
Retaining Knowledge for Learning with Dynamic
Definition

Zichang Liu
Rice University

Houston, TX 77025
zichangliu@rice.edu

Benjamin Coleman
Rice University

Houston, TX 77025
brc7@rice.edu

Tianyi Zhang
Rice University

Houston, TX 77025
tz21@rice.edu

Anshumali Shrivastava
Rice University/ThirdAI Corp.

Houston, TX 77025
anshumali@rice.edu

Abstract

Machine learning models are often deployed in settings where they must be con-
stantly updated in response to the changes in class definitions while retaining high
accuracy on previously learned definitions. A classical use case is fraud detection,
where new fraud schemes come one after another. While such an update can be
accomplished by re-training on the complete data, the process is inefficient and
prevents real-time and on-device learning. On the other hand, efficient methods
that incrementally learn from new data often result in the forgetting of previously-
learned knowledge. We define this problem as Learning with Dynamic Definition
(LDD) and demonstrate that popular models, such as the Vision Transformer and
Roberta, exhibit substantial forgetting of past definitions. We present a first prac-
tical and provable solution to LDD. Our proposal is a hash-based sparsity model
RIDDLE that solves evolving definitions by associating samples only to relevant
parameters. We prove that our model is a universal function approximator and
theoretically bounds the knowledge lost during the update process. On practical
tasks with evolving class definition in vision and natural language processing, RID-
DLE outperforms baselines by up to 30% on the original dataset while providing
competitive accuracy on the update dataset.

1 Introduction

Motivation: A common machine learning pipeline is to first define a task objective based on
historical experience, then deploy a model trained to optimize the objective over collected data.
However, machine learning models rarely operate in such a static environment. Instead, models must
be dynamically updated to accommodate changes in class definitions without forgetting previous
knowledge. Consider the case of fraud detection, where models must adapt to emerging scam patterns
while also providing protection against previously-known patterns. Machine learning models are also
used to identify harmful microbes given gene sequences, where it is important to perform well on
new variants or newly discovered microorganisms. A similar situation arises when models are used to
filter inappropriate content such as hate speech and violence. New phrases or previously-innocuous
language may become inappropriate due to world events or attempts by users to circumvent the
filter. While the classification task remains the same (fraud or safe, harmful or not, inappropriate or
appropriate, etc.), class definitions evolve over time and likely differ significantly from the point of
the initial training. We refer to this setting as Learning under Dynamic Definition (LDD). It should be

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

noted that this notion is very different for several other notions of distribution shift in the literature,
which we review in the next section.

o

-0.2 0.3 2.8 0.1

1.2 4.3 -3.4 -5.2

0.4 0.9 -0.1 1.6

3.2 0.1 -0.3 2.1

3.4 2.1 -0.7 -0.9

0

2

1

3

4

0 1 2 3

Mean
0.54

2
3
3
1
0

h(x)
1

2

3

Figure 1: The figure demonstrates a toy
RIDDLE model with L = 5 and R =
4. Given an input x, we calculate its
hash code h(x) and access the weights
at those locations. We return the average
as the output.

A standard solution is to retrain the model on all available
data (original dataset and data for the new definitions).
This methodology is inefficient due to data storage and
extra computation, and even prohibitive when dealing with
large models and streaming data. Furthermore, it prevents
real-time and on-device learning. An ideal and efficient
solution is to update the trained model incrementally only
with data for the new definitions (e.g. using online gradi-
ent descent). However, this is a challenging process due
to the tendency of machine learning models, in particu-
lar neural networks, to forget previous knowledge. This
situation, known as collapse/catastrophic forgetting [25],
causes performance decay on the old definitions.

Our Proposal: Catastrophic forgetting occurs because
gradient updates from training examples in the update
process are able to change parameters that are tuned for
optimal performance on the original dataset [30]. Inspired
by recent connections between random partitions and dis-
tribution models [19], we propose RIDDLE (Retaining
Information in a Dynamically Defined Learning Environ-
ment), a novel architecture with meaningful parameter
groupings. RIDDLE works by partitioning the input space and assigning a set of parameters to
each partition. Gradient updates are restricted only to locally relevant parameters, identified by
cheap hashing computations. RIDDLE can be viewed as a Mixure-of-Expert-Layer where the gating
function is Locality Sensitive Function (LSH) and each expert is just one number. At the same time,
RIDDLE can be viewed as a kernel method where the prediction is an efficient weighted kernel
density estimation. RIDDLE can be plugged into diffirent neural network architectures, just like fully
connect layers, to ease the memory loss while utilizing the learned features, as shown in Figure 2.
We summarize our technical contributions below.

• We introduce the RIDDLE (in Section 3), consisting of a set of parameters indexed by
locality-sensitive hash functions. RIDDLE is computationally efficient and requires less
memory than popular machine learning models with similar accuracy.

• We prove that RIDDLE is universal function approximator and can therefore represent
any function(Section 4). We prove a formal connection between parameter usage and
distribution similarity in Theorem 3.2.

• In Section 5, we apply RIDDLE in the dynamic definition setting for four real-world tasks.
Our method outperforms baselines by up to 30% on the original dataset while achieving
competitive accuracy on the new dataset.

2 Related Work

Continual Learning: Continual learning refers to learning and remembering multiple tasks from
a stream of information. Current approaches can be split into three main categories (1) memory
replay to complement neural networks [45, 29], (2) constraints on network updates [38, 28, 52],
and (3) dynamic architectural adjustments to accommodate new information, such as additional
layers [49, 61]. Recently, few-shot learning methods are also applied into continue learning to solve
sequential learning with limited data [8, 58, 53]. Continual learning methods encounter similar
challenges to the ones presented by learning under dynamic distribution, most notably catastrophic
forgetting. However, continual learning attempts to solve a sequence of related tasks, often expressed
as task embeddings, over data that does not necessarily reflect changes in class definitions.

Train-Test Distribution Shift: Transfer learning and test-time adaptation attempt to remedy mis-
alignments between the training and test distribution. Although such methods may seem relevant in
learning with dynamic definition, they have dramatically different goals. Transfer learning attempts to

2

adapt a model from a data-rich source domain to a data-scarce target domain, without regard for the
performance on the source domain [65, 56, 59]. While several works on train-test distribution shift
focus on robustness, it is from the perspective of out-of-distribution detection [24, 39] or uncertainty
estimation [44, 33, 57]. Our objective is to provide models that perform well on both the original
dataset and new dataset, where class definitions are different, rather than simply detect or adapt to the
distribution change.

Online Learning: Online learning regards optimization as a process where a model is trained by
interacting with a stream of data. Online learning algorithms attempt to minimize the regret, or
difference between the loss of the predictions by the incrementally-trained model and the loss of the
globally optimal model [48, 46]. Online learning methods attain minimal regret against adaptive
adversaries and could be expected to perform well in the dynamic distribution setting. However, the
best performing methods for non-convex online learning require retraining over all previous data at
every time step [55], making them practically unsuitable for the tasks we consider.

Locality-Sensitive Hashing in Machine Learning: Locality-sensitive hash (LSH) functions are a
central component of our proposal. An LSH family is a set of functions that maps similar inputs to the
same hash value (with high probability). LSH is an incredibly powerful and well-studied framework,
with the following formal definition [27, 7, 20, 4].
Definition 2.1 ((S0, cS0, p1, p2)-sensitive hash family). A family H is called (S0, cS0, p1, p2)-
sensitive with respect to a similarity function sim(·, ·) if for any two points x, y 2 RD and h chosen
uniformly from H satisfies:

• If sim(x, y) � S0 then Pr[h(x) = h(y)] � p1

• If sim(x, y) cS0 then Pr[h(x) = h(y)] p2

The probability Pr[h(x) = h(y)] is known as the collision probability of x and y, where we use
the term “collision” to mean that two points map to the same hash value. For the purpose of our
arguments, we use a stronger notion of LSH, in which the collision probability is a monotonic
increasing function of the similarity between x and y. That is Pr[h(x) = h(y)] / f(sim(x, y)).

Under the above conditions, the collision probability Pr[h(x) = h(y)] forms a positive semi-definite
radial kernel [19]. A number of useful kernels can be obtained via LSH, including MinHash for the
Jaccard kernel [12], signed random projections for the angular kernel [15], and p-stable LSH for a
kernel in Euclidean space [20].

Recent works have shown that LSH can be used for efficient statistical estimation [54, 14, 41, 19, 35,
36, 37, 62], compressive machine learning [34],nearest neighbor search [5, 7, 6] and to accelerate
neural network training and inference [17, 16, 32, 40, 63]. A particularly relevant result is the RACE
sketch [19], which solves kernel density estimation using the number of examples that fall into the
random partitions induced by an LSH function.

3 RIDDLE for Learning with Dynamic Definition

Learning with Dynamic Definition: We formally define the problem as follows.
Definition 3.1. Given a model f(x; ✓) and a loss `(f(x; ✓), y), consider an original dataset Do =
{(xo

i , y
o
i)}

m
i=1 drawn i.i.d. from a distribution P o and an update dataset Du = {(xu

i , y
u
i)}

n
i=0 drawn

i.i.d from distribution Pu. Let ✓o be the parameters that optimize Lo(✓) =
P

Do `(f(x; ✓), y). The
dynamic definition learning problem is to find a solution minimizing Lo+u(✓) when we are only
given access to ✓o and Du.

Lo+u(✓) =
X

(x,y)2Do

`(f(x; ✓), y) +
X

(x,y)2Du

`(f(x; ✓), y)

In this paper, we consider the model performance in response to the changes from P o to Pu,
specifically by allowing x to be drawn from different input spaces. Note that Definition 3.1 generalizes
in a straightforward way to sequences of dataset updates by considering Do to be the union of all prior
data. The difficulty of the problem may be expressed in terms of the Kullback-Leibler divergence
DKL(P o

kPu). Intuitively, small changes in distribution are easier to handle because ✓ need not
change substantially to perform well on Du.

3

3.1 Architecture

RIDDLE is a 2D parameter array S that contains L rows and R columns S 2 RL⇥R. The model is
indexed by a set of L randomly generated LSH functions hl ! {1, . . . R} 2 Z for l = 1, . . . L. The
prediction evaluated at a query x is defined as following:

f(x;S, h) =
1

L

LX

l=1

S[l, hl(x)]

Algorithmically, the process consists of three steps: (1) hash code computation, (2) partition look-ups,
and (3) output averaging. Specifically, the model output for a query x is an average over the L
parameters retrieved from S using the hash codes h(x). Figure 1 illustrates a toy example.

