
VaiPhy: a Variational Inference Based Algorithm for
Phylogeny
Appendix

A The VaiPhy Algorithm

A.1 Update Equation Details

The update equations of VaiPhy follow the standard mean-field VI updates. The variational distri-
bution factorizes over the tree topology, ancestral sequences of each latent vertex, and the branch
lengths of all edges in the graph (Eq. (18));

q(τ,B, Z|X) = q(B|X)q(τ |X)q(Z|X) (18)

=
∏
e∈G

q(b(e)|X)q(τ |X)
∏

i∈I(A)

q(Zi|X). (19)

(20)

For brevity, we denote the set of neighbors of node i with Nτ (i) and their sequences with YNτ (i) in
this section. Furthermore, ¬i is the set of nodes except node i, and C is a constant.

Ancestral sequence update equation

log q∗(Zi|X) ∝ Eq(τ,B,Z¬i|X) [log pθ(X,Z,B, τ)] (21)

=
∑
τ

∫
B

∑
Z¬i

q(τ |X)q(B|X)q(Z¬i|X) [log pθ(X,Zi, Z¬i,B, τ)] dB (22)

=
∑
τ

∫
B
q(τ |X)q(B|X)

 ∑
Yj∈YNτ (i)

q(Yj |X) log pθ(Yj |Zi, b(i, j), τ)

 dB + C

(23)

+
= Eq(τ,B|X)

 ∑
Yj∈YNτ (i)

q(Yj |X) log pθ(Yj |Zi, b(i, j), τ)

 (24)

(25)

If j is an observed node, q(Yj |X) = 1{Yj = Xj}.

1

Tree topology update equation

log q∗(τ |X) ∝ Eq(B,Z|X) [log pθ(X,Z,B, τ)] (26)

=
∑
Z

∫
B
q(B|X)q(Z|X) log pθ(X,Z,B, τ)dB (27)

=
∑
Z

∫
B
q(B|X)q(Z|X) log pθ(X,Z|B, τ)dB + log pθ(τ) + C (28)

=
∑

(i,j)∈E(τ)

∑
Zi,Zj

∫
b(i,j)

q(b(i, j)|X)q(Zi, Zj |X) log pθ(Zi|Zj , b(i, j), τ)db(i, j)

(29)
+ log pθ(τ) + C (30)

+
= Eq(B|X)

 ∑
(i,j)∈E(τ)

∑
Zi,Zj

q(Zi, Zj |X) log pθ(Zi|Zj , b(i, j), τ)

 (31)

(32)

Branch length update equation

log q∗(b(i, j)|X) (33)
∝ Eq(τ,B¬e(i,j),Z|X) [log pθ(X,Z,B, τ)] (34)

=
∑
τ

∑
Z

∫
B¬e(i,j)

q(τ |X)q(Z|X)q(B¬e(i,j)|X)
[
log pθ(X,Z, b(i, j),B¬e(i,j), τ)

]
dB¬e

(35)

=
∑
τ

q(τ |X)
∑
Zi,Zj

q(Zi, Zj |X) [log pθ(Zi|Zj , b(i, j), τ)] + log pθ(b(i, j)) + C (36)

+
= Eq(τ |X)

 ∑
Zi,Zj

q(Zi, Zj |X) log pθ(Zi|Zj , b(i, j), τ)

+ log pθ(b(i, j)) (37)

(38)

In the experiments, we observed that using the branch length that maximizes the tree likelihood during
optimization provided better results. Hence, during the training of VaiPhy, we used a maximum
likelihood heuristic to update the branch lengths given a tree topology. After the training, we used
the tree topologies sampled from SLANTIS and corresponding branch lengths sampled from the JC
sampler to compute IWELBO.

A.2 Neighbor-Joining Initialization

We utilize the NJ algorithm to initialize VaiPhy with a reasonable state. The sequence data is fed into
BIONJ, an NJ algorithm, to create an initial reference phylogenetic tree using the PhyML software,
version 3.3.20200621 [14, 15]. The branch lengths of the NJ tree are optimized with the same
software. An example script to run PhyML is shown below.

phyml -i DS1.phylip -m JC69 --r_seed vbpi_seed -o l -c 1

The marginal likelihoods of internal vertices, pθ(Zi|X,B, τ) ∀i ∈ I(A), are used to initialize the
latent ancestral sequences, q(Zi|X). The optimized branch lengths are used as the initial set of
lengths for e ∈ E(τ). The lengths of the edges that are not present in the NJ tree are initialized by
computing the shortest path between the vertices using the Floyd-Warshall algorithm [10].

