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Abstract

We show that the effectiveness of the well celebrated Mixup [Zhang et al., 2018]
can be further improved if instead of using it as the sole learning objective, it is
utilized as an additional regularizer to the standard cross-entropy loss. This simple
change not only improves accuracy but also significantly improves the quality
of the predictive uncertainty estimation of Mixup in most cases under various
forms of covariate shifts and out-of-distribution detection experiments. In fact,
we observe that Mixup otherwise yields much degraded performance on detecting
out-of-distribution samples possibly, as we show empirically, due to its tendency to
learn models exhibiting high-entropy throughout; making it difficult to differentiate
in-distribution samples from out-of-distribution ones. To show the efficacy of
our approach (RegMixup2), we provide thorough analyses and experiments on
vision datasets (ImageNet & CIFAR-10/100) and compare it with a suite of recent
approaches for reliable uncertainty estimation.

1 Introduction

In real-world machine learning applications one is interested in obtaining models that can reliably
process novel inputs. However, though deep learning models have enabled breakthroughs in multiple
fields, they are known to be unreliable when exposed to samples obtained from a distribution that
is different from the training distribution. Usually, the larger the extent of this difference between
the train and the test distributions, the more unreliable these models are. This observation has led
to a growing interest in developing deep learning models that can provide reliable predictions even
when exposed to unseen situations [Liu et al., 2020a,b, Wen et al., 2021, Lakshminarayanan et al.,
2017]. Most of these approaches either use expensive ensembles, or propose non-trivial modifications
to the neural network architectures in order to obtain reliable models. In most cases, they trade
in-distribution performance (accuracy) to perform reliably on: (1) out-of-distribution (OOD) samples;
and (2) covariate shift (CS) [Quionero-Candela et al., 2009] samples.

Towards developing practically useful and reliable models, we investigate the well known
Mixup [Zhang et al., 2018] as it is extremely popular in improving both a model’s accuracy and its
robustness [Wen et al., 2021, Hendrycks et al., 2020b]. It has already been observed that Mixup
can help in retaining good accuracy when the test inputs are affected by superficial variations that
do not affect the target label (i.e., they undergo CS) [Hendrycks et al., 2020b]. However, we find
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that Mixup’s reliability degrades significantly when exposed to completely unseen samples with
potentially different labels than the ones it was shown during training (OOD). This is undesirable as
in such situations we would like our models to reliably reject these inputs instead of making wrong
predictions on them. We observe that the primary reason for such poor OOD performance of Mixup is
due to its tendency to provide high predictive entropy for almost all the samples it receives. Therefore,
it becomes difficult for the model to differentiate in-distribution samples from out-of-distribution
ones. We would like to highlight that our observation is in contrast to the prior work [Thulasidasan
et al., 2019] which suggests that Mixup provides reliable uncertainty estimates for OOD data as well.

We propose a simple yet effective fix to the aforementioned issue with Mixup: we suggest to train the
model on an approximate data-distribution that is an explicit mixture of both the empirical and the
Mixup vicinal approximations to the data-distribution. We call this approach RegMixup. In a nutshell,
it simply combines the Empirical Risk Minimization (ERM) [Vapnik, 1991] and the Vicinal Risk
Minimization (VRM) [Chapelle et al., 2000] objectives together. Implementation wise, along with the
Mixup objective on the interpolated sample, it requires adding an additional cross-entropy loss on one
of the the clean samples. We provide proper justifications behind this proposal and show that such
simple modification significantly improves the performance of Mixup on a variety of experiments.

We would like to highlight that one of the core strengths of our approach is its simplicity. As opposed
to the recently proposed techniques to improve uncertainty estimation like SNGP [Liu et al., 2020a]
and DUQ [van Amersfoort et al., 2020], it does not require any modifications to the architecture and
is extremely simple to implement. It also does not trade accuracy in order to improve uncertainty
estimates, and is a single deterministic model, hence, extremely efficient compared to the highly
competitive Deep Ensembles (DE) [Lakshminarayanan et al., 2017]. Summary of our contributions:

• We provide a simple modification to Mixup that significantly improves its in-distribution,
covariate shift, and out-of-distribution performances.

• Through extensive experiments using ImageNet-1K, CIFAR10/100 and their various CS
counterparts along with multiple OOD datasets we show that, overall, RegMixup outper-
forms recent state-of-the-art single-model approaches. In most cases, it outperforms the
extremely competitive and expensive DE as well.

2 RegMixup: Mixup as a regularizer

Preliminary on ERM and VRM The principle of risk minimization [Vapnik, 1991] is to estimate
a function f ∈ F that, for a given loss function `(., .), minimizes the expected risk over the data-
distribution P (x,y). The risk to be optimized is defined as R(f) =

∫
`(f(x),y)dP (x,y). Since the

distribution P (x,y) is unknown, a crude yet widely used approximation is to first obtain a training
dataset D = {(xi,yi)}ni=1 sampled from the distribution P and then obtain f by minimizing the
empirical risk defined as Re(f) = 1/n

∑n
i=1 `(f(xi),yi). This is equivalent to approximating

the entire data-distribution space by a finite n number of Delta distributions positioned at each
(xi,yi), written as Pe(x,y) = 1/n

∑n
i=1 δxi

(x)δyi
(y). This approximation to the risk minimization

objective is widely known as the Empirical Risk Minimization (ERM) [Vapnik, 1991].

ERM has been successfully used in a plenty of real-world applications and undoubtedly has provided
efficient and accurate solutions to many learning problems. However, it is straightforward to notice
that the quality of such ERM solutions would rely on how closely Pe mimics the true distribution P ,
and also on the capacity of the function classF . In situations where the function class is extremely rich
with high capacity (for example, deep neural networks), and hence prone to undesirable behaviours
such as overfitting and memorization, a good approximation to P is generally needed to enforce
suitable inductive biases in the model. To this end, for a fixed training dataset, instead of a delta
distribution one could potentially fit a richer distribution in the vicinity of each input-output pair
to estimate a more informed risk computed in a region around each sample. This is precisely
the principle behind Vicinal Risk Minimization (VRM) [Chapelle et al., 2000]. The approximate
distribution in this case can be written as Pv(x,y) = 1/n

∑n
i=1 Pxi,yi

(x,y), where Pxi,yi
(x,y)

denotes the user-defined vicinal distribution around the i-th sample3. