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Abstract

Optical computing is an emerging technology for next-generation efficient artifi-
cial intelligence (AI) due to its ultra-high speed and efficiency. Electromagnetic
field simulation is critical to the design, optimization, and validation of photonic
devices and circuits. However, costly numerical simulation significantly hinders
the scalability and turn-around time in the photonic circuit design loop. Recently,
physics-informed neural networks have been proposed to predict the optical field
solution of a single instance of a partial differential equation (PDE) with pre-
defined parameters. Their complicated PDE formulation and lack of efficient
parametrization mechanisms limit their flexibility and generalization in practical
simulation scenarios. In this work, for the first time, a physics-agnostic neural
operator-based framework, dubbed NeurOLight, is proposed to learn a family of
frequency-domain Maxwell PDEs for ultra-fast parametric photonic device simu-
lation. We balance the efficiency and generalization of NeurOLight via several
novel techniques. Specifically, we discretize different devices into a unified domain,
represent parametric PDEs with a compact wave prior, and encode the incident
light via masked source modeling. We design our model with parameter-efficient
cross-shaped NeurOLight blocks and adopt superposition-based augmentation for
data-efficient learning. With these synergistic approaches, NeurOLight generalizes
to a large space of unseen simulation settings, demonstrates 2-orders-of-magnitude
faster simulation speed than numerical solvers, and outperforms prior neural net-
work models by ∼54% lower prediction error with ∼44% fewer parameters. Our
code is available at link.

1 Introduction

With recent advances in integrated photonics technology, optical deep learning represents a new
paradigm in next-generation efficient artificial intelligence (AI) [28, 27, 3]. An increasing number
of co-design efforts have been made to enable synergistic light-AI interaction. We see extensive
developments for photonic AI with rapidly evolving optical neural network (ONN) hardware ac-
celerator designs [28, 8, 39, 5, 23, 29, 6] and various circuit-algorithm co-optimization methodolo-
gies [8, 9, 7, 30, 10, 14]. However, applying AI for optics is much less explored. Complementary to
prior AI-assisted architectural exploration [19, 11], a natural question is whether AI can assist in the
lower-level device simulation that requires a deep understanding of the physical nature of optics.

AI-assisted photonic device simulation is a critical step to closing the synergistic loop of light-AI
interaction. Besides using standard devices that already have a compact transfer matrix [28, 8, 32],
modern optical AI shows a trend to exploit customized photonic structures for scalable optical
computing [7, 30, 40, 36]. Unfortunately, because customized devices do not have analytical transfer
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Figure 1: (a) Compare FDFD simulation and our NeurOLight framework. (b) NeurOLight (1
Quadro RTX 6000 GPU) runs 140×-200× faster than FDFD simulator (8-core i7-9700 CPUs) across
different domain sizes (50 nm grid step). (c) Different methods cover different solution space.

functions, understanding their behavior heavily relies on numerical simulators [16] to solve Maxwell
partial differential equations (PDEs) to obtain the optical field distribution. Even solving a single 2-
dimensional (2-D) simulation instance on a 5×20 µm2 region can cost nearly 4 s on 8 CPUs, as shown
in Figure 1(a), which significantly hinders scalable circuit-level simulation and optimization. Hence,
our target is to propose a surrogate model that learns the light propagation principle and efficiently
approximates the field solutions to new simulation instances while running orders-of-magnitude
faster than the numerical solver, as shown in Figure 1(b).

Most prior work still uses conventional NNs to predict several key properties based on a few design
variables [31, 35], which is an ad-hoc function approximator without learning the light propogation
property. Several works attempt to leverage physics-informed NNs (PINNs) [33, 2, 22] with physics-
augmented residual loss to predict electromagnetic field solutions. However, previous methods have
three major limitations. First, as illustrated in Figure 1(c), they only model the field distribution
conditioned on pre-defined solving domains, input sources, and frequency. In other words, their
models only learn the solution of a certain PDE instance with fixed parameters. Second, they all
belong to the category of PINNs [25] that require an explicit description of the PDE as well as strict
initial/boundary conditions. Constructing complicated Maxwell equation-based residual loss is no
easier than re-implementing a numerical solver [24, 20, 21]. Third, their CNN-based models show
inadequate modeling capacity with too small receptive fields to learn important light propagation,
scattering, and interference effects.

To learn a family of parametric Maxwell PDEs that models the joint probability of different design
variables as shown in Figure 1(c), we propose a physics-agnostic light field prediction framework
NeurOLight that consists of a joint PDE encoder and an efficient cross-shaped neural operator
backbone. The main contributions of the work are as follows:

• For the first time, an AI-based photonic device simulation framework is proposed to learn a family
of parametric Maxwell PDEs for ultra-fast optical field prediction.