2

A.3 Graphical Model

When training VaiPhy, we used the following branch length prior

pθ(B|τ) =
∏

e∈E(τ)

pθ(b(e)), (39)

where pθ(b(e)) = Exp(10), and a uniform prior over tree topologies (in A):

pθ(τ) =
1

NN−2
. (40)

The prior when considering unrooted, bifurcating X-trees (which is the case for VBPI-NF):

p′(τ) =
1

(2|X| − 3)!!
, (41)

and for rooted, bifurcating X-trees

p′′(τ) =
1

(2|X| − 5)!!
. (42)

3

B SLANTIS

Here we provide two algorithmic descriptions of SLANTIS. Note that in Eq. (9), the weight matrix
W is in logarithmic scale. However, in Alg. 3 and 4, W is in normal scale.

Algorithm 3 SLANTIS in pseudocode
1: Input: ϕ,W
2: G ← graph spanned by W
3: GI ← G \ Λ
4: Initialize T1, e.g. by MST(W (GI))
5: Initialize τ ← T1, s(τ)← 1,M← {} and s← 1
6: while |M| < |V (GI)| − 1 do
7: R ← GI \ Ts

8: W1 ←W (R)
9: Ts+1 ←MST(W1)

10: pass Ts, Ts+1, τ,W,M to Algorithm 4
11: τ,M updated in Alg. 4
12: s(τ)← s(τ)× r, from return value r of Alg. 4
13: Ts ← Ts+1, s← s+ 1
14: end while
15: Sample leaf connections
16: for u ∈ V (Λ) do
17: i← indexes of internal vertices in G
18: p1, ..., pn ← W (u,i1)

ΣW (u,i) , ...,
W (u,in)
ΣW (u,i)

19: v ← Categorical(p1, ..., pn)
20: add (u, v) to τ
21: s(τ)← s(τ)× pv
22: end for
23: return τ , s(τ)

4

Algorithm 4 SLANTIS - propagation
1: Input: t0, t1, τ,W,M
2: Initialize r ← 1
3: I1 ← sort(t1), e.g. by sorting W (t1) in descending order and selecting the indices.
4: for e ∈ t0 do
5: if e ∈ τ then
6: Set τ0, τ1 such that e = cut(τ0, τ1)
7: for e1 ∈ I1 do
8: if e1 connects τ0, τ1 then
9: e∗ ← e1

10: break inner for loop
11: end if
12: end for
13: re =

W (e)
W (e)+W (e∗)

14: else if e /∈ τ then
15: add e to τ creating new graph τ∗ with cycle C
16: c← argmin(W (C \ {M∪ e∗}))
17: if c = {} then
18: continue
19: end if
20: remove c from τ∗

21: re =
W (e)

W (e)+W (c)

22: end if
23: u← Uniform(0, 1)
24: if e ∈ τ and re < u then
25: τ ← τ0 ∪ e∗ ∪ τ1
26: else if e ∈ τ and re ≥ u then
27: M ←M ∪ e
28: r ← r × re
29: else if e ̸∈ τ and re < u then
30: continue
31: else if e ̸∈ τ and re ≥ u then
32: τ ← τ∗

33: M ←M ∪ e
34: r ← r × re
35: end if
36: if |M| = |V (GI)| − 1 then
37: break for loop
38: end if
39: end for
40: return τ ,M, r

Fig. 4-7 show four different cases in SLANTIS propagation. In all of the figures, the left column
is the current state of τ , the middle column is two trees that are compared, and the right column
is the selected tree. Solid lines indicate the edges in τ , and bold green lines are accepted edges
(edges in M). The blue color indicates the edge we consider (e) and orange color indicates the
alternative edge; either c or e∗. Depending on the configuration, the Bernoulli random variable is
either re = W (e)/(W (e) +W (c)) or re = W (e)/(W (e) +W (e∗)). In order to add an edge to M ,
the edge must have blue color (e ∈ τ) and must get accepted. At the end of the SLANTIS algorithm,
the spanning tree with bold green edges, along with its sampled leaf connections, is returned.

