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The supplementary material contains simulation results and all proofs of the main results in Section 3
and Section 4.

A Numeric results

We generate a sequence of T independent IBNs (Defintion 1) or bipartite IBNs with independent
edges (Definition 2) when considering node LDP, with the network size n1 = n2 = n = 50
and entrywise sparsity level ρ = 0.4. There is one and only one change point with a balanced
spacing, i.e. the change point η = ∆ = T/2, where ∆ is the minimal spacing. The expectations
of the adjacency matrix before and after change point are Θpre = 0.11n×n and Θpost = 0.41n×n,
respectively, where 1n×n ∈ Rn×n has all entries being one. The normalised jump size is therefore
κ0 = ∥Θpost − Θpre∥F/(nρ) = 0.75. We consider different the minimal spacing ∆ and privacy
budget α in the simulations.

We use a simplified version of NBS algorithm (Algorithm 1) based on the binary segmentation
procedure [e.g. 7]. For small number of change points, our theory still holds for this computationally
less demanding algorithm. The thresholding tuning parameter, above which change points are
declared, is fixed to be n log1.5(T )/10, n log1.5(T )/30 and n2 log2(n2T )/10 in the no privacy, edge
LDP and node LDP cases, respectively.

Let the estimated set of change points be {η̂i}K̂i=1 and the true change points be η. We use maxi |η̂i −
η|/∆ ∈ [0, 1] to evaluate the performances. If no change point is returned, we output one. This is the
same as using the scaled two sided Hausdorff distance dH(S1, S2)/∆ as the metric [e.g. 4, 8] and
we expect it to diminish as ∆ grows. For any subset S1, S2 ⊂ Z, the Hausdorff distance dH(S1, S2)
between S1 and S2 is defined as

dH(S1, S2) = max

{
max
s1∈S1

min
s2∈S2

|s1 − s2|, max
s2∈S2

min
s1∈S1

|s1 − s2|
}
.

The sets S1 and S2 correspond to the set of true change points and estimated change points. If one of
S1 and S2 is ∅, then we use the convention dH(S1, S2) = ∆.

The result is collected in Figure 1. Without any privacy constraint, i.e. using raw data, the change
can be easily detected with ∆ as small as 7. Imposing privacy guarantee requires a larger ∆ to
consistently localise the change points. The theoretical cost is quantified by our theory under both
edge LDP and node LDP. We can see from the three plots in the first row that for the same sample
size, the performance deteriorates as α decreases under edge LDP. The node LDP is a more stringent
requirement, compared to the edge LDP. From the three plots on the second row, we can see that,
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with the same sample size, the change can be perfectly localised with no error in the no privacy case,
and very well localised under edge LDP with α = 0.1, but in order to obtain a reasonable estimator,
the node information can only be protected at level α = 1.

Figure 1: Simulation results. The median of the scaled Hausdorff distance dH(S1, S2)/∆ over 100
repetitions are plotted against varying minimal spacing ∆ on the x-axis, under different privacy
constraints. This setting has κ0 = 0.75, ρ = 0.4, n1 = n2 = n = 50

B Proofs of results in Section 3

Proof of Lemma 1. Let κ2 = n
68(eα−1)2∆ , v ∈ {1,−1}n and PT

v be the joint distribution of a
collection of independent adjacency matrices {A(t)}Tt=1 such that

E[Aij(t)] = ρ/2 +
κ

n
(vv⊤)ij 1 ≤ i ≤ j ≤ n, t ∈ {1, . . . ,∆}

and
E[Aij(t)] = ρ/2 1 ≤ i ≤ j ≤ n, t ∈ {∆+ 1, . . . , T}.

The distribution of each network at time t is denoted by Pv,t =
∏

1≤i≤j≤n Pv,t,(i,j). Note that
η(PT

v ) = ∆, ∥A(∆) − A(∆ + 1)∥2F = κ2, and κ2
0 = 1

68nρ2∆(eα−1)2 . We are constrained by
κ/n < ρ/2, which is equivalent to κ2

0 ≤ 1/4. Therefore, for each v, we have PT
v ∈ P . Similarly, let

P̃T
v be the joint distribution of a collection of independent adjacency matrices {A(t)}Tt=1 such that

E[Aij(t)] = ρ/2 +
κ

n
(vv⊤)ij 1 ≤ i ≤ j ≤ n, t ∈ {T −∆+ 1, . . . , T}

and
E[Aij(t)] = ρ/2 1 ≤ i ≤ j ≤ n, t ∈ {1, . . . , T −∆}.

The distribution of each network at time t is denoted by P̃v,t =
∏

1≤i≤j≤n P̃v,t,(i,j). Note that
η(P̃T

v ) = T −∆ and P̃T
v ∈ P for each v. Also, |η(PT

v )− η(P̃T
v )| = T − 2∆ for each v. Further, let

ZT
v and Z̃T

v be the corresponding joint private distribution generated via some non interactive edge α
LDP mechanism Q =

∏T
t=1

∏
1≤i≤j≤n Qijt(·|Aij(t)), i.e. for any 1 ≤ i ≤ j ≤ n

ZT
v =

∫
Q(·|(A(1))ij , . . . , Aij(t))dP

T
v ((A(1))ij , . . . , Aij(t))

=

∫ T∏
t=1

∏
1≤i≤j≤n

Qijt(·|Aij(t))dPv,t,(i,j)((A(t)ij))
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=

T∏
t=1

∏
1≤i≤j≤n

∫
Qijt(·|Aij(t))dPv,t,(i,j)((A(t)ij))

=

T∏
t=1

∏
1≤i≤j≤n

Zijt
v , (1)

and Z̃T
v takes a similar form. Write ZT = 1

2n

∑
v∈{1,−1}n ZT

v and Z̃T = 1
2n

∑
v∈{1,−1}n Z̃T

v . It
follows from Le Cam’s Lemma [e.g. 11] that for ∆ ≤ T/3

Rn,α(η(P)) ≥ inf
Q∈Qedge

α

T

6
(1− TV(Z̃T , ZT )) ≥ inf

Q∈Qedge
α

∆

6
(1− TV(Z̃T , ZT )).