• We propose a novel joint PDE encoder for compact PDE representation and an efficient cross-
shaped Fourier neural operator backbone for end-to-end optical field prediction, over 2-order-of-
magnitude faster than numerical simulators.

• We propose a superposition-based mixup technique that dynamically boosts the data efficiency
and generalization during the training of NeurOLight.

• On different photonic device simulation benchmarks, our NeurOLight achieves the best prediction
fidelity, generalizability, and transferability, outperforming UNet and state-of-the-art (SoTA) Fourier
neural operators by an average of 53.8% lower prediction error with 44.2% fewer parameters.

• To our best knowledge, this is the first AI-based framework that can learn the terahertz light
propagation inside photonic devices that generalizes to different domains, permittivities, input
sources, and frequencies. We open-source our NeurOLight framework at link.

2 Related Work

Optical field simulation with machine learning. Finite difference frequency domain (FDFD)
simulation is a widely adopted method to analyze silicon-photonic devices. Numerical simulators
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are used to solve frequency-domain Maxwell PDEs to obtain electromagnetic field distributions
of an optical component with terahertz incident light sources. To accelerate this time-consuming
process, NNs have been utilized as surrogate models for fast optical simulation approximation. A
multi-layer perceptron was used to map the design variables to a scalar performance metric of a power
splitter [31]. NNs were also utilized to predict intermediate values to accelerate the convergence of
the numerical solver [35]. MaxwellNet [22] was proposed to train a UNet with physics-informed loss
to predict the scattered field based on the material permittivity of the free-space lens. WaveYNet [2]
also adopted a 2-D UNet as the model trained with both data-driven supervision loss and Maxwell-
equation-based physics-augmented loss to predict the optical field of silicon meta-lens. However,
prior NN-based methods require explicit physics knowledge of the Maxwell PDEs and only learn a
small field solution space conditioned on fixed parameters.

Learning PDEs via neural operators. Recently, neural operators have been proposed as new
NN models that learn a family of parametric PDEs in the infinite-dimensional function space in a
mesh-free and purely data-driven fashion. The Fourier neural operator (FNO) [21] approximates
the nonlinear mapping from PDE observations to solutions through Fourier-domain kernel integral
operations, achieving record-breaking performance and efficiency on a wide range of challenging
applications. Several variants have been proposed to improve the performance and efficiency of
the original FNO models, e.g., Factorized FNO [34], U-FNO [37], and multiwavelet-based neural
operator [12].

3 Neural operator-based optical field simulation framework NeurOLight

3.1 Understanding optical field simulation for photonic devices

Waveguides can confine the incident laser beam and allow the optical signals to propagate and
interfere with each other. Various optical components, e.g., couplers, shifters, and multi-mode
interference (MMI) devices [4], can create phase shifts, magnitude modulation, and interference,
especially useful for optical communication and neuromorphic computing. Analyzing how light wave
propagates through those components are critical to device optimization and photonic integrated
circuit design. Given a linear isotropic optical component, we will shine time-harmonic continuous-
wave light beam on its input ports and analyze the steady-state electromagnetic field distributions
E = x̂Ex + ŷEy + ẑEz and H = x̂Hx + ŷHy + ẑHz in it, each of which includes horizontal
(x), vertical (y), and longitudinal (z) components. We can solve the steady-state optical field
E(r) and H(r) from the frequency-domain curl-of-curl Maxwell PDE under absorptive boundary
conditions [16] (details in Appendix A1),(

(µ−1
0 ∇×∇×)− ω2ϵ0ϵr(r)

)
E(r) = jωJe(r),

(
∇× (ϵ−1

r (r)∇×)− ω2µ0ϵ0
)
H(r) = jωJm(r) (1)

where ∇× is the curl operator of a vector function, µ0 is the vacuum magnetic permeability, ϵ0 and
ϵr are the vacuum and relative electric permittivity, and Jm and Je are the magnetic and electric
current sources. FDFD simulation discretizes the continuous domain into an M × N mesh grid
and solves the above linear equation AX = b to obtain the fields. Detailed forms of A and b can
be found in [16]. Solving for these optical fields exactly with a sparse matrix A ∈ CMN×MN is
prohibitively expensive and not scalable to large photonic structures. A fast surrogate model that
predicts optical fields with high fidelity is of tremendous interest.