For a classification problem with C classes, the 2D array is repeated C times, resulting in a 3D
tensor of parameters S 2 RC⇥L⇥R. The same LSH functions are used for all C repetitions, and the
classification prediction for query x is defined as follows:

f(x;S, h) = argmaxc2C

1

L

LX

l=1

S[c, l, hl(x)]

!

RIDDLE can be used as a stand alone machine learning model on simple datasets but can also be
combined with existing neural networks. Specifically, RIDDLE can use the learned representation
from neural network (Figure 2). RIDDLE can also be implemented in standard deep learning
frameworks and trained using SGD (Algorithm 1). It should be noted that the parameters of LSH
functions h(x) are not trainable. Only the values in S 2 RL⇥R will be updated by SGD. The
inference process consists only of inexpensive hash evaluations and memory look-ups. We use LSH
functions based on sparse projections [2], which compute h(x) via an inner product with parameter
vectors randomly drawn from {�1, 0, 1} with probability {1/6, 2/3, 1/6}. With such a hash function,
computation can be reduced to addition, subtraction and memory lookup.

3.2 Intuition

RIDDLE may seem conceptually different from neural networks at first gasp, however, RIDDLE
can be viewed as a combination of Mixture-of-Expert-Layers [23] with Kernel Methods [26]. To
understand RIDDLE as a mixture of experts, observe that the gating function for every row in
RIDDLE is a randomly initialized hashing function hi, and the expert is one number stored at
S[i, hi(x)]. RIDDLE can be viewed as an ensemble of L such Mixture-of-Expert-Layers. On the
other side, RIDDLE is also a kernel density estimation process where the LSH collision probability
is the kernel function. The number stored at S[i, hi(x)] is an efficient estimation of the weighted
kernel values between the test sample and training samples.

3.3 RIDDLE for Learning with Dynamic Definition

Before we determine the class of functions that are representable using our model, we first demonstrate
that this architecture addresses the problem from Definition 3.1. We consider a RIDDLE model
f(x;S, h) following the notation from Section 3.1. That is, we are given a model with parameters
✓ = (S, h) trained on Do. We wish to adapt the model on Du using gradient descent.

Parameter Separation: The RIDDLE partitions parameters in such a way that inputs from different
distributions are likely to use different parameters. The parameter update may be written as:

St+1 = St[l, hl(x)] + ⌘g[l] for l = 1 . . . L, where g = r`

1

L

LX

l=1

S[l, hl(x)], y

!

From this expression, we can see that L parameters are involved in the computation of f(x;S, h)
- specifically, the parameters selected by the hash functions {h1(x)...hL(x)}. Based on the LSH
property (Definition 2.1), we expect unrelated inputs to have different hash values and therefore use
different parameters. When Pu is significantly different from P o, xu

2 Du and xo
2 Du are likely

to activate different partition and thus use different parameter sets.

4

Algorithm 1 RIDDLE Training
Input: Training Dataset D, |D| = m, number of rows L, number of cells R, learning rate ⌘, error
function E(·), number of epochs e, batch size b, random seed s.
Output: Trained Model S, Counters C
Initialize: Zero initialize S 2 RL⇥R; Zero initialize counters C 2 RL⇥R; Randomly generated L
independent LSH functions h1, . . . , hL using random seed s;
for i = 1 ! e do

Shuffle dataset D
for j = 0 ! m/b� 1 do

Take b samples {xjb, xjb+1, . . . , x(j+1)b�1} with labels {yjb, yjb+1, . . . , y(j+1)b�1}

Compute gradient g = 1
mrS

P
i E(fS,h(xi), yi)

Apply update S ! S � ⌘g
end for

end for
for every xi 2 D do

Increase counters C[l, hl(xi)]+ = 1 for l = 1 . . . L
end for

We formalize this intuition below by showing that the difference between f(x;S, h) and its initializa-
tion is bounded by an estimate of the distribution P o.
Theorem 3.2. Given a dataset D, train a RIDDLE model f(x;S, h) by running Algorithm 1 for e
epochs with learning rate ⌘ and initialization S0. Suppose the gradient norms are bounded by G.
Then

|Eh[f(x;S, h)� f(x;S0, h)]| e⌘GKDE(x,D)

where KDE(x,D) is the kernel density of x over D using the kernel of the LSH function h.

Theorem 3.2 allows us to prove the following guarantee:
Theorem 3.3. Using the notation from Definition 3.1, let So be the sketch that optimizes the loss
Lo(S) over Do and So+u be the sketch obtained by training over Du for e epochs with learning rate
⌘ and initialization So. If the loss is L-Lipschitz with G-bounded gradients, then:

Eh[Lo(So+u)� Lo(So)]
X

x2Do

GLe⌘KDE(x,Du)

The loss difference in Theorem 3.3 quantifies the amount of information about Do that is forgotten
by the model when trained on Du. The excess loss on example x 2 Do is bounded by the kernel
density estimate KDE(x,Du). When Do and Du are drawn from different distributions, which
is the characteristic of learning under dynamic distribution, the density becomes small (i.e. as the
divergence DKL(P o

kPu) ! 1, KDE(x,Du) ! 0).

