+1-st padded row, while in all other padded rows there are 0s. Notice
that each column of M⇤ has q2 rows (q rows per each argument), therefore M

⇤ is of size
q
2 ⇥ n.

4. Set Ti ✓ [n], for 1  i  q
2, is defined based on row i of matrix M

⇤: it contains all
elements v 2 [n] such that M⇤[j, v] = 1. (Recall that each such v corresponds to some
polynomial.) For a fixed constant c > 0, {Ti}q

2

i=1 forms a family T (c) of subsets of set
{1, . . . , n}.

The above construction could be presented as a simplified pseudocode, see Algorithm 4.

Algorithm 4: Construction of Strong-Selectors-under-Interference
1 deg dlog` ne;
2 q c · ` · deg for some constant c 2 [3/2, 3) such that qdeg+1 � n and q is prime;
/* There are q

deg+1 � n such polynomials. */
3 P1, P2, . . . , Pn arbitrary n polynomials of degree deg over field Fq;
4 T (c) sequence of q2 empty sets {Ti}q

2

i=1;
5 for i 1 to n do

6 for x 0 to q � 1 do

/* Value of i-th polynomial for argument x. */
7 value Pi(x);

/* Encode value in unary on positions x · q + 1, x · q + 2, . . . (x+ 1) · q */
8 index x · q + value+ 1;

/* Add element i to the corresponding set T. */
9 Tindex.add(i)

10 return T (c)

Proof. of Theorem 5 Consider the constructed family T (c). Polynomial time of this construction
follows directly from the fact that the space of polynomials over field [q] is of polynomial size
in n and all the operations on them are polynomial. The length follows from the fact that it is
q
2
< 32`2 log2` n = O(`2 log2` n).

Recall that each element v 2 [n] correspond to some polynomial of degree at most deg over Fq.
Note that two polynomials Pi and Pj of degree deg with i 6= j, can have equal values for at
most deg different arguments. This is because they have equal values for arguments x for which
Pi(x)� Pj(x) = 0. However, Pi � Pj is a polynomial of degree at most deg, so it can have at most
deg zeroes. Hence, Pi(x) = Pj(x) for at most deg different arguments x.

Take any polynomial Pi and any other at most `� 1 polynomials Pj , which altogether form set K1

of at most ` polynomials. There are at most (`� 1) · deg different arguments where one of the other
`� 1 polynomials can be equal to Pi. Hence, for at least q � (`� 1) · deg different arguments, the
values of the polynomial Pi are different than the values of the other polynomials in K1. Let us call
the set of these arguments A.

Consider any set K2 ✓ {1, . . . n} of at most  elements (corresponding to polynomials). Consider
arguments from set A for which Pi has the same value as at least ↵ other polynomials in K2. The
number of such arguments is at most

 · deg
↵

 `

3�
· deg <

`

2
· deg  (c� 1)` · deg < q � (`� 1) · deg ,

which means it is smaller than |A|, for c 2 [3/2, 3) in the definition of q = c` · deg. Therefore, there
is an argument (in set A) such that the value of Pi is different from the values of all other ` � 1
polynomials in K1 and less than ↵ polynomials in set K2. As this holds for an arbitrary polynomial

20

Pi in an arbitrary set K1 of at most ` polynomials (in total) and an arbitrary set K2 of at most 
polynomials, T (c) is an (n, `,,↵)-SSuI. Finally, it follows directly from the construction that every
element occurs in q = O(` log` n) queries.

21

	Introduction
	Our Results (see also Table 1)

	Previous and Related Work (see also Tables 1 and 2)
	The Model and the Problem
	Polynomial-time Constructions and Decoding
	Combinatorial Tools
	Construction of Queries, Decoding and Analysis (Proof of Theorem 1)

	Lower Bound
	Extensions, Applications and Open Directions
	Other Related Work
	Additional Extensions and Applications of Our Results
	Constructions of Combinatorial Tools
	Polynomial-time Construction of Selectors-under-Interference
	Polynomial-time Construction of Strong-Selectors-under-Interference