5

Figure 4: Propagation step of SLANTIS, a case where e ̸∈ τ and c ∈ τ . The Bernoulli r.v. is
re = W (e)/(W (e) +W (c)). e is rejected, therefore τ , s(τ) and M remain unchanged.

Figure 5: Propagation step of SLANTIS, a case where e ∈ τ and e∗ ̸∈ τ . The Bernoulli r.v. is
re = W (e)/(W (e) +W (e∗)). e is accepted, therefore τ , s(τ) and M are updated.

Figure 6: Propagation step of SLANTIS, a case where e ̸∈ τ and c ∈ τ . The Bernoulli r.v. is
re = W (e)/(W (e) +W (c)). e is accepted, therefore τ , s(τ) and M are updated.

6

Figure 7: Propagation step of SLANTIS, a case where e ∈ τ and e∗ ̸∈ τ . The Bernoulli r.v. is
re = W (e)/(W (e) +W (e∗)). e is rejected, therefore τ , s(τ) and M remain unchanged.

C The JC Sampler

In the JC Sampler, the probability of no substitutions is sampled from the Beta posterior distribution
as follows;

p ∼ Beta(p|M − ϕij + 1, ϕij + 1).

The Beta posterior distribution is parameterized by the Beta prior (Beta(p|1, 1) in this case), the
sequence length (M), and the expected number of substitutions between two nodes (ϕij).

Since the support of the Beta distribution is in [0, 1], it is possible to sample p < 0.25. However,
according to the JC69 model, such a case corresponds to saturation, and the logarithm in Eq. (13)
becomes negative.

In practice, on the rare occasions where we encounter p < 0.25, we discard that sample and draw
another p from the Beta posterior distribution. Yet, the user can adjust the prior distribution parameters
to change the behavior of the posterior distribution (e.g., skew the distribution away from p < 0.25).

D CMSC Proposal Distributions

Here we go into detail about our novel CSMC proposals.

D.1 The Branch Length Proposal

Here we outline our new proposal distribution for sampling sets of branch lengths in the CSMC,
rϕ(Bρ|Bρ−1, Tρ). In practice, sampling the Bρ means that, given the two edges most recently added to
Tρ (e and e′), we sample branch lengths using the JC sampler, sϕ(b(e)), and concatenate {b(e), b(e′)}
to the previous set, Bρ = {b(e), b(e′)} ∪ Bρ−1. The complicated part is identifying which entries in
ϕ the edges correspond to.

We let the proposal distribution of branch lengths be a mixture of JC samplers while additionally
allowing edge indices to be random variables:

rϕ(b, b
′, e, e′) = sϕ(b|e) r(e|e′) sϕ(b′|e′) r(e′). (43)

Branch length b given e is sampled independently of e′, and vice versa; however, we assume that
the edge indices are not mutually independent. If e′ is sampled first from the mixture, then e is
constrained to sharing the same parent node as e. We get the following priors

r(e′) =
∑

i,j∈C′(e′)

c(i, j)

C
δi,j(u, v), (44)

where c(i, j) is the number of occurrences of the edge in the pre-sampled SLANTIS trees, C ′ is a
normalizing constant, and δi,j(·) is the Dirac delta with the mass on i, j. C(e′) is the set of possible

7

labeled edge indices for e′. E.g., if the root in e′ is a leaf node, then we only need to consider edges
involving that labeled leaf. To estimate the index of the unlabeled edge e′, we thus sample from r(e′).
Similarly, for r(e|e′), the set C(e|e′) is even smaller, as we have estimated the label of the parent.

The above results in the following likelihood function for the set of branch lengths:

rϕ(Bρ|Bρ−1, Tρ) =
∏

ē∈E(Tρ)

N∑
i,j

sϕ(b(ē))rϕ(i, j|ē), (45)

where ē is the estimated edge index.

D.2 The Merger Proposal

At each rank ρ ∈ [1, R], the CSMC proposes a forest, Tρ, by merging the roots of two subtrees in
Tρ−1.

Let r1, . . . , rR be the roots of a forest Tρ−1.3 There are
(
R
2

)
way to merge the roots. In the case of

vanilla CSMC, the probability of merging roots ri and rj is uniform, p(ri, rj) = 1/
(
R
2

)
.