3.2 The proposed NeurOLight framework

As shown in Figure 2, our NeurOLight framework models the optical field simulation problem as
an infinite-dimensional-space mapping from Maxwell PDE observations A ∈ CΩ×da to the optical
field solution U ∈ CΩ×du . Here, Ω is the continuous 2-D physical solving domain, Ω = (lx, lz),
typically in units of micrometers (µm), where the photonic device-of-interest can be tightly located.
A and U take values with da and du dimensions, respectively. To learn the ground truth nonlinear
mapping Ψ∗ : A → U , we construct NeurOLight with a PDE encoder E that produces compact PDE
representations, followed by an efficient neural operator-based approximator Ψθ that minimizes the
empirical error on discrete PDE observable samples a ∼ A,

θ∗ = min
θ

Ea∼A
[
L
(
Ψθ(E(a)),Ψ∗(a)

)]
. (2)
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Figure 2: NeurOLight framework for optical field simulation. Real part is plotted for complex fields.

3.2.1 Scale-adaptive domain discretization: Ω → Ω̃
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Figure 3: Scale-adaptive domain discretization en-
ables generalization to different solving domain
dimensions and efficient batched processing.

To generalize to PDEs in different physical do-
mains and support batched parallel inference,
we adopt an M × N discrete unified domain
Ω̃ = (M,N,∆lx,∆lz) with an adaptive mesh
granularity, i.e., with grid steps ∆lx = lx/M
and ∆lz = lz/N . As shown in Figure. 3,
multiple photonic devices with different phys-
ical dimensions are normalized to the same Ω̃.
Their original physical dimensions can be ele-
gantly encoded into the re-calculated mesh gran-
ularities. This unified discrete domain gives
NeurOLight the flexibility to handle parallel
inference on different physical domain dimen-
sions, unlike prior work [22, 2] that requires
time-consuming model retraining once the phys-
ical domain changes.

3.2.2 Joint PDE representation: A → A†

After we define a unified solving domain, we need to construct effective PDE representations that
describe the raw observations A = (Ω̃, ϵr, ω,J). The relative permittivity distribution can be simply
represented by ϵr ∈ CM×N . However, how to compactly encode other parameters, i.e., (Ω̃, ω,J),
remains a non-trivial challenge. Let us first consider what makes a good representation. First, it
needs to be compatible with the model input, i.e., it can be fused with the 2-D image representation
in a compact way. Second, it is preferred to reveal the physical essence of the parameters and inject
useful prior knowledge that helps model generalization. Based on the above considerations, we
propose a PDE encoder E : A → A† that converts the raw observations to a joint PDE representation
A† = (ϵr,H

J
y ,Px,Pz).

Wave propagation
behavior changes 
with different 

Wave Prior from PDE Encoder

Diverse high-order
wave patterns 
learnt by stem

...

Fast wave in
SiO2 ( )

Slow wave in
Si ( )

Figure 4: Wave prior as joint PDE representations.

Encoding (Ω̃, ϵr, ω) via wave
prior. The intuition behind
the wave prior design is that
the vacuum angular frequency
ω = 2πc

λ and electric permittiv-
ity ϵr together decide the phys-
ical light wavelength inside the
material, i.e., λ′ = λ/

√
ϵr. The

mesh granularity determines how
many pixels can depict a wave
period along both directions, i.e.,
(λ′/∆lx, λ

′/∆lz). Therefore, as
shown in Figure 4, we construct artificial wave patterns, named wave prior, as Pz = ej

2π
√

ϵr
λ 1zT∆lz

and Px = ej
2π

√
ϵr

λ x1T∆lx , where x = (0, 1, · · · ,M − 1) and z = (0, 1, · · · , N − 1). The wave
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prior jointly translates the (Ω̃, ϵr, ω) pair to a unified representation with strong prior knowledge,
significantly reducing the learning difficulty on overly-abstract raw observations. We note that the
NeurOLight stem learns complex combinations of the wave prior and generates diverse high-order
wave patterns for later feature transformation.

Masked

Eigen Mode of Light Source

Masked Light Source Field

Masked

Figure 5: Masked light
source modeling.

Masked image modeling-inspired light source (J) encoding. In the
optical simulation, light source J will be injected by shining light on the
input waveguides of the photonic devices as stimuli to the system. J will
have a vacuum angular frequency ω and a polarization mode. For example,
in the transverse magnetic (TM) mode, we have Hx = Hz = 0. Thus
we focus on the prediction of Hy. However, as shown in Figure 5, J is a
combination of multiple length-w 1-D vectors, where w is the input port
width, placed at the input waveguides, which is hard to be encoded in the
image prediction flow. Therefore, we borrow the idea of masked image
modeling [1] to light source encoding. In the source representation HJ , we
only maintain the fields in the input waveguides before entering the key
region of the device, which is easy to obtain and irrelevant to the structure it
enters into, and mask out all the fields after. In this way, the field prediction
task translates to a masked field restoration task conditioned on the input
light source as a hint.

3.3 Efficient NeurOLight model architecture: Ψθ

Convolutional stem. The proposed NeurOLight architecture starts with a convolutional stem S :
a†(r) → v0(r),∀r ∈ Ω that encodes each complex-valued observation sample a†(r) ∈ C4×M×N

to a real-valued representation v0(r) ∈ RC×M×N . Lightweight blueprint convolutions [13] are used
to perform local wave pattern transformation with a low hardware cost.