Parameter Importance: The RIDDLE allows us to determine the importance level of each parameter
for encoding information from the original distribution with simple counting. We may do this by
counting the number of inputs from Do that fall into each partition, using a set of counters C 2 RL⇥R.
Parameters with a large counter c can be regarded as important for the original distribution, as they
participate in prediction for a large fraction of examples from Do. Our intuition is that parameters
corresponding to partitions with large count values are critical for performance on Do and should
not be adjusted. We use this idea to improve performance via partition-dependent learning rates.
Specifically, we allow the learning rate ⌘(c) depend on the partition count c. We find that the following
update rule provides good empirical results:

⌘(c) /
c̄+ ↵

c log c+ 1
, where ↵ is a constant

4 RIDDLE is a Universal Function Approximator

In this section, we analyze the class of functions that can be represented using the RIDDLE. Using
techniques from the sketching literature, we prove a probabilistic guarantee.

5

Intuition: To see why it is reasonable for our model to be a universal function approximator, observe
that the function learned by RIDDLE is a piecewise-constant spline function. Splines are an incredibly
powerful representation that can approximate any function, given sufficient flexibility in choosing
the partitions (or knots) of the spline [51, 50]. For example, many neural networks can be written as
compositions of piecewise-linear splines over a constrained set of partitions[11, 10, 9, 60]. In our
case, the partition boundaries are determined by the intersection of LSH functions. With sufficient
independent overlapping partitions (large L), our model attains a high-quality representation.

Proof Sketch: We prove that the expected output of our model is a universal function approximator,
where the expectation is taken over the choice of LSH functions. We begin with a proof that any
continuous and bounded function can be approximated arbitrarily well by a weighted kernel sum over
an N point dataset. We then develop a process that constructs a RIDDLE S 2 RL⇥R whose expected
output is this kernel sum. Using Chernoff bounds, we show that the error between the model and the
kernel sum becomes arbitrarily small as L ! 1 (with high probability). Taken together, we have a
probabilistic guarantee for the error between the RIDDLE and any continuous and bounded function.

Simplified optimization in practice: Constructing a RIDDLE over a carefully chosen N point
dataset can approximate any continuous and bounded function. However, learning both the data
and data weights with N being arbitrarily large poses difficulty in optimization. We simplify the
optimization by observing that the output of the learning process is not a dataset but a model.
Therefore, we consider the easier task of learning the model parameters values directly in practice
as shown in Algorithm 1. This is a slight relaxation of the problem, however, we argue that with
a row-sum constraint and a reasonable uniqueness assumption about the hash partitions, the two
processes are equivalent in practice. Thus, the RIDDLE is a universal function approximator.

4.1 Weighted LSH Kernel Sums are Universal Function Approximators

We are interested in the representation capabilities of weighted kernel sums over an N -point dataset
D = {x1, ...xN}. We consider the specific case where the kernel is the collision probability of an
LSH function. Such kernels are referred to in the literature as LSH kernels [19].

f(x) =
NX

i=1

↵iK(x, xi)

The crucial property is that LSH kernels are universal. Informally, a kernel is universal if a weighted
kernel sum over a carefully-chosen point set can approximate any function with arbitrary accuracy [42].
Some restrictions apply; the size of the point set is allowed to be arbitrarily large and the accuracy is
computed over any compact subset of Rd rather than the entire space.
Definition 4.1. Universal Kernel [42]: Let S(X) denote the space of bounded and continuous
functions on a compact domain X . Then a kernel K(x, y) is universal if it is continuous and induces
a reproducing kernel Hilbert space that is dense in S(X).

Applied to our problem, a universal kernel is one which can approximate any well-behaved function
over compact subsets of Rd using a linear combination of kernels. The theory of universal kernels
allows for a convergence-style proof for weighted LSH kernel sums. We begin by showing that the
p-stable LSH functions are universal kernels. We defer proofs to the appendix.
Lemma 4.2. The L2 LSH kernel [19] induced by the p-stable LSH function [20] is shift-invariant
and universal.
Theorem 4.3. Given a continuous and bounded function g(q) and any ✏ > 0, there exists a set of
coefficients {↵n}, set of points {xn} and an integer N such that

fN (q) =
NX

n=1

↵NK(xn, q) kfN (q)� g(q)kX ✏

where K(xn, q) is the L2 LSH kernel and X is any compact subset of Rd.

4.2 RIDDLE for Weighted LSH Kernel Sums

The next step of our proof is to construct a RIDDLE capable of approximating fN (q) from Theo-
rem 4.3. We consider a RIDDLE model with S 2 RL⇥R constructed from a set of points {xn} with

6

coefficient {↵n} in the following way. For every data point x 2 {xn}, we calculate the indices of x
using a collection of L2 LSH functions hl(x) for l = 1, . . . , L. Then, we increment the value of S at
location (l, hl(x) with the weight ↵. To query the model, we calculate the index of the query q using
the same LSH functions and retrieve the values S[l, hl(q)] for l = 1, . . . , L, which we aggregate
and return. It should be noted that recent algorithms from the sketching literature propose similar
constructions [19, 18], but with the weights constrained to ↵n 2 {+1, �1}.