To simplify the problem, we write PT
0 as the joint distribution of independent and identically

distributed adjacency matrices {B(t)}Tt=1 such that E[Bij(t)] = ρ/2 for 1 ≤ i ≤ j ≤ n. The
corresponding marginal distribution of the privatised data is denoted by ZT

0 . Now, notice that by
triangle inequality and the symmetry of our construction, we have

TV(Z̃T , ZT ) ≤ 2TV(ZT
0 , Z

T ) ≤
√

2χ2(ZT , ZT
0 ),

where the last inequality is due to [5, eq.(2.27)]. In the rest of the proof, we will show that with our
choice κ2∆(eα − 1)2 = n/68, we have χ2(ZT , ZT

0 ) ≤ 1/8 and therefore Rn,α(η(P)) ≥ ∆/12 as
claimed.

To that end, we compute

χ2(ZT , ZT
0 ) + 1 =

1

4n

∑
u,v∈{−1,1}n

EZT
0

(
m(ZT

v )m(ZT
u )

m(ZT
0 )m(ZT

0 )

)

=
1

4n

∑
u,v∈{−1,1}n

 T∏
t=1

∏
1≤i≤j≤n

EZijt
0

(
m(Zijt

v )m(Zijt
u )

m(Zijt
0 )m(Zijt

0 )

) (2)

=
1

4n

∑
u,v∈{−1,1}n

 ∆∏
t=1

∏
1≤i≤j≤n

EZijt
0

(
m(Zijt

v )m(Zijt
u )

m(Zijt
0 )m(Zijt

0 )

) , (3)

where Zijt
0 is the distribution of the privatised version of Bij(t) similar to (1) and we use m(·) to

denote the density of the corresponding distributions. The last equality is due to Zijt
0 = Zijt

u = Zijt
v

when t = ∆+ 1, . . . , T .

Write Γ = (κ/n)uu⊤ and Λ = (κ/n)vv⊤, and to simplify notation we use a generic z to denote the
privatised data (z(t))ij and write q1(z) = qijt(z|Aij(t) = 1) and q0(z) = qijt(z|Aij(t) = 0). We
further have

EZijt
0

(
m(Zijt

v )m(Zijt
u )

m(Zijt
0 )m(Zijt

0 )

)
(4)

=

∫ [
q1(z)(ρ/2 + Γij) + q0(z)(1− ρ/2− Γij)

][
q1(z)(ρ/2 + Λij) + q0(z)(1− ρ/2− Λij)

]
ρq1(z) + q0(z)(1− ρ)

dz

=

∫ [
(q1(z)− q0(z))ρ/2 + q0(z) + Γij(q1(z)− q0(z))

][
(q1(z)− q0(z))ρ/2 + q0(z)+

Λij(q1(z)− q0(z)
]

(q1(z)− q0(z))ρ/2 + q0(z)
dz

= (I) + (II) + (III) (5)

where

(I) =

∫
[(q1(z)− q0(z))ρ/2 + q0(z)]dz = 1
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(II) =

∫
(q1(z)− q0(z))(Γij + Λij)dz = 0

since q1(z) and q0(z) are densities of regular conditional probability distributions. Also,

(III) = ΓijΛij

∫
(q1(z)− q0(z))

2

(q1(z)− q0(z))ρ+ q0(z)
dz = ΓijΛij

∫
(q0(z))

2(q1(z)/q0(z)− 1)2

(q1(z)− q0(z))ρ+ q0(z)
dz

= ΓijΛijCα

with 0 ≤ Cα ≤ 2(eα−1)2 where the last equality is due to Lemma B.1 and q1(x)/q0(x) ∈ [e−α, eα].
Therefore, continue from (4) to see that

EZijt
0

(
m(Zijt

v )m(Zijt
u )

m(Zijt
0 )m(Zijt

0 )

)
≤ 1 + 2ΓijΛij(e

α − 1)2 ≤ exp(2ΓijΛij(e
α − 1)2).

Continue from (2), with U, V ∈ Rn being two independent random vectors with entries being
independent Rademacher random variables and 1 ∈ Rn being a vector of 1’s to see that

χ2(ZT , ZT
0 ) + 1 ≤ 1

4n

∑
u,v∈{−1,1}n

[
∆∏
t=1

∏
1≤i≤j≤n

exp(2ΓijΛij(e
α − 1)2)

]

= EU,V

[
exp

(2∆κ2(eα − 1)2

n2
(U⊤V )2

)]

= EV

[
exp

(2∆κ2(eα − 1)2

n2
(1⊤V )2

)]
Let ϵn = (1⊤V )2/n2, then

EV

[
exp

(
2∆κ2(eα − 1)2ϵn

)]
=

∫ ∞

0

P
(
exp(2∆κ2(eα − 1)2ϵn) ≥ u

)
du

≤ 1 +

∫ ∞

1

P

(
ϵn ≥ log(u)

2κ2∆(eα − 1)2

)
du

≤ 1 +

∫ ∞

1

2 exp
(
− log(u)

n

4κ2∆(eα − 1)2

)
du

≤ 1 +
2

n
4κ2∆(eα−1)2 − 1

,

where the second inequality is Hoeffding’s inequality [6, Theorem 2.2.6] and the last inequality holds
if

n

4κ2∆(eα − 1)2
> 1

For χ2(ZT , ZT
0 ) ≤ 1/8, it is sufficient to take

n

κ2∆(eα − 1)2
≥ 68,

which completes the proof.