Cross-shaped NeurOLight block. In the projected C-dimensional space, we place K cascaded
NeurOLight blocks to gradually restore the complex light field in the frequency domain as v0(r) →
v1(r) → · · · → vK(r). Each NeurOLight block is formulated as

vk+1(r) := FFN
(
(Kvk)(r)

)
+ vk, ∀r ∈ Ω; (Kvk)(r) =

∫
Ω

κ(r1, r2)vk(r2)dvk(r2),∀r1 ∈ Ω, (3)

where K is a learnable kernel integral transform, and FFN(·) is a feedforward network. When the
kernel satisfies κ(r1, r2) = κ(r1 − r2), the above integral kernel operator is equivalent to a spatial-
domain 2-D convolution, which can be efficiently computed by using Fourier transform F(·) [21].

FF
T

IF
FT

FF
T

IF
FT

+

Conv1x1 DWConv3x3Linear BN GELU

Horizontal-FNO-1d FFN

Figure 6: NeurOLight backbone model design.

A clear downside of the original 2-D FNO
is the huge parameter cost, i.e., F(κ)(r) ∈
Ckv×kh×C×C , and the resultant severe
overfitting issues. To improve the model ef-
ficiency and generalization simultaneously,
we introduce a cross-shaped Fourier neu-
ral operator, shown in Figure 6. The
input feature is first bi-partitioned along
the channel dimension into two chunks
vk(r) = [vhk (r); v

v
k(r)], representing hori-

zontal and vertical patterns, and 1-D FNO
is applied to both directions,

(Khvhk )(r) = F−1
z

(
Fz(κ

h) · Fz(v
h
k )
)
(r) = F−1

z

(
Rh(z) · Fz(v

h
k (r))

)
, ∀z ∈ Ωz, ∀r ∈ Ω,

(Kvvvk)(r) = F−1
x

(
Fx(κ

v) · Fx(v
v
k)
)
(r) = F−1

x

(
Rv(x) · Fx(v

v
k(r))

)
, ∀x ∈ Ωx, ∀r ∈ Ω,

(Kvk)(r) = [(Khvhk )(r); (Kvvvk)(r)].

(4)

We parametrize the Fourier kernels as lightweight complex-valued tensors Rh(z) ∈ Ckz×C
2 ×C

2

and Rv(x) ∈ Ckx×C
2 ×C

2 . These orthogonal 1-D kernel operations intrinsically perform spatial and
channel-wise feature aggregation in an interleaved way that are able to provide global receptive
fields to achieve long-distance modeling. Compared with kvkhC

2 parameters in the 2-D FNO, our
cross-shaped NeurOLight block only has (kv+kh+8s)C2

4 parameters.
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To increase nonlinearity and enhance local information interaction, we append an FFN block after
the cross-shaped FNO. Inspired by the MixFFN designs in SoTA vision transformers [38], our
FFN expands the channels by s times, performs local information aggregation via 3×3 depth-wise
convolution (DWConv), activates using the GELU function, and projects it back to C channels.

Projection head. At the end, two point-wise convolutional layers are used to project vK(r) to the
light field space u(r) = Q(vK(r)). Dropout layer is inserted to mitigate overfitting issues.

Loss function. Even with normalized light source power, optical fields tend to have distinct statistics.
To balance the optimization effort among different fields, we adopt the normalized mean absolute
error (N-MAE) as the objective L

(
Ψθ(E(a)),Ψ∗(a)

)
= (∥Ψθ(E(a))−Ψ∗(a)∥1)/∥Ψ∗(a)∥1.

3.4 Toward better data efficiency and generalization via superposition-based mixup

Single-Source Training Examples (same )

Augmented Training Examples with  
Superposition-based Mixup

Sources Target Fields

Figure 7: Data augmentation with
superposition-based mixup. Only real part
is plotted for each field.

The PDE observations A can cover a huge design space.
Hence, the data efficiency and generalization of pure
data-driven models raise a concern. Simply drawing
large numbers of random training examples with all pos-
sible light sources has an intractable data acquisition
cost. Standard augmentation techniques are effective in
improving data efficiency and generalization on tasks
with natural images; however, their direct application
is not compatible with PDE simulation. Since Ψ∗(ai)
is a highly nonlinear function of ai and closely related
to the boundary conditions, simultaneously augment-
ing ϵr, Ω, ω, and H, e.g., via cropping, distortion, or
resizing, leads to invalid field solutions.