One can prove S yields a sharp unbiased estimator for the weighted kernel sum (Proofs in appendix).
Theorem 4.4 (RIDDLE Estimator). Given a dataset D of weighted samples {(↵xi , xi)}, let h(x)
be an LSH function drawn from an LSH family with collision probability K(·, ·). Let S be a 2d
parameter array constructed using h(x). For any query q,

E(S[h(q)]) =
|D|X

i

↵xiK(xi, q), var (S[h(q)])

0

@
|D|X

i

↵xi

p
K(xi, q)

1

A
2

The key insight is that each row of S is an unbiased estimator for weighted sums of LSH kernels.
By finding the central tendency of the L rows, we can obtain a sharp concentration around fN (q).
Although we often use the average to do the aggregation in practice, we analyze the median-of-means
estimator [3, 14], as it allows us to prove an exponential concentration of the estimate around the
weighted KDE. Note that while this simplifies the proof, it does not affect the convergence to fN (q)
as L ! 1. We combine the variance bound from Theorem 4.4 with the median-of-means guarantee
to obtain a relationship between the RIDDLE parameters S, weighted kernel values, and estimation
error.
Theorem 4.5 (Weighted-KDE Estimation Error). Let Z(q) be the median-of-means estimate con-
structed using the L unbiased estimators. Then with probability 1� �,

|Z(q)� fK(q)| ✏ ✏ = 6
f̃K(q)
p
L

p
log 1/�

where fK(q) and f̃K(q) are the weighted KDE with kernels K(x, q) and
p
K(x, q), respectively.

The universal approximation property of our model follows by observing that the error ✏ in Theo-
rem 4.5 goes to zero as N ! 1 and ✏ ! 0 in Theorem 4.3 as L ! 1.

5 Experiments

In this section, we first evaluate RIDDLE on practical dynamic distribution learning task in Sec-
tion 5.1. Further, since we prove RIDDLE as a universal function approximator, we provide an
extensive study on the expressiveness and efficiency of RIDDLE in Section 5.2. Code is available at
https://github.com/lzcemma/RIDDLE.

5.1 RIDDLE for Learning under Dynamic Definition

Here, we investigate whether RIDDLE can adapt to new distributions while retaining good perfor-
mance on the original distributions.

5.1.1 Datasets

We consider four datasets that reflect dynamic distributions. Every dataset is organized into two parts:
the original dataset Do and the update dataset Du. Do and Du have significant semantic differences
and do not share any overlapping training data.

MNIST Binary: We randomly partitioned digits into two groups (e.g. 4, 1, 7, 5, 3 and 9, 0, 8, 6, 2)
and train the model to predict the group assignment of an image. For the original distribution, we
randomly choose 3 digits from the first group and 3 digits from the second group such as Do only
consists images of 4, 1, 7, 9, 0, 8. The update dataset consists of images of the remaining digits.

7

https://github.com/lzcemma/RIDDLE

!
"#

!
Pretrained Model $

"#

(a) (b)

Figure 2: RIDDLE can be used as a stand-alone model, as shown in (a). We use this setting for
experiments on MNIST-binary and all experiments studying expressiveness and efficiency. RIDDLE
can also be combined with existing neural networks, as shown in (b). We replace the classification
layer with RIDDLE for experiments on CIFAR10, ImageNet, and News

CIFAR10: The task is to predict whether the object in the image is capable of carrying things (e.g.
car and horse can carry things, while a frog cannot). The original dataset Do contains images of 6
out of 10 objects that can and cannot carry things, and the update dataset Du contains the remaining
4 objects.

ImageNet: The task is to predict whether a person is allergic to the object in the image. We select
the image classes overlapping with national allergen directctory [1], and assign images to the allergen
and non-allergen classes based on the common allergen group in national allergen directory [1].
The original dataset Do contains a subset of allergens and non-allergens, while the update dataset
Du contains the remaining objects. This task was built to mimic the the seasonal addition and
sensitization of new allergens.

News: The original task for the News dataset [43] is to predict the news topics given a caption and
short description. We re-task the dataset to predict whether a person would be interested in a new
article by assigning some topics as interesting and the rest as not-interesing. The original dataset Do

contains news from a subset of interesting and non-interesting topics, while the update dataset Du

contains the rest. We organize this dataset to reflect changes in a user’s interests.

5.1.2 Baselines

We compare RIDDLE with two updating strategies on different architectures.

Update: We train a neural network to full convergence on the original dataset Do. Then, for updating,
we train models only on the update dataset Du, where the initialization is the parameters obtained on
Do. This approach does not require data storage nor training computation over the original dataset.

Elastic Weight Consolidation(EWC): [31] was proposed to mitigate catastrophic forgetting by se-
lectively slowing down learning on the weights important for previous tasks using Fisher information.

5.1.3 Experiment Details

For tasks where it is reasonable (CIFAR10, ImageNet and News), we exploit recent advances in large
scale pretrained models and replace the final layer with RIDDLE. Pretrained models are usually
trained on a diverse corpus of unlabeled data and are likely to provide good featurization across
distributions. [47] also observe that pretrained models are more resistant to forgetting.