Lemma B.1. When α ≤ 1 and αρ ≤ 1/2, then

(q1(z)− q0(z))ρ/2 + q0(z) ≥ q0(z)/2

Proof of Lemma B.1. Using the facts q1(z)/q0(z) ≥ e−α, and eα − 1 ≥ 1− e−α, we obtain

(q1(z)− q0(z))ρ/2 + q0(z) ≥ q0(z)
(q1(z)
q0(z)

− 1
)
ρ/2 + q0(z) ≥ q0(z)(1− ρ(1− e−α)/2)

≥ q0(z)(1− ρ(eα − 1)/2) ≥ q0(z)(1− αρ) ≥ q0(z)/2,

where in the last two inequalities we use α ≤ 1 and αρ ≤ 1/2 respectively.
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Proof of Lemma 2. The proof parallels the structure of the proof of Lemma 1, so we are somewhat
more terse. Let κ2 =

√
n1n2

20(eα−1)2∆ , v ∈ {1,−1}n1 , PT
v be the joint distribution of a collection of

independent adjacency matrices {A(t)}Tt=1 such that for t ∈ {1, . . . ,∆},

E[Ai1(t)] = ρ/2 +
κ

√
n1n2

vi 1 ≤ i ≤ n1, and Ai1(t) = . . . = Ain2
(t),

and for t ∈ {∆+ 1, . . . , T},

E[Ai1(t)] = ρ/2 and Ai1(t) = . . . = Ain2(t).

In words, within each network, the entries of each row are identical. In particular, we have for any
1 ≤ i ≤ n1, 1 ≤ j ≤ n2,

E[Aij(t)] = ρ/2 +
κ

√
n1n2

vi 1 ≤ t ≤ ∆, E[Aij(t)] = ρ/2 ∆ + 1 ≤ t ≤ T

and

P(Ai(t) = 1) = 1− P(Ai(t) = 0) = P(Aij(t) = 1) = ρ/2 +
κ

√
n1n2

vi, 1 ≤ t ≤ ∆

P(Ai(t) = 1) = 1− P(Ai(t) = 0) = P(Aij(t) = 1) = ρ/2, ∆+ 1 ≤ t ≤ T,

where Ai(t) denotes the i-th row of the matrix A(t), and 1 ∈ Rn2 , 0 ∈ Rn2 denote a vector of 1’s
and 0’s respectively. The distribution of each network at time t is denoted as Pv,t =

∏
1≤i≤n1

P it
v .

Note that η(PT
v ) = ∆, ∥A(∆)−A(∆+1)∥2F = κ2, and κ2

0 = 1
20

√
n1ρ2∆(eα−1)2 . We are constrained

by κ/
√
n1n2 < ρ/2, which is equivalent to κ2

0 ≤ 1/4. Therefore, for each v, we have PT
v ∈ P .

Similar to the construction in Lemma 1, we let P̃T
v be the joint distribution of a collection of

independent adjacency matrices {A(t)}Tt=1 that is symmetric to PT
v with respect to time point T/2

and has η(P̃T
v ) = T −∆.

Let ZT
v and Z̃T

v be the corresponding joint private distribution generated via some non interactive
node α LDP mechanism Q =

∏T
t=1

∏n1

i=1 Qit(·|Ai(t)), i.e.

ZT
v =

∫ T∏
t=1

∏
1≤i≤n1

Qit(·|Ai(t))dP
it
v (Ai(t))

=

T∏
t=1

∏
1≤i≤n1

Zit
v , (6)

and Z̃T
v takes a similar form. Write ZT = 1

2n1

∑
v∈{1,−1}n1 Zv and Z̃T = 1

2n1

∑
v∈{1,−1}n1 Z̃

T
v .

Using the same argument as in the proof of Lemma 1, it is sufficient to consider

χ2(ZT , ZT
0 ) + 1 =

1

4n1

∑
u,v∈{−1,1}n1

 ∆∏
t=1

∏
1≤i≤n1

EZit
0

(
m(Zit

v )m(Zit
u )

m(Zit
0 )m(Zit

0 )

) ,

where Zit
0 =

∫
Qit(·|(A(t))i)dP

iT
v ((A(t))i) and m(·) denotes the density of the corresponding

distributions, and show that χ2(ZT , ZT
0 ) ≤ 1/8 with our choice κ2 =

√
n1n2

20(eα−1)2∆ .

We use a generic z to denote the i-th row of the private network z(t) and write q1(z) = qit(z|Ai(t) =
1) and q0(z) = qit(z|Ai(t) = 0). Following the same calculation as in (4), we have

EZit
0

(
m(Zit

v )m(Zit
u )

m(Zit
0 )m(Zit

0 )

)
= 1 +

κ2

n1n2
uivi

∫
(q0(z))

2(q1(z)/q0(z)− 1)2

(q1(z)− q0(z))ρ+ q0(z)
dz

≤ 1 +
2κ2

n1n2
uivi

∫
q0(z)(q1(z)/q0(z)− 1)2dz

≤ 1 +
2κ2

n1n2
uivi(e

α − 1)2

5



≤ exp
( 2κ2

n1n2
uivi(e

α − 1)2
)

where the first inequality is due to Lemma B.1. Next, writing U ∈ Rn1 as a random vector with
independent Rademacher entries and ϵ = 1⊤U/n1, we have

χ2(ZT , ZT
0 ) + 1

≤ EU

[
exp

(2∆κ2(eα − 1)2

n1n2
(1⊤U)

)]

=

∫ ∞

0

P
(
exp(2∆κ2(eα − 1)2n−1

2 ϵ) ≥ u
)
du

≤ 1 +

∫ e

1

P

(
ϵ ≥ n2 log(u)

2κ2∆(eα − 1)2

)
du+

∫ ∞

e

P

(
ϵ ≥ n2 log(u)

2κ2∆(eα − 1)2

)
du

≤ 1 +

∫ e

1

exp
(
− (log(u))2

n1n
2
2

(2κ2∆(eα − 1)2)2

)
+

∫ ∞

e

exp
(
− log(u)

n1n
2
2

(2κ2∆(eα − 1)2)2

)
du,

where the last inequality is Hoeffding’s inequality. Writing x =
n1n

2
2

(2κ2∆(eα−1)2)2 , we have for any
x > 1

χ2(ZT , ZT
0 ) ≤

∫ e

1

exp(−x log2(u))du− 1

1− x
With the choice x ≥ 90, it holds that

χ2(ZT , ZT
0 ) ≤ 0.1 + 0.012 ≤ 0.125.