Interestingly, we notice that the photonic system satis-
fies the superposition property w.r.t. the light source,

H̃ = Ψ∗(H̃J) = Ψ∗(

|J|∑
i=1

γiH
Ji) =

|J|∑
i=1

γiΨ
∗(HJi). (5)

Based on this, we only involve single-input simulation data in the training set and dynamically mix
multiple (|J|) input sources via Superposition-based Mixup, as shown in Figure 7,(

H̃J1 · · · H̃J|J|

H̃1 · · · H̃|J|

)T

= Γ

(
HJ1 · · · HJ|J|

H1 · · · H|J|

)T

, Γ ∈ C|J|×|J|, ∥Γj∥2 = 1, ϕ(γj1) = 0, ∀j ∈ [|J|]. (6)

At each iteration, we randomly generate the mixup coefficient matrix Γ and make it have a unit
row-wise ℓ2-norm for light field power normalization. The global phase of the complex-valued
optical field is normalized by forcing the first input port always to have a phase that equals 0. In
this way, NeurOLight learns how multiple incident light sources interfere with one another. Once
NeurOLight can generalize to arbitrary light sources, multi-source simulation only needs an efficient
one-shot inference with superposed source fields instead of explicitly accumulating |J| single-source
inference results.

4 Results

4.1 Experiment setup

Datasets. We focus on widely applied multi-mode interference (MMI) photonic devices. We select
MMIs with rectangular tunable control pads (Tunable MMI). The permittivity of the tuning region
can be programmed by external signals, so this family of devices exemplifies photonic structures with
reconfigurable transmissions [18]. We also evaluate MMIs with rectangular etched cavities (Etched
MMI) [31], which exemplifies another popular category of passive sub-wavelength photonic devices
with fixed yet highly discrete permittivity distributions. We use an open-source CPU-based 2-D
FDFD simulator angler [16] to simulate optical fields for randomly generated MMIs as our dataset.
Details on dataset generation is in Appendix A2.
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4.2 Main results

In Table 1, we compare four models: (1) UNet [22, 2], (2) a 5-layer FNO-2d [21], (3) a 12-layer
factorized FNO (F-FNO) [34], and (4) our NeurOLight. Detailed training settings and model
architectures can be found in Appendix A3 and Appendix A4, respectively. On these benchmarks,
NeurOLight outperforms UNet and prior SoTA FNO variants by 53.8% lower test error with 44.2%
fewer parameters on average.

Table 1: Comparison of parameter count, train error, and test error on
two benchmarks among four different models.

Benchmarks Model #Params (M) ↓ Train Err ↓ Test Err ↓
UNet [22, 2] 3.47 0.776 0.801
FNO-2d [21] 3.29 0.231 0.244
F-FNO [34] 3.16 0.272 0.292Tunable MMI

NeurOLight 1.58 0.145 0.122
UNet [22, 2] 3.47 0.779 0.792
FNO-2d [21] 3.29 0.601 0.648
F-FNO [34] 3.16 0.411 0.525Etched MMI

NeurOLight 2.11 0.376 0.387
Average Improvement -44.2% -49.1% -53.8%

Results on tunable MMI. On
tunable MMI, NeurOLight
achieves the best prediction error
with only half the parameter
cost. Figure 8 visualizes the
field prediction for one test
MMI. UNet is significantly
limited by its small receptive
field and lack of long-distance
modeling capability, thus failing
to predict the full field even
with the hint of wave prior. As
representative neural operators,
FNO-2d and factorized FNO
(F-FNO) manifest the superior advantages of the Fourier-domain kernel integral operations, showing
considerably lower prediction errors than their CNN counterparts. However, given the parameter
budget (∼3 M), the 5-layer FNO-2d only has 10 modes in the x-direction and 32-modes in the
z-direction, which may not be enough to extract high-frequency waves. The 12-layer F-FNO adopts
factorized 1-D Fourier kernel to save parameters; however, its modeling capability is limited by
the lack of local feature extractors. Our NeurOLight blocks benefit from the global view of the
cross-shaped 1-D kernel and local feature aggregation from convolutional FFN blocks. In the training
curves in Figure 10(a), NeurOLight achieves the fastest convergence and best generalization among
all models. We animate the real-time prediction process of NeurOLight in Appendix A5.

UNet 
Wave Prior

FNO-2d 
Wave Prior

NeurOLight 
Wave Prior

F-FNO 
Wave Prior

Figure 8: Visualization on one test tunable MMI. (∆lx = 83.1 nm,∆lz = 70.8 nm, λ = 1.54 µm).

Results on etched MMI. Compared with tunable MMIs, predicting the field in etched MMIs,
even with 2× more training examples, is a much harder task given the complicated scattering at
the cavity-silicon interface and the considerably larger and highly discrete design space, shown in
Figure 9. Hence, we increase the model capacity of NeurOLight by using 16 layers. Among all
prediction models, NeurOLight achieves the best results with 42% lower error while still saving
36% parameters on average.