For ϕ-CSMC, we sample S trees from SLANTIS and corresponding branch lengths from JC sampler
as a preprocessing step.4 Let X(ri) and X(rj) be the set of observations in the subtrees with roots
ri and rj respectively. We define a function O(X(ri), X(rj), τ), that checks each edge in τ and
returns 0 if there is an edge that separates the observations into two disjoint sets such that one set of
observations is X(ri) ∪X(rj). The probability of merging subtrees with roots ri and rj is:

p(ri, rj) ∝
S∑

s=1

pθ(X|τs,Bs)1{O(X(ri), X(rj), τ
s) = 0} (46)

E Biological Data Sets

The details of the biological data sets are presented in Table 2. The former and up-to-date TreeBASE
Matrix IDs are displayed [31].

Table 2: Biological data set details

TreeBASE Matrix ID

Name Legacy Up-to-date Legacy Taxa Sites Reference

DS1 M336 M2017 27 1949 [16]
DS2 M501 M2131 29 2520 [13]
DS3 M1510 M127 36 1812 [35]
DS4 M1366 M487 41 1137 [17]
DS5 M3475 M2907 50 378 [25]
DS6 M1044 M220 50 1133 [40]
DS7 M755 M2261 64 1008 [29]

3For brevity, we focus on a single particle.
4For the experiments, we set S=3,000.

8

F MrBayes Experiment

Following the experimental setup in [37], we ran MrBayes version 3.2.7 [28] (written in C) with the
stepping-stone algorithm and summarized the results of 10 independent runs. We set the number
of generations to 10,000,000 and the number of chains per run to 4. The mean and the standard
deviation of the marginal log-likelihood estimates are calculated by using the results reported in
MrBayes output file. An example script to run MrBayes is shown below.

BEGIN MRBAYES;
set autoclose=yes nowarn=yes Seed=123 Swapseed=123;
lset nst=1;
prset statefreqpr=fixed(equal);
ss ngen = 10000000 nruns=10 nchains=4 printfreq=1000 \
samplefreq=100 savebrlens=yes filename=mrbayes_ss_out.txt;
END;

G VBPI-NF Experiment

We used the codes in the author’s GitHub repository, which is based on PyTorch, to reproduce their
results on the biological data sets. VBPI-NF requires precomputed bootstrap trees to gather the
support of conditional probability tables. For DS[1-4], we used the bootstrap trees provided by the
authors in their code repository. For DS[5-7], following the guidelines in [37], UFBoot is used to
create 10 replicates of 10,000 bootstrap trees [18]. An example script is shown below.

iqtree -s DS5 -bb 10000 -wbt -m JC69 -redo

We chose RealNVP(10) variant for comparison. To reproduce the results on biological datasets, we
used RealNVP flow type with 10 layers. The step size for branch length parameters is set to 0.0001.5
We introduced a seed parameter in their code to be able to reproduce the runs. We used default
settings for the rest of the parameters. An example script is shown below.

python main.py --dataset DS5 --flow_type realnvp --Lnf 10 \
--stepszBranch 0.0001 --vbpi_seed 1

H VCSMC Experiment

We attempted to reproduce the JC model results of VCSMC [26] using the authors’ GitHub repository
(based on TensorFlow 1) and default hyperparameters: 100 epochs, batch size 256, learning rate
0.001, branch length initialization ln(10). Similar to the VBPI-NF experiments, we added a seed
argument for reproducibility.

python runner.py --dataset hohna_data_1 --jcmodel True --num_epoch 100 \
--n_particles 2048 --batch_size 256 --learning_rate 0.001 --nested False --seed 1

After running 100 epochs, the parameters λmax and Qmax (although Qmax is fixed for the JC model)
of the epoch with maximum log p̂(X) were selected. Then CSMC was run ten times using λmax

and Qmax. The results in Table 1 correspond to the means and standard deviations for log p̂(X) and
p(X|τ,B) of these ten evaluation runs. In the VCSMC paper, the results are obtained by alternating
optimization (updating λ and Q) and inference (estimating p(X) via the approximated ELBO, L̂i)
in 100 iterations, ultimately reporting L̂⋆ = maxi{L̂i}100i=1. Unfortunately, L̂⋆ will have a bias
proportional to the variance of the selected L̂i. Hence, E[L̂⋆] is not necessarily an ELBO. In practice,
VCSMC produced L̂i with high variance (see Table 1), making it unclear if L̂⋆ results from a L̂i

with a high mean or the variance. Instead, finding L̂⋆ and then rerunning the inference with the
corresponding parameters for different seeds produces a fair benchmark; this is what we report.