Therefore, it is sufficient to take √
n1n2

κ2∆(eα − 1)2
= 20.

to ensure χ2(ZT , ZT
0 ) ≤ 1/8, which completes the proof.

C Proof of results in Section 4

Proof of Theorem 3. We write q = (1 + eα)−1, the corruption probability that A′
ij(t) ̸= Aij(t) in

(8). The proof relies on the observation that if X ∼ Bernoulli(θ) then the privatised Z obtained by (8)
is distributed as Bernoulli(q ∗ θ) where q ∗ θ := q(1− θ)+ (1− q)θ = q+(1− 2q)θ. This implies if
X is the adjacency matrix of an inhomogeneous Bernoulli network and Z is a corresponding private
view generated by (8) with corruption probability q, then Z is distributed as an inhomogeneous
Bernoulli model with parameter matrix q ∗ Θ, where (q ∗ Θ)ij = q ∗ θij . In addition, the change
point structure is preserved after the privatisation but with

min
k=1,...,K+1

∥q ∗Θ(ηk)− q ∗Θ(ηk − 1)∥F = (1− 2q)∥Θ(ηk)−Θ(ηk − 1)∥F.

Also, since q∗θ is monotonic increasing in θ (for q < 1/2), we have ρ′ := ∥q∗Θ(t)∥∞ = q+(1−2q)ρ
for any t = 1, . . . , T . Lastly, we have ρ′ ≥ q ≥ (1 + e)−1, where the second inequality holds when
α ≤ 1, and (1 + e)−1 ≥ log(n)/n for any n > 1, which guarantees the sparsity assumption in [9] is
satisfied for the privatised inhomogeneous Bernoulli network (A′(1), . . . , A′(T )).

The result now follows by a direct application of Theorem 1 in [9] but with some different model
parameters representing the effects of privatisation, i.e. (K ′ = K,∆′ = ∆, κ′

0, n
′ = n, ρ′), where

κ′
0 = (1−2q)ρ

ρ′ κ0. Using the transformed parameters, the Assumption 2 in [9] becomes

(1− 2q)κ0

√
ρ

1− 2q + q/ρ
≥ Cα

√
1

n∆
log1+ξ(T ),

and the localisation rate in Theorem 1 in [9] becomes

ϵ = C1 log(T )

( √
∆

(1− 2q)κ0nρ
+

(1− 2q + q/ρ)
√
log(T )

(1− 2q)2κ2
0nρ

)
.

Substituting q = (1 + eα)−1 yields the claimed result (with different constants).
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Algorithm 1 Privacy mechanism for ℓ∞-ball with radius 1 [1, 2]
INPUT: a vector V ∈ Rd with ∥V ∥∞ ≤ 1, privacy parameter α

1. Generate Ṽ with independent coordinates according to

P(Ṽj = 1|Vj) = 1− P(Ṽj = −1|Vj) =
1

2
+

Vj

2
.

2. Let T ∼ Ber(eα/(eα + 1)) be independent of Ṽ . Generate Z according to

Z ∼

Uniform
(
z ∈ {−B,B}d

∣∣∣⟨z, Ṽ ⟩ ≥ 0
)
, T = 1,

Uniform
(
z ∈ {−B,B}d

∣∣∣⟨z, Ṽ ⟩ ≤ 0
)
, T = 0,

where

B = Cd
eα + 1

eα − 1
and C−1

d =

{
1

2d−1

(
d−1

(d−1)/2

)
, d odd,

1

2d−1+ 1
2 (

d
d/2)

(
d−1
d/2

)
, d even.

OUTPUT: The privatised vector Z.

Proof of Lemma 5. We first restate the algorithm in Algorithm 1. For simplicity, we write Σ for ΣZ .
We start with proving (16). Given (14) and (15), we have when d is odd,

∥Σ∥ = ∥B2I − E(V )(E(V ))⊤∥ ≤ B2 + ∥E(V )∥22,
and similarly when d is even, we have

∥Σ∥ ≤ B2 + ∥E(V )∥22 +
C1

√
d

α2

√
max
i,j

E(ViVj).

To see (14), simply note that
Var(Zk) = EZ2

k − (EZk)
2 = B2 − (EVk)

2

since EZk = EVk for any k = 1, . . . , d.

To prove (15), we start with for any i, j = 1, . . . , d with i ̸= j

Cov(Zi, Zj) = E[Cov(Zi, Zj |V )]+Cov(E(Zi|V ),E(Zj |V )) = E[Cov(Zi, Zj |V )]+Cov(Vi, Vj),
(7)

where we use the unbiased property E(Zi|V ) = Vi for any i = 1, . . . , d [see Appendix I.3 in 2].
Note that

Cov(Zi, Zj |V = v) = E(ZiZj |V = v)− vivj =
∑

ṽ∈{−1,1}d

E(ZiZj |ṽ)P(ṽ|v)− vivj (8)

and
E(ZiZj |ṽ) = παE(ZiZj |⟨z, ṽ⟩ ≥ 0) + (1− πα)E(ZiZj |⟨z, ṽ⟩ ≤ 0). (9)

Therefore, we need to compute E(ZiZj |⟨z, ṽ⟩ ≥ 0) and E(ZiZj |⟨z, ṽ⟩ ≤ 0). We consider the cases
of d being odd and even separately below.