UNet 
Wave Prior

FNO-2d 
Wave Prior

NeurOLight 
Wave Prior

F-FNO 
Wave Prior

Figure 9: Visualization on one test etched MMI. (∆lx = 91.3 nm,∆lz = 89.1 nm, λ = 1.55 µm).
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Figure 10: (a) Test N-MAE curves of four models. (b) Our PDE encoder achieves the lowest error.
(c) Normalized test error contour of a 8-layer NeurOLight with different # of Fourier modes.

4.3 Ablation studies

PDE encoding. In Figure 10(b), we extensively compare different combinations of PDE encoding
methods. The first two methods only model the distribution over ϵr conditioned on fixed wavelength
and domain sizes like prior work [22, 2], which fail to generalize to examples in larger design space.
With raw PDE parameters (ϵr, λ, Ω̃), the model finds it difficult to learn a generalizable representation,
thus showing large errors on the test dataset. The last three combinations validate that permittivity
and our wave prior are compact and effective encodings in our joint PDE representation method,
while extra raw wavelength and domain information are redundant and even harmful.

Fourier modes. As shown in Figure 10(c), we perform a fine-grained exploration in the Fourier
mode space to find the most suitable configuration. Unlike the flow prediction tasks evaluated in
FNO [21] that only require a few modes, using inadequate Fourier modes fails to learn the terahertz
high-frequency optical fields in the photonic device simulation task. However, using all Fourier series
is not necessary and makes the model prone to overfitting issues. (kh, kv)=(70, 40) is the best setting
that balances expressiveness and efficiency in our NeurOLight.

Table 2: Ablation on proposed techniques. Each entry changes one
technique independently. Runtime is averaged over multiple runs
on 1 NVIDIA Quadro RTX 6000 GPU.

Variants #Params
(M)↓ Train Err ↓ Test Err ↓ Runtime

(ms) ↓
NeurOLight 1.58 0.145 0.122 12.1

ConvStem → Lifting 1.58 0.156 0.134 11.9
Extra Parallel Conv Path 1.64 0.149 0.129 14.5

FFN → BN-GELU 1.37 0.469 0.446 6.3
Remove DWConv in FFN 1.57 0.164 0.144 10.6
Extra GELU After FNO 1.58 0.164 0.148 12.4

Remove DropPath 1.58 0.131 0.136 12.1

Cross-shaped NeurOLight block.
In Table 2, we independently change
one technique in the full NeurOLight
model to verify each individual con-
tribution. Our proposed essential
techniques synergistically boost the
modeling capacity and generalization.
Compared to the linear lifting in FNO-
2d that only performs point-wise pro-
jection, our lightweight convolution
stem can extract complex high-order
wave patterns with negligible runtime
overhead. Similar to U-FNO [37], we append an additional parallel convolution path alongside the
cross-shaped FNO block; however, the extra 20% runtime penalty does not pay off. The proposed
convolutional FFN significantly improves the nonlinearity and local feature extraction ability of
NeurOLight. Changing it to a simple BatchNorm-GELU causes significant degradation. Different
from the MLP-based FFN in F-FNO [34], our extra depthwise CONV is critical to local feature
extraction and can reduce the test error by 16%. Note that an extra GELU after the FNO block will
distort the feature in the low-dimensional space and have a negative impact on the performance [26].
Besides the dropout in the head, stochastic network depth [15] in the residual NeurOLight block is
also effective in mitigating overfitting.

4.4 Discussion

Superposition-based mixup.

As shown in Table 3, without augmentation, NeurOLight only sees single-source training examples,
thus failing to generalize when multiple sources are fused as a unified input source for fast one-shot
prediction, named multi-source inference mode. A simple work-around would be to perform single-
source prediction on |J| ports and superpose the resultant |J| fields, named single-source inference
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Table 3: Test N-MAE of an 8-layer NeurOLight with different number of
training examples. Multi-source inference mode has similar performance
as the single-source method but shows 3× faster runtime on 3×3 MMIs.

#Train Examples (K)Train
Augmentation

Inference
Mode 1.4 4.1 6.9 9.7 12.4

Runtime
(ms)

Single-Source 0.346 0.257 0.202 0.198 0.194 23.8None Multi-Source 0.892 0.882 0.880 0.865 0.873 8.3

Single-Source 0.229 0.205 0.204 0.200 0.199 23.8Superposition
Mixup Multi-Source 0.230 0.208 0.206 0.202 0.202 8.3

mode. When training on a
large enough training set, this
method indeed works. How-
ever, it quickly deteriorates as
the training set reduces with a
|J| times higher runtime cost
for a |J|-port device. With our
dynamic superposition-based
mixup, NeurOLight works
well both in single-source and
multi-source inference modes
with superior generalizability even with only 10% training data.