5.1.4 Main Results

Table A.1 summarizes the test accuracy of all models after training on the original dataset and after
the update. After training on the original dataset, we observe that all models achieve roughly the

8

Trained on original dataset Updated on update dataset
Dataset Method Original Update Original Update

MNIST Binary
Update-MLP 99.2 59.1 69.1 98.9
EWC-MLP 99.2 59.8 90.9 96.7
RIDDLE 99.2 60.2 98.3 98.0

CIFAR10

Update-Resnet18 93.3 69.4 63.22 88.9
Update-ViT 93.3 72.6 74.4 92.7

EWC-Resnet 92.0 71.8 75.9 83.9
EWC-ViT 91.3 75.5 84.5 90.5
RIDDLE 93.0 75.7 89.0 90.9

ImageNet

Update-Resnet18 76.0 45.2 46.53 62.5
Update-ViT 74.3 45.3 55.6 71.5

EWC-Resnet 74.0 46.6 52.8 68.2
EWC-Vit 71.8 41.2 54.5 71.8
RIDDLE 74.3 45.8 67.1 70.5

News

Update-RoBERTa 96.1 54.8 74.0 85.7
EWC-RoBERTa 96.5 45.5 86.1 87.5

RIDDLE 96.6 54.6 89.7 86.4

Table 1: This table summarizes the accuracy after training on original dataset, and after training
on update dataset. The RIDDLE obtains comparable accuracy on original test set and update test
set after trained on corresponding train set. The RIDDLE’s accuracy is significantly higher than all
baselines on original test set after updating.

same accuracy on original test set. Accuracy on update test dataset is much worse, which is expected
since the update distribution is significantly different from the original distribution.

We are interested in the accuracy on original dataset after updating the model on update dataset. We
observe a 20% to 30 % accuracy drop on the original accuracy with naive updating. Models such
as Resnet18 and ViT display catastrophic forgetting behavior, eventually performing no better than
random. EWC is effective in prevent forgetting to some extend, reducing the degradation to around
10% to 20%. The RIDDLE significantly outperforms both baselines combined with all architectures
across datasets up to in terms of original test set accuracy. Indeed, the RIDDLE keeps the accuracy
degradation below 7 %. For example, the accuracy drop is only 0.9% on Mnist-Binary. On the
updated test set, the RIDDLE achieves competitive accuracy (Table A.1), indicating that it is learning
the properties of both distributions.

Note that ViT outperforms Resnet18 on both CIFAR10 and ImageNet, which confirms our intuition
that pretrained models are inherently more robust to distribution changes. By switching the final
classification layer to the RIDDLE, we increase the accuracy by a large margin. The experiment results
strongly support our hypothesis that the RIDDLE retains the ability to adapt to new distributions
while being less vulnerable than established methods to knowledge loss.

5.1.5 Ablation on Update Rule

There are two main drivers of performance when training RIDDLE over dynamically evolving
definitions: the hash function and the parameter-dependently learning rate.

Without a learning rate that depends on parameter importance, the test accuracy on the original
MNIST test set after updating is 94.9%, which is 26 % higher than Update-MLP, 4 % higher than
EWC-MLP. Using the dynamic learning rate, RIDDLE achieves 98%. There could be smarter or
simpler update functions based on the parameter count, which we leave for future work.

MLP Global Learning Rate ⌘(c) / c̄
c log c+1

Test accuracy on original 69.1 94.9 98.3

Table 2: This table displays the effect of the partition-dependent learning rate. “Global Learning
Rate” means that the learning rate is not related to parameter counts.

9

Dataset LightGBM Random Forest XGBoost NN1 NN2 RIDDLE
Susy 0.7903 0.7880 0.7926 0.8019 0.8024 0.7924
HAR 0.8532 0.8387 0.8532 0.9027 0.9123 0.9001

Covtype 0.9565 0.9932 0.9874 0.9836 0.9936 0.9853
Connect4 0.8171 0.8335 0.8171 0.8558 0.8657 0.8586

Fashion MNIST 0.8848 0.8777 0.8848 0.8852 0.8889 0.8852
Boston Housing 1.77 2.05 1.62 2.57 2.16 1.74

Table 3: This table summarizes the accuracy comparison. NN1 and NN2 denote two different deep
learning models. RIDDLE achieves higher accuracy than at least half of the baselines on all datasets.

Dataset Method Accuracy Memory(MB) Flops (M) Inference Time (µs)

MNIST NN 0.9815 3.59 0.90 164.177
RS 0.9784 1.36(1.6X) 0.15(6.1X) 42.003 (3.9X)

Fashion MNIST NN 0.8852 2.59 0.65 131.385
RS 0.8852 1.92(1.6X) 0.13(5X) 39.228 (3.3X)

HAR NN 0.9027 2.11 0.53 166.584
RS 0.9001 1.18(1.8X) 0.18 (2.9X) 46.567 (3.6X)

Boston Housing NN 2.16 1.96 0.51 61.338
RS 1.74 0.53(3.7X) 0.03 (17X) 21.862 (2.8X)

Table 4: This table summarizes the efficiency comparison between the RIDDLE and a neural network
(NN) with similar accuracy. The RIDDLE reduces memory by up to 3.7x, FLOPs by up to 17x and
inference time by up to 3.9x.

5.2 Study on Expressiveness and Efficiency

In this section, we investigate whether RIDDLE is competitive among popular machine learning
models in terms of expressiveness and efficiency. Our goal is to show that RIDDLE provides a good
model representation for a variety of tasks. We curated a diverse set of datasets from UCI and Kaggle.
These datasets cover a wide range of tasks and domains and are widely used as benchmarks in other
works [64, 22]. All experiments are conducted on a machine with 96 24-core/2-thread/2-socket
processors (Intel Xeon(R) Gold 5220R 2.20GHz) and 8 Nvidia V100 32GB.