When d is odd: we have∑
z:⟨z,ṽ⟩≥0

zizj =

(d−1)/2∑
l=0

B2ṽiṽj

((
d− 2

l

)
+

(
d− 2

l − 2

)
− 2

(
d− 2

l − 1

))

= B2ṽiṽj

(d−1)/2∑
l=0

(
d− 2

l

)
+

(d−5)/2∑
l=0

(
d− 2

l

)
− 2

(d−3)/2∑
l=0

(
d− 2

l

)
= B2ṽiṽj

((
d− 2

(d− 1)/2

)
−
(

d− 2

(d− 3)/2

))
= 0

Therefore E(ZiZj |⟨z, ṽ⟩ ≥ 0) = 0 and by symmetry E(ZiZj |⟨z, ṽ⟩ ≤ 0) = 0. Hence,
Cov(Zi, Zj) = −E(ViVj) + Cov(Vi, Vj) = −E(Vi)E(Vj) when d is odd.
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When d is even: We have

∑
z:⟨z,ṽ⟩≥0

zizj =

d/2∑
l=0

B2ṽiṽj

((
d− 2

l

)
+

(
d− 2

l − 2

)
− 2

(
d− 2

l − 1

))

= B2ṽiṽj

d/2∑
l=0

(
d− 2

l

)
+

d/2−2∑
l=0

(
d− 2

l

)
− 2

d/2−1∑
l=0

(
d− 2

l

)
= B2ṽiṽj

((
d− 2

d/2

)
−
(

d− 2

d/2− 1

))
= −2B2

d
ṽiṽj

(
d− 2

d/2− 1

)
where the last equality is due to k

(
n
k

)
= (n− k + 1)

(
n

k−1

)
. Since the set {z ∈ {−1, 1}d|⟨z, ṽ⟩ ≥ 0}

has cardinality M = 2d−1 + 1
2

(
d

d/2

)
, we have

E(ZiZj |⟨z, ṽ⟩ ≥ 0) = −2B2

dM
ṽiṽj

(
d− 2

d/2− 1

)
.

When ⟨z, ṽ⟩ ≤ 0, we obtain the same result

∑
z:⟨z,ṽ⟩≤0

zizj =

d∑
l=d/2

B2ṽiṽj

((
d− 2

l

)
+

(
d− 2

l − 2

)
− 2

(
d− 2

l − 1

))

= B2ṽiṽj

 d∑
l=d/2

(
d− 2

l

)
+

d∑
l=d/2−2

(
d− 2

l

)
− 2

d∑
l=d/2−1

(
d− 2

l

)
= B2ṽiṽj

((
d− 2

d/2

)
−
(

d− 2

d/2− 1

))
= −2B2

d
ṽiṽj

(
d− 2

d/2− 1

)
.

Then, from (9) we get

E(ZiZj |ṽ) = E(ZiZj |⟨z, ṽ⟩ ≥ 0) = −2B2

dM
ṽiṽj

(
d− 2

d/2− 1

)
.

Now we look at

2B2

dM

(
d− 2

d/2− 1

)
=

(
eα + 1

eα − 1

)2
(
2d−1 + 1

2

(
d

d/2

)(
d−1
d/2

) )2 (
d−2

d/2−1

)
d(2d−1 + 1

2

(
d

d/2

)
)

=
1

d

(
eα + 1

eα − 1

)2
(
2d−1 + 1

2

(
d

d/2

)
d−1
d/2

(
d−2

d/2−1

) )

=
cα
dα2

2d−1 + cd2
d−1/

√
d

d−1
d/2 cd−22d−2/

√
d− 2

=
Cd,α√
dα2

where we use Stirling approximation to obtain
(

d
d/2

)
= cd2

d/
√
d with exp(−1/6)(

√
2π)−1 < cd <

(
√
2π)−1 and 1/4 < cα < (e + 1)2. Indeed, using the non-asymptotic inequalities for any even

d ≥ 2
√
2πd(d/e)d exp

( 1

12d+ 1

)
< d! <

√
2πd(d/e)d exp

( 1

12d

)
(10)
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we have (
d

d/2

)
=

d!

((d/2)!)2
≤

exp
(

1
12d − 2

6d+1

)
√
2π

√
d2−d

≤ 2d√
2πd

and similarly (
d

d/2

)
=

d!

((d/2)!)2
≥

exp
(

1
12d+1 − 1

3d

)
√
2π

√
d2−d

≥ exp(−1/6)2d√
2πd

.

Therefore, from (8) we have that there exists C0 < Cd,α < C1 with C0, C1 being absolute constants
such that

Cov(Zi, Zj |V = v) = − Cd,α√
dα2

E(ṼiṼj |v)− vivj = −
(
1 +

Cd,α√
dα2

)
vivj .

It follows from (7) that when d is even

Cov(Zi, Zj) = −
(
1 +

Cd,α√
dα2

)
E(ViVj) + Cov(Vi, Vj) = − Cd,α√

dα2
E(ViVj)− E(Vi)E(Vj).

Proof of Theorem 4. First, we set

κ2 := min
k=1,...,K

∥Θ(ηk)−Θ(ηk − 1)∥2F = κ2
0n1n2ρ

2,

to be the unnormalised minimal jump size in Frobenius norm and

ε = c5 log(Tn1n2)

( √
∆

κ0ρα

√
n2

n1
+

log(Tn1n2)

ρ2α2κ2
0

max

{√
n2

n1
,
n2

n1

})
(11)

to be the claimed localisation error in Theorem 4.

In the proof we use the notation κ2 and it translates directly to the signal to noise condition (12) in
terms of κ2

0. We also use U(t) and V (t) to denote the privatised matrices obtained by (11), which is
consistent with the notations in Algorithm 1 and results in Appendix C.1.

We consider two events. The first event guarantees the quality of the randomly generated intervals.
Let {αm}Mm=1 and {βm}Mm=1 be two independent sequences selected uniformly randomly from
{1, . . . , T}.

M =

K⋂
k=1

{α ∈ Sk, βm ∈ Ek, for somem ∈ {1, . . . ,M}},

where Sk = [ηk − 3∆/4, ηk −∆/2] and Ek = [ηk +∆/2, ηk + 3∆/4], k = 1, . . . ,K. It is shown
in Wang et al. [9, Lemma 24] that

P(M) ≥ 1− exp

(
log(T/∆)− M∆2

16T 2

)
.

Next, for 0 ≤ s < t < e ≤ T , consider the events

A(s, t, e) =

{∣∣∣∣∣(Ũ (s,e)(t), Ṽ (s,e)(t))− ∥Θ̃(s,e)(t)∥2F

∣∣∣∣∣
≤ CβB log(Tn1n2)

(√
n2∥Θ̃(s,e)(t)∥F +B log(Tn1n2)max{

√
n1n2, n2}

)}
.