𝜆 covered in training set

±𝜎

Generalize to 

unseen frequency

1.53 1.54 1.55 1.56
0.08

0.10

0.12

0.14

T
e
s
t 
N

-M
A

E

Wavelength 𝜆 (𝜇𝑚)

FDFD: >1 min v.s. NeurOLight: <150 ms

Figure 11: NeurOLight can
generalize to unseen devices
and wavelengths.

Spectrum analysis. Spectroscopy is an important approach to
understanding the broadband response of a photonic device. A tra-
ditional FDFD simulator has to sweep the spectrum with multiple
simulations. In contrast, NeurOLight models the joint probability
over wavelengths, and thus only needs to perform parallel inference
with different ω = 2π

λ values at one shot. Figure 11 demonstrates
that, though NeurOLight is only trained with five selected wave-
lengths, it can generalize to unseen devices with unseen wavelengths.
Sweeping in the standard C-band (1550 nm-1565 nm) with a 2 nm
granularity, NeurOLight can finish within 150 ms, achieving 450×
speedup over the FDFD simulator.

Device adaptation. We evaluate the transferability of NeurOLight
via device adaptation. In Figure 12, we transfer NeurOLight trained
on 3-port MMIs to larger MMIs with 4 and 5 ports. Directly predicting new devices shows unsatisfying
test error out of distribution (OOD). We adapt the model with 20-epoch fast linear probing and 30-
epoch finetuning [17] on 3.7 K 4-port MMI examples and 4.6 K 5-port MMI examples. The model
quickly transfers to new photonic devices with good prediction fidelity.

3x3 MMI  4x4 MMI
(1) Direct Test Err OOD: 0.399

(2) Linear
Probing (3) Finetune 

Test Err: 0.130

Epoch

Te
st

 N
-M

AE

Epoch

3x3 MMI  5x5 MMI
(1) Direct Test Err OOD: 0.773

Te
st

 N
-M

AE
5x5 MMI: =1.55  

=84.0 nm 113.1 nm
4x4 MMI: =1.53  

=82.3 nm 81.9 nm
NeurOLight

Simulator

Error

(3) Finetune 
Test Err: 0.171

(2) Linear
Probing

Figure 12: Device adaptation from 3-port to 4-/ 5-port MMI via linear probing and finetuning.

5 Conclusion

In this work, for the first time, a physics-agnostic neural operator, named NeurOLight, is proposed for
ultra-fast parametric photonic device simulation. We propose a joint PDE encoder with wave prior and
masked source modeling for compact PDE representation. Our lightweight cross-shaped NeurOLight
backbone design achieves a superior balance between modeling capability and parameter efficiency.
In addition, our novel superposition-based mixup technique significantly boosts the data efficiency
and model generalizability. Experiments show that NeurOLight outperforms prior DNN models
with 53.8% better prediction fidelity and 44.2% less parameter cost, serving as an over 100× faster
surrogate model to the numerical solvers in photonic device simulation. Currently, our model focuses
on device-level simulation. As a future direction, we look forward to exploring the circuit-level
simulation and utilizing our model to streamline the optimization loop for efficient AI-assisted optical
circuit design automation.

Acknowledgments The authors acknowledge the Multidisciplinary University Research Initiative
(MURI) program through the Air Force Office of Scientific Research (AFOSR), contract No. FA
9550-17-1-0071, monitored by Dr. Gernot S. Pomrenke.
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A1 Optical field simulation

Analyzing how light field propagate through those components are critical to device optimization
and photonic integrated circuit design. Given a linear isotropic optical component, we will shine
time-harmonic continuous-wave light on its input ports and analyze the steady-state electromagnetic
field distributions E = x̂Ex+ ŷEy+ ẑEz and H = x̂Hx+ ŷHy+ ẑHz in it, each of which includes
horizontal (x), vertical (y), and longitudinal (z) components. The light field follows the Maxwell
PDE under certain absorptive boundary conditions [16],

∇×E(r, t) = µ0
∂H(r, t)

∂t
+ Je(r, t), ∇×H(r, t) = −ϵ0ϵr(r)

∂E(r, t)

∂t
+ Je(r, t), (7)

where ∇× is the curl operator of a vector function, µ0 is the vacuum magnetic permeability, ϵ0 and
ϵr are the vacuum and relative electric permittivity, Jm and Je are the magnetic and electric current
sources. Since the input light is time-harmonic at a vacuum angular frequency ω, the time-domain
PDE can be transformed to the frequency domain for the steady state as follows,

∇×E(r) = jωµ0H(r) + Jm(r), ∇×H(r) = −jωϵ0ϵr(r)E(r) + Je(r). (8)