In Table 5.2, we observe that RIDDLE outperforms popular linear methods and is competitive
compared to deep learning methods. NN1 and NN2 denote two different neural network architec-
tures(Details in Appendix). Both the architecture and evaluation metric is included in Table A.2. We
also investigate the efficiency and memory requirement. This is important, as it shows that RIDDLE
does not outperform other methods due to an increased parameter size. Table 5.2 shows that RIDDLE
attains the same accuracy as baseline methods with a smaller memory footprint, fewer FLOPs and a
faster inference speed. Specifically, we use up to 3.7X less memory, use 17X less FLOPs, and achieve
3.9x faster inference speed. The memory improvements likely arise from the meaningful parameter
groupings, while the computational improvements are because it only uses addition, subtraction and
array lookup operations. This experiment confirms that even though the RIDDLE allocates different
parameters to different distributions, we do not require more parameters than existing methods to
achieve robustness or accuracy. One limitation now is that memory grows linear with number of
class, which can be address with smart hashing mechanism.

6 Conclusion

In this work, we propose an expressive and efficient model RIDDLE for learning under dynamic
distribution. Our setup concerns common scenarios where model has to be updated given distribution
changes. The model is structured to be invulnerable to forgetting because gradients updates are
naturally restricted to only input relevant parameters. Further, RIDDLE can be used for efficient
weighted kernel density estimation.

Acknowledgments

This work was supported by National Science Foundation SHF-2211815, BIGDATA-1838177, ONR
DURIP Grant, and grants from Adobe, Intel, Total, and VMware.

10

References
[1] Asthma and allergies foundation of america, https://www.aafa.org/types-of-allergies/.

[2] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66(4):671–687, 2003. Special Issue on PODS
2001.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and system sciences, 58(1):137–147, 1999.

[4] Alexandr Andoni, Piotr Indyk, TMM Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. In Advances in Neural Information Processing
Systems (NIPS), pages 1225–1233. Curran Associates, 2015.

[5] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive
hashing. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 1018–1028. SIAM, 2014.

[6] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-
based time-space trade-offs for approximate near neighbors. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 47–66. SIAM, 2017.

[7] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 793–801, 2015.

[8] Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining
benchmarks for continual few-shot learning, 2020.

[9] Randall Balestriero and Richard G. Baraniuk. Mad max: Affine spline insights into deep
learning. Proceedings of the IEEE, 109(5):704–727, 2021.

[10] Randall Balestriero, Romain Cosentino, Herve Glotin, and Richard Baraniuk. Spline filters
for end-to-end deep learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 364–373. PMLR, 10–15 Jul 2018.

[11] Randall Balestriero and richard baraniuk. A spline theory of deep learning. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 374–383. PMLR,
10–15 Jul 2018.

[12] A. Broder. On the resemblance and containment of documents. In Proceedings of the Com-
pression and Complexity of Sequences 1997, SEQUENCES ’97, page 21, USA, 1997. IEEE
Computer Society.

[13] Claudio Carmeli, Ernesto De Vito, Alessandro Toigo, and Veronica Umanitá. Vector valued
reproducing kernel hilbert spaces and universality. Analysis and Applications, 8(01):19–61,
2010.

[14] Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high
dimensions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1032–1043. IEEE, 2017.

[15] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, page 380–388,
New York, NY, USA, 2002. Association for Computing Machinery.

[16] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. {MONGOOSE}: A learnable {lsh} framework for
efficient neural network training. In International Conference on Learning Representations,
2021.

11

[17] Beidi Chen, Tharun Medini, and Anshumali Shrivastava. SLIDE : In defense of smart algorithms
over hardware acceleration for large-scale deep learning systems. CoRR, abs/1903.03129, 2019.

[18] Benjamin Coleman, Richard Baraniuk, and Anshumali Shrivastava. Sub-linear memory sketches
for near neighbor search on streaming data. In International Conference on Machine Learning,
pages 2089–2099. PMLR, 2020.

[19] Benjamin Coleman and Anshumali Shrivastava. Sub-Linear RACE Sketches for Approximate
Kernel Density Estimation on Streaming Data, page 1739–1749. Association for Computing
Machinery, New York, NY, USA, 2020.

[20] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on
Computational Geometry, SCG ’04, page 253–262, New York, NY, USA, 2004. Association for
Computing Machinery.

[21] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pages 253–262, 2004.

[22] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. Autogluon-tabular: Robust and accurate automl for structured data, 2020.

[23] William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning,
2022.

[24] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution
detection. CoRR, abs/2106.03004, 2021.

[25] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks, 2013.

[26] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel methods in machine
learning. The Annals of Statistics, 36(3), jun 2008.

[27] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, page 604–613, New York, NY, USA, 1998. Association for Computing
Machinery.

[28] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep
neural networks. arXiv preprint arXiv:1607.00122, 2016.

[29] Nitin Kamra, Umang Gupta, and Yan Liu. Deep generative dual memory network for continual
learning. arXiv preprint arXiv:1710.10368, 2017.