Choosing c, c′ and c′′ > 3 in Lemma C.3, we have

P(A) = P

( ⋃
1≤s<t<e≤T

A(s, t, e)

)
≥ 1− (T 3−c4 + T 3−c5 + 2T 3−c6)

9



by a union bound. The rest of the proof is conditional on the event A ∩M and does not involve
further probabilistic arguments.

Our proof follows the standard induction-like argument for proving consistency of change point esti-
mators [9, 3, 10]. In particular, since the effects of node LDP is fully represented in the probabilistic
arguments of analysing event A (c.f. Lemma C.3 and Lemma 6 in Wang et al. [9]), the rest of the
analytic arguments in the proof of Theorem 1 in Wang et al. [9] can be applied to our problem directly.
Therefore, we only point out the differences in each step between their proof and ours caused by the
different concentration behaviour of (Ũ (s,e)(t), Ṽ (s,e)(t)). To that end, we consider a generic time
interval (s, e) ⊂ (0, T ) that satisfies

ηr−1 ≤ s ≤ ηr ≤ . . . ≤ ηr+1 ≤ e ≤ ηr+q+1, q ≥ −1

and
max{min{ηr − s, s− ηr−1},min{ηr+q+1 − e, e− ηr+q}} ≤ ε,

where q = −1 means that there is no change point contained in (s, e) and ε is given in (11). A change
point ηp in [s, e] is referred to as undetected if min{ηp − s, ηp − e} ≥ 3∆/4. Let sm, em, am, bm, τ
and m∗ be defined as in the algorithm. The next four steps parallel the four steps in the proof of
Theorem 1 in [9] and establish that our algorithm

1. rejects the existence of undetected change points if (s, e) does not contain any undetected
change points

2. output an estimate b such that |ηp − b| ≤ ε if these is at least one undetected change point in
(s, e).

Step 1. Suppose that there do not exist any undetected change points within (s, e). We have with

τ > c1n2α
−2 log2(Tn1n2)max{

√
n1n2, n2},

the algorithm will always correctly reject the existence of undetected change points.

Step 2. Suppose that there exists an undetected change point ηp ∈ (s, e). On the event M, there
exists an interval [sm, em] such that

ηp − 3∆/4 ≤ sm ≤ ηp −∆/8 and ηp +∆/8 ≤ em ≤ ηp + 3∆/4.

Now, on event A, we have

(Ũ (sm,em)(ηp),Ṽ
(sm,em)(ηp)) ≥ ∥Θ̃(sm,em)(ηp)∥2F

− CβB log(Tn1n2)
(√

n2∥Θ̃(s,e)(ηp)∥F +B log(Tn1n2)max{
√
n1n2, n2}

)
It follows from Wang et al. [9, Lemma 17] that

∥Θ̃(sm,em)(ηp)∥2F ≥ κ2∆/8.

Then using (12) we have

κ2∆/16 ≥ c0
16

n2

α2
log2+ξ(Tn1n2)max{

√
n1n2, n2} ≥ CβB

2 log2(Tn1n2)max{
√
n1n2, n2}

(12)
if c0 logξ(Tn1n2) > 16Cβ . Also,

∥Θ̃(sm,em)(ηp)∥F
2

≥ κ
√
∆

2
√
2

≥
√
c0

2
√
2
B log1+ξ/2(Tn1n2)(max{

√
n1n2, n2})1/2 ≥

CβB
√
n2 log(Tn1n2) (13)

provided c0 log
ξ(Tn1n2) > 8C2

β . Therefore, we have for c0 large enough, there exists some absolute
constant c2 such that

(Ũ (sm,em)(ηp), Ṽ
(sm,em)(ηp)) ≥ c2κ

2∆.

By the definition of m∗, we have

(Ũ (sm∗,em∗)(bm∗), Ṽ (sm∗,em∗)(bm∗)) ≥ c2κ
2∆. (14)
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Thus, with τ < c2κ
2∆, our algorithm can consistently detect the existence of undetected change

points.

Step 3. Suppose that there exists at least one undetected change point ηp ∈ (s, e). We show that the
selected interval (sm∗ , em∗) indeed contains an undetected change point ηp. Suppose that

max
sm∗<t<em∗

∥Θ̃(sm∗,em∗)(t)∥2F < c2κ
2∆/2 (15)

Then

max
sm∗<t<em∗

(Ũ (sm∗,em∗)(t), Ṽ (sm∗,em∗)(t))

≤ max
sm∗<t<em∗

∥Θ̃(sm∗,em∗)(t)∥2F + CβB log(Tn1n2)
(√

n2 max
sm∗<t<em∗

∥Θ̃(sm∗,em∗)(t)∥F

+B log(Tn1n2)max{
√
n1n2, n2}

)
≤ c2κ

2∆/2 +
√
c2/2κ

√
∆CβB log(Tn1n2)

√
n2 + CβB

2 log2(Tn1n2)max{
√
n1n2, n2}

≤ c2κ
2∆

where the first inequality is due to the definition of event A, the second inequality is due to (15),
and the last inequality is due to (12) with sufficiently large c0. This is a contradiction to (14), and
therefore

max
sm∗<t<em∗

∥Θ̃(sm∗,em∗)(t)∥2F > c2κ
2∆/2 (16)

Then, we can conclude that [sm∗, em∗] contains at least one undetected change point using the same
argument as that in Step 3 in [9].