The VNCSMC code in the authors’ GitHub repository gave rise to non-trivial memory issues that we
couldn’t resolve; hence, the VNCSMC method is excluded from this paper.

5We consulted the authors.

9

I Proof of Convex Combination for Natural Gradient for Exponential
Families

The proof is two-folded: Part 1, where we prove that the Natural Gradient based VI update equation
for Exponential Families (EF) is computed as a convex combination of old and new VI update
equations; Part 2, where we prove that the VaiPhy distributions that should belong to EF, belong to
EF.

Part 1: We basically prove what was stated in stochastic variational inference (SVI) [19] using SVI
notation. Let L(q(β)) denote the ELBO as a function of the variational distribution of the interest, as
the goal is to maximize ELBO w.r.t. q(β). We know that

L(q(β)) = Eq[log p(β, x, Z, α)]− Eq(β)[log q(β)] (47)

= Eq[log p(β|x, Z, α) + log p(x, Z, α)]− Eq(β)[log q(β)] (48)
+
= Eq[log p(β|x, Z, α)]− Eq(β)[log q(β)]. (49)

Note that for readability, [19] uses q(β) instead of q(β|λ), where λ is the natural parameter. They
assume that q(β) and p(β|x, Z, α) belong to the same exponential family. However, we prove that
they can merely belong to EF. Therefore, we have the following:

q(β) = H(β)eλ
TT (β)−Ag(λ), (50)

p(β|x, Z, α) = H(β)eηg(x,Z,α)TT (β)−Ag(ηg(x,Z,α)), (51)

L(q(β)) = E−q(β)

[
Eq(β)[logH(β) + ηg(x, Z, α)

TT (β)−Ag(ηg(x, Z, α))]
]

− Eq(β)[logH(β) + λTT (β)−Ag(λ)]

+
= E−q(β)

[
Eq(β)[ηg(x, Z, α)

TT (β)−Ag(ηg(x, Z, α))]
]
− Eq(β)[λ

TT (β)−Ag(λ)]

+
= E−q(β)

[
Eq(β)[ηg(x, Z, α)

TT (β)]
]
− Eq(β)[λ

TT (β)−Ag(λ)]

= E−q(β)

[
ηg(x, Z, α)

TEq(β)[T (β)]
]
− λTEq(β)[T (β)] +Ag(λ).

(52)

The final line above corresponds to Eq. 13 in [19], except that they changed the measure so that they
got Eλ[T (β)] instead of Eq(β)[T (β)]; see the proof below.

Lemma I.1 It holds that∇λAg(λ) = Eq(β)[T (β)].

Proof.

Since the derivative of the logarithm is the inverse of the variable, we have

∇λAg(λ) = ∇λ

{
log

∫
H(β) exp{λTT (β)}dβ

}
=
∇λ

∫
H(β) exp{λTT (β)}dβ∫

H(β) exp{λTT (β)}dβ
. (53)

Taking the derivative of the numerator in the above, we get

∫
H(β)T (β) exp{λTT (β)}dβ∫

H(β) exp{λTT (β)}dβ
. (54)

We now rewrite the above and then multiply and divide the expression by exp{Ag(λ)}, which results
in

10

∫
H(β)T (β) exp{λTT (β)}dβ∫

H(β) exp{λTT (β)}dβ
=

∫
T (β)

H(β) exp{λTT (β)}dβ∫
H(β) exp{λTT (β)}dβ

(55)

=

∫
T (β)

H(β) exp{λTT (β)}
exp{Ag(λ)}

exp{Ag(λ)}∫
H(β) exp{λTT (β)}dβ

dβ.