[30] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[31] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. CoRR, abs/1612.00796, 2016.

[32] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer, 2020.

[33] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

[34] Xiaoyun Li and Ping Li. Generalization error analysis of quantized compressive learning.
Advances in Neural Information Processing Systems, 32, 2019.

12

[35] Xiaoyun Li and Ping Li. Random projections with asymmetric quantization. Advances in
Neural Information Processing Systems, 32, 2019.

[36] Xiaoyun Li and Ping Li. Quantization algorithms for random fourier features. In International
Conference on Machine Learning, pages 6369–6380. PMLR, 2021.

[37] Xiaoyun Li and Ping Li. Quantization algorithms for random fourier features. In International
Conference on Machine Learning, pages 6369–6380. PMLR, 2021.

[38] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[39] Shiyu Liang, Yixuan Li, and R. Srikant. Principled detection of out-of-distribution examples in
neural networks. CoRR, abs/1706.02690, 2017.

[40] Zichang Liu, Zhaozhuo Xu, Alan Baonan Ji, Jonathan Li, Beidi Chen, and Anshumali Shrivas-
tava. Climbing the WOL: training for cheaper inference. CoRR, abs/2007.01230, 2020.

[41] Chen Luo and Anshumali Shrivastava. Arrays of (locality-sensitive) count estimators (ace):
Anomaly detection on the edge. In Proceedings of the 2018 World Wide Web Conference,
WWW ’18, page 1439–1448, Republic and Canton of Geneva, CHE, 2018. International World
Wide Web Conferences Steering Committee.

[42] Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of Machine
Learning Research, 7(12), 2006.

[43] Rishabh Misra. News category dataset, 2022.

[44] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in neural information processing
systems, 32, 2019.

[45] German I Parisi, Jun Tani, Cornelius Weber, and Stefan Wermter. Lifelong learning of spatiotem-
poral representations with dual-memory recurrent self-organization. Frontiers in neurorobotics,
page 78, 2018.

[46] Sebastian Pokutta and Huan Xu. Adversaries in online learning revisited: with applications in
robust optimization and adversarial training. CoRR, abs/2101.11443, 2021.

[47] Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2022.

[48] Alon Resler and Yishay Mansour. Adversarial online learning with noise. CoRR,
abs/1810.09346, 2018.

[49] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[50] Jürgen Schmidhuber. Discovering problem solutions with low kolmogorov complexity and
high generalization capability. Technical report, MACHINE LEARNING: PROCEEDINGS OF
THE TWELFTH INTERNATIONAL CONFERENCE, 1994.

[51] Isaac J Schoenberg. Contributions to the problem of approximation of equidistant data by
analytic functions. In IJ Schoenberg Selected Papers, pages 3–57. Springer, 1988.

[52] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning,
pages 4548–4557. PMLR, 2018.

[53] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 4080–4090, Red Hook, NY, USA, 2017. Curran Associates Inc.

13

[54] Ryan Spring and Anshumali Shrivastava. A new unbiased and efficient class of lsh-based
samplers and estimators for partition function computation in log-linear models, 2017.

[55] Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
leader is optimal. CoRR, abs/1903.08110, 2019.

[56] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts, 2020.

[57] Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation
using a single deep deterministic neural network. In International conference on machine
learning, pages 9690–9700. PMLR, 2020.

[58] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In NIPS, pages 3630–3638, 2016.

[59] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization, 2021.

[60] Zichao Wang, Randall Balestriero, and Richard Baraniuk. A MAX-AFFINE SPLINE PERSPEC-
TIVE OF RECURRENT NEURAL NETWORKS. In International Conference on Learning
Representations, 2019.

[61] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[62] Amir Zandieh, Navid Nouri, Ameya Velingker, Michael Kapralov, and Ilya Razenshteyn.
Scaling up kernel ridge regression via locality sensitive hashing. In International Conference
on Artificial Intelligence and Statistics, pages 4088–4097. PMLR, 2020.

[63] Minjia Zhang, Xiaodong Liu, Wenhan Wang, Jianfeng Gao, and Yuxiong He. Navigating with
graph representations for fast and scalable decoding of neural language models. arXiv preprint
arXiv:1806.04189, 2018.

[64] Zhi-Hua Zhou and Ji Feng. Deep forest: Towards an alternative to deep neural networks. CoRR,
abs/1702.08835, 2017.

[65] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui
Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE,
109(1):43–76, 2020.

14

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

	Introduction
	Related Work
	RIDDLE for Learning with Dynamic Definition
	Architecture
	Intuition
	RIDDLE for Learning with Dynamic Definition

	RIDDLE is a Universal Function Approximator
	Weighted LSH Kernel Sums are Universal Function Approximators
	RIDDLE for Weighted LSH Kernel Sums

	Experiments
	RIDDLE for Learning under Dynamic Definition
	Datasets
	Baselines
	Experiment Details
	Main Results
	Ablation on Update Rule

	Study on Expressiveness and Efficiency

	Conclusion
	Appendix
	Additional Experiment Result
	Experiment Setup
	Theory
	Proof of Theorem 4.4
	Proof of Lemma A.2
	Proof of Theorem 4.5
	Proof of Lemma 4.2
	Proof of Theorem 4.3
	Proof of Theorem 3.2
	Proof of Theorem 3.3