Step 4. Continue from Step 3, we will show that

|bm∗ − ηp| ≤ ε,

by applying Lemma 7 in [9]. The conditions of Lemma 7 can be easily checked by letting

λ = max
sm∗<t<em∗

|(Ũ (sm∗,em∗)(t), Ṽ (sm∗,em∗)(t))− ∥Θ̃sm∗,em∗(t)∥2F|

≤ CβB log(Tn1n2)
(√

n2 max
sm∗<t<em∗

∥Θ̃(sm∗,em∗)(t)∥F +B log(Tn1n2)max{
√
n1n2, n2}

)
≤ c3 max

sm∗<t<em∗
∥Θ̃(sm∗,em∗)(t)∥2F

where the first inequality is due to the definition of event A and the second inequality is obtained
by combining (16), (12) and (13). Then their Lemma 7 guarantees that there exists an undetected
change point ηp within [s, e] with

|ηp − b| ≤ C3∆λ

∥Θ̃sm∗,em∗(ηp)∥2F
and ∥Θ̃sm∗,em∗(ηp)∥2F ≥ c′ max

sm∗<t<em∗
∥Θ̃(sm∗,em∗)(t)∥2F.

Combing with (16), we have

|ηp − b|

≤
C3∆CβB log(Tn1n2)

(√
n2 maxsm∗<t<em∗ ∥Θ̃(sm∗,em∗)(t)∥F +B log(Tn1n2)max{√n1n2, n2}

)
c′ maxsm∗<t<em∗ ∥Θ̃(sm∗,em∗)(t)∥2F

= c7B log(Tn1n2)

(√
∆n2

κ
+

Bmax{√n1n2, n2}log(Tn1n2)

κ2

)

= c8 log(Tn1n2)

(√
∆n2

κα
+

max{√n1n2, n2}n2log(Tn1n2)

α2κ2

)
= ε,

which completes the proof.
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C.1 Probability bounds

In this section, we derive necessary probability bounds for bipartite node privacy. Recall that Xi

denotes the ith row of some general matrix X , X⊤ denotes the transpose of X , and ∥X∥ denotes the
operator norm of X . In particular we consider two independent copies {X(t)}Tt=1 and {Y (t)}Tt=1
satisfying Assumption 1. Let {U(t)}Tt=1 and {V (t)}Tt=1 be their private versions obtained by applying
the sampling mechanism (11) to {Xi(t)}Tt=1 and {Yi(t)}Tt=1 respectively. Note that

E(U(t)) = E(V (t)) = E(X(t)) = E(Y (t)) = Θ(t)

since {U(t)}Tt=1 and {V (t)}Tt=1 are also independent copies and the sampling mechanism is unbiased.
We write

Ũ =

T∑
t=1

wtU(t), Ṽ =

T∑
t=1

wtV (t) and Θ̃ =

T∑
t=1

wtΘ(t)

with
T∑

t=1

w2
t = 1.

Also we write Σi(t) as the covariance matrix for Ui(t) and Vi(t) and applying (16) with d = n2

yields that when α < 1 and n2 is odd,

∥Σi(t)∥ ≤ B2 + ∥Θi(t)∥22 ≤ B2 + n2ρ
2 ≤ 2B2,

for any i = 1, . . . , n1 and t = 1, . . . , T . Similarly when α < 1 and n2 is even

∥Σi(t)∥ ≤ B2 + n2ρ
2 +

c
√
n2

α2
≤ 3B2.

Therefore, we have
max

i=1,...,n1,t=1,...,T
∥Σi(t)∥ ≤ 3B2 (17)

for both n2 is odd and even cases.

Lemma C.1. Let ki ∈ Rn2 be an arbitrary vector. Then for any ε > 0, we have

P

(∣∣∣∣∣
T∑

t=1

wt

n1∑
i=1

k⊤i (Vi(t)−Θi(t))

∣∣∣∣∣ > ϵ

)

≤ 2 exp

( − 1
2ϵ

2

3B2
∑n1

i=1 ∥ki∥22 +maxi=1,...,n1 ∥ki∥2
√
n2B2ϵ/3

)
.

Proof. The proof is due to an application of Bernstein’s inequality [6, Theorem 2.8.4]. Notice that

E

(
T∑

t=1

wt

n1∑
i=1

k⊤i (Vi(t)−Θi(t))

)2

=

T∑
t=1

w2
t

n1∑
i=1

E[k⊤i (Vi(t)−Θi(t))]
2

=

T∑
t=1

w2
t

n1∑
i=1

E

 n2∑
j=1

kij(Vij(t)−Θij(t))

2

=

T∑
t=1

w2
t

n1∑
i=1

k⊤i Σi(t)ki

≤
n1∑
i=1

∥ki∥22 max
i,t

∥Σi(t)∥

≤ 3B2
n1∑
i=1

∥ki∥22

12



where the first line is due to the independence across t and i = 1, . . . , n1, the first inequality is due to
the definition of operator norm ∥Σi∥ and

∑T
t=1 w

2
t = 1, and in the last line we use (17). Also since

|k⊤i (Vi(t)−Θi(t))| ≤ ∥ki∥2∥Vi(t)−Θi(t)∥2 ≤ 2∥ki∥2
√
n2B and wt ≤ 1, we have

P

(∣∣∣∣∣
T∑

t=1

wt

n1∑
i=1

k⊤i (Vi(t)−Θi(t))

∣∣∣∣∣ > ϵ

)
≤ 2 exp

( − 1
2ϵ

2

3B2
∑n1

i=1 ∥ki∥22 +maxi=1,...,n1 ∥ki∥2
√
n2B2ϵ/3

)
by Bernstein’s inequality, as claimed.

Lemma C.2. Let ki =
∑T

t=1 wt(Vi(t)−Θi(t)). Then there exist absolute constants C, c > 0 such
that

P
(

max
i=1,...,n1

∥ki∥2 ≥ C
√
n2B log(Tn1n2)

)
≤ T−c.