A simple variable substitution gives us the curl-of-curl Maxwell PDE,(
(µ−1

0 ∇×∇×)− ω2ϵ0ϵr(r)
)
E(r) = jωJe(r),

(
∇× (ϵ−1

r (r)∇×)− ω2µ0ϵ0
)
H(r) = jωJm(r). (9)

To restrict a unique solution without boundary reflection, complicated boundary conditions will be
inserted [16]. An artificial material, i.e., coordinate-stretched perfectly matched layer (SC-PML),
will be padded around the solving domain. Such PML materials have large imaginary parts in
the permittivities to introduce strong energy absorption and changes the derivative operator to
∇ = ( 1

sx(x)
∂
∂x ,

1
sy(y)

∂
∂y ,

1
sz(z)

∂
∂z ), where s is a location-determined complex value. Solving the

above PDEs will give the steady-state frequency-domain complex magnitude of the optical fields.

A2 Dataset generation

We generate our customized MMI device simulation dataset using an open-source FDFD simulator
angler [16]. The tunable MMI dataset has 5.5 K single-source training data, 614 validation data, and
1.5 K multi-source test data. The etched MMI dataset has 12.4 K single-source training data, 1.4 K
validation data, and 1.5 K multi-source test data. We summarize how we generate random devices in
Table A4. We randomly sample the physical dimension of the MMI, input/output waveguide width,
the width of the perfectly matched layer (PML), device border width away from PML, controlling
pad sizes, input light source frequencies, etched cavity sizes and ratio (determines the number of
cavities in the MMIs), and permittivities in the controlling region.

Table A4: Summary of device design variable’s sampling range, distribution, and unit.
Variables Value/Distribution Unit

|J| × |J| Tunable MMI |J| × |J| Etched MMI

Length U(20, 30) U(20, 30) µm
Width U(5.5, 7) U(5.5, 7) µm
Port Length 3 3 µm
Port Width U(0.8, 1.1) U(0.8, 1.1) µm
Border Width 0.25 0.25 µm
PML Width 1.5 1.5 µm
Pad Length U(0.7, 0.9)×Length U(0.7, 0.9)×Length µm
Pad Width U(0.4, 0.65)×Width/|J| U(0.4, 0.65)×Width/|J| µm
Wavelengths λ U(1.53, 1.565) U(1.53, 1.565) µm
Cavity Ratio - U(0.05, 0.1) -
Cavity Size - 0.027 Length × 0.114 Width µm2

Relative Permittivity ϵr U(11.9, 12.3) {2.07, 12.11} -

A3 Training settings

We implement all models and training logic in PyTorch 1.10.2. All experiments are conducted on a
machine with Intel Core i7-9700 CPUs and an NVIDIA Quadro RTX 6000 GPU. For training from
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scratch, we set the number of epochs to 200 with an initial learning rate of 0.002, cosine learning rate
decay, and a mini-batch size of 12. For the tunable MMI dataset, we split all 7,680 examples into
72% training data, 8% validation data, and 20% test data. For the etched MMI dataset, we split all
15,360 examples into 81% training data, 9% validation data, and 10% test data. For device adaptation,
we first perform linear probing for 20 epochs with an initial learning rate of 0.002 and cosine learning
rate decay; then we perform finetuning for 30 epochs with an initial learning rate of 0.0002 and a
cosine learning rate decay. We apply stochastic network depth with a linear scaling strategy and a
maximum drop rate of 0.1.

A4 Model architectures

UNet. We construct a 4-level convolutional UNet with a base channel number of 34. The total
parameter count is 3.47 M.

FNO-2d. For Fourier neural operator (FNO), we use 5 2-D FNO layers with a channel number of 32.
The Fourier modes are set to (#Modez=32, #Modex=10). The final projection head is CONV1×1(256)-
GELU-CONV1×1(2). The total parameter count is 3.29 M.

F-FNO. For factorized Fourier neural operator (F-FNO), we use 12 F-FNO layers with a channel
number of 48. The Fourier modes are set to (#Modez=70, #Modex=40). The final projection head is
CONV1×1(256)-GELU-CONV1×1(2). The total parameter count is 3.16 M.

NeurOLight. For our proposed NeurOLight, we use 12 F-FNO layers for tunable MMIs and 16
layers for etched MMIs with a base channel number C=64. The convolution stem is BSConv3×3(32)-
BN-ReLU-BSConv3×3(64)-BN-ReLU, where BSConv is blueprint convolution [13]. The Fourier
modes are set to (#Modez=70, #Modex=40). The channel expansion ratio in the FFN is set to s=2.
The final projection head is CONV1×1(256)-GELU-CONV1×1(2). The total parameter count is
1.58 M.

A5 Animation of NeurOLight
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