(56)

We know that exponentiation of the log-normalizer gives us exp{Ag(λ)} =∫
exp{λTT (β)}H(β)dβ. Therefore, we have

∫
T (β)

H(β) exp{λTT (β)}∫
exp{λTT (β)}H(β)dβ

∫
exp{λTT (β)}H(β)dβ∫
H(β) exp{λTT (β)}dβ

dβ = (57)∫
T (β)

H(β) exp{λTT (β)}∫
exp{λTT (β)}H(β)dβ

dβ =

∫
T (β)q(β)dβ = Eq(β)[T (β)]. (58)

Now that we have proved Lemma H.1, we know that Eq(β)[T (β)] = ∇λAg(λ); thus, we can write
the ELBO as

L(λ) = E−q(β)

[
ηg(x, Z, α)

TEq(β)[T (β)]
]
− λTEq(β)[T (β)]−Ag(λ)

= ∇λAg(λ)

(
E−q(β)[ηg(x, Z, α)]− λ

)
−Ag(λ).

(59)

Taking the derivative of the ELBO w.r.t. λ, we get the

∇λL(λ) = ∇2
λAg(λ)

(
E−q(β)[ηg(x, Z, α)]− λ

)
+∇λAg(λ)

(
− 1

)
+∇λAg(λ)

= ∇2
λAg(λ)

(
E−q(β)[ηg(x, Z, α)]− λ

)
.

(60)

Knowing that ∇2
λAg(λ) = FIM(λ),6 if we put the above gradient into the formula of the natural

gradient, we get

λt+1 = λt + γ

(
FIM−1(λ)∇λL(λ)

)
= λt + γ

(
E−q(β)[ηg(x, Z, α)]− λt

)
= (1− γ)λt + γE−q(β)[ηg(x, Z, α)].

(61)

Part 2: We prove that Part 1 holds for VaiPhy, i.e., we prove the two corresponding distributions
in VaiPhy’s ELBO follow EF. That is q(Z|X) and p(Z,X|B, τ). Note that if the latter probability
belongs to EF, it implies that p(Z|X,B, τ) and p(X|B, τ) belong to EF since we know that the
likelihood p(X|B, τ) is a JC model and itself follows EF; more details of JC being formulated as EF
will be provided in the rest of this section.

In the normal scale, the update equation for latent nodes in the tree is

q∗(Zu|X) ∝
∏
τ,B

[
pθ(Zr|τ)I(Zu=Zr) × pθ(Zu|Ypa(u),B, τ)q(Ypa(u)|X)

×
∏

Yw∈YCτ (u)

pθ(Yw|Zu,B, τ)q(Yw|X)

]q(τ,B|X)

.

(62)

6Fisher Information Matrix.

11

We now prove that q(Z|X) follows EF. In Eq. 62, each term involves p with some exponent value
calculated by either the previous iteration or the current one—we refer to the exponent as α. Each
term can be written as a canonical form of EF: 1× exp{α log p − 0}. Now, q(Zu|X) is the product
over EF distributions; hence q(Zu|X) also belongs to EF, i.e., the canonical product of two EF is

h(x)eθ1T (x)−A(θ1) × h(x)eθ2T (x)−A(θ2) = ˆh(x)e(θ1+θ2)T (x)−Â(θ1,θ2), (63)

where θ’s are the natural parameters.

Moreover, in Eq. 62, each p, except the probability of the root which is constant, i.e., 0.25M , follows
the JC model’s distribution, which is defined by the following, in which up to a constant, belongs to
EF.

p(Zu = i|Zw = j, τ,B) = 1

4
+

3

4
e−

4
3Buw if i = j

p(Zu = i|Zw = j, τ,B) = 1

4
− 1

4
e−

4
3Buw if i ̸= j

To prove that the above belongs to EF, one can rewrite p(Zu = i|Zw = j, τ,B) +
= 3

4e
− 4

3Buw , where
h(.) = 3

4 , T (.) = − 4
3 , and A(.) = 0 in the EF’s canonical form.

Next, we prove that p(Z,X|B, τ) follows EF. We can refer to all vertices as Y , and we again as-
sume the root vertex has a fixed probability that is 0.25M ; therefore, we can write: p(Y |B, τ) =∏

i∈V (τ),i−1=Pa(i) p(Yi|Yi−1)p(Yr|τ) ∝
∏

i∈V (τ),i−1=Pa(i) p(Yi|Yi−1). Now each p(Yi|Yi−1) fol-
lows a JC model, and in the previous proof, we showed that JC follows EF. Thus, the product of JC
distributions also follows EF, again proven in the previous proof.

12