Proof. First note that ∥Vi(t) − Θi(t)∥2 ≤ 2
√
n2B for any i = 1, . . . , n1 and t = 1, . . . , T . Also,

we have

E∥Vi(t)−Θi(t)∥22 ≤ E∥Vi(t)∥22 = n2B
2 and E(Vi(t)−Θi(t))(Vi(t)−Θi(t))

⊤ = Σi(t),

and maxi,t ∥Σi(t)∥ ≤ 3B2. Next, we apply the matrix Bernstein inequality for rectangular matrices
[6, Exercise 5.4.15] to ki =

∑T
t=1 wt(Vi(t)−Θi(t)), for any fixed i = 1, . . . , n1, and obtain

P(∥ki∥2 ≥ t) ≤ 2(n2 + 1) exp

(
− t2/2

σ2 +
√
n2Bt/3

)
where

σ2 = max

(
T∑

t=1

w2
tE∥Vi(t)−Θi(t)∥22, ∥

T∑
t=1

w2
tΣi(t)∥

)
≤ max(n2B

2, 3B2) ≤ 3n2B
2.

Next, using a union bound we have

P
(

max
i=1,...,n1

∥ki∥2 ≥ t

)
≤ 4n1n2 exp

(
− t2/2

3n2B2 +
√
n2Bt/3

)
.

Choosing t = C
√
n2B log(Tn1n2) for some absolute constant C large enough in the above leads to

P
(

max
i=1,...,n1

∥ki∥2 ≥ C
√
n2B log(Tn1n2)

)
≤ T−c.

Lemma C.3. There exist absolute constants c, c′, c′′ > 0 such that

P

(∣∣∣∣∣
n1∑
i=1

Ũ⊤
i Ṽi − ∥Θ̃∥2F

∣∣∣∣∣ > CβB log(Tn1n2)
(√

n2∥Θ̃∥F +B log(Tn1n2)max{
√
n1n2, n2}

))
≤ T−c + T−c′ + 2T−c′′ .

Proof. Note that
∑n1

i=1 Ũ
′
i Ṽi − ∥Θ̃∥2F = I + II + III , where

I =

n1∑
i=1

(Ũi − Θ̃i)
⊤(Ṽi − Θ̃i), II =

n1∑
i=1

Θ̃⊤
i (Ṽi − Θ̃i), and III =

n1∑
i=1

Θ̃⊤
i (Ũi − Θ̃i).

It is sufficient to bound I and II , since II and III are independent copies of each other.

We start by bounding I using Lemma C.1 and Lemma C.2. Writing ki = Ũi−Θ̃i =
∑T

t=1 wt(Ui(t)−
Θi(t)), we have from Lemma C.1 that conditional on {U(t)}Tt=1

PV |U (|I| > ϵ) = P

(∣∣∣∣∣
T∑

t=1

wt

n1∑
i=1

k⊤i (Vi(t)−Θi(t))

∣∣∣∣∣ > ϵ

)
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≤ 2 exp

( − 1
2ϵ

2

3B2
∑n1

i=1 ∥ki∥22 +maxi=1,...,n1 ∥ki∥2
√
n2B2ϵ/3

)
≤ 2 exp

( − 1
2ϵ

2

3n1B2 maxi=1,...,n1 ∥ki∥22 +maxi=1,...,n1 ∥ki∥2
√
n2B2ϵ/3

)
.

Now by Lemma C.2, we have

PU

(
max

i=1,...,n1

∥ki∥2 ≥ C
√
n2B log(Tn1n2)

)
≤ T−c.

Therefore, for any ε > 0, it holds that

P(|I| > ε) ≤ 2 exp

( − 1
2ϵ

2

3Cn1n2B4 log2(Tn1n2) + 2Cn2B2 log(Tn1n2)ϵ/3

)
+ T−c

and there exists some constant c′, C ′ such that

P
(
|I| > C ′B2 log2(Tn1n2)max{

√
n1n2, n2}

)
≤ T−c′ + T−c.

Now onto term II . Applying Lemma C.1 with ki = Θ̃i yields

P(|II| > ε) ≤ 2 exp

(
− 1

2ϵ
2

3B2∥Θ̃∥F +maxi=1,...,n1 ∥Θ̃i∥2
√
n2B2ϵ/3

)
.

Therefore there exist absolute constants c′′, C ′′ such that

P
(
|II| > C ′′√n2B∥Θ̃∥F log(T )

)
≤ T−c′′ ,

since maxi=1,...,n1 ∥Θ̃i∥2 =
√
maxi=1,...,n1 ∥Θ̃i∥22 ≤ ∥Θ̃i∥F and the claim follows.

References
[1] Duchi, J. C., Jordan, M. I. and Wainwright, M. J. [2013], ‘Local privacy, data processing

inequalities, and statistical minimax rates’, arXiv preprint arXiv:1302.3203 .

[2] Duchi, J. C., Jordan, M. I. and Wainwright, M. J. [2018], ‘Minimax optimal procedures for
locally private estimation’, Journal of the American Statistical Association 113(521), 182–201.

[3] Fryzlewicz, P. [2014], ‘Wild binary segmentation for multiple change-point detection’, The
Annals of Statistics 42(6), 2243–2281.

[4] Li, M. and Yu, Y. [2021], ‘Adversarially robust change point detection’, Advances in Neural
Information Processing Systems 34.

[5] Tsybakov, A. B. [2009], Introduction to Nonparametric Estimation, Springer.

[6] Vershynin, R. [2018], High-Dimensional Probability: An Introduction With Applications in
Data Science, Vol. 47, Cambridge University Press.

[7] Vostrikova, L. Y. [1981], Detecting “disorder” in multidimensional random processes, in
‘Doklady akademii nauk’, Vol. 259, Russian Academy of Sciences, pp. 270–274.

[8] Wang, D., Yu, Y. and Rinaldo, A. [2020], ‘Univariate mean change point detection: Penalization,
cusum and optimality’, Electronic Journal of Statistics 14(1), 1917–1961.

[9] Wang, D., Yu, Y. and Rinaldo, A. [2021], ‘Optimal change point detection and localization in
sparse dynamic networks’, The Annals of Statistics 49(1), 203–232.

[10] Wang, T. and Samworth, R. J. [2018], ‘High dimensional change point estimation via sparse
projection’, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80(1), 57–
83.

[11] Yu, B. [1997], Assouad, Fano, and Le Cam, in ‘Festschrift for Lucien Le Cam’, Springer,
pp. 423–435.

14


	Numeric results
	
	
	Probability bounds


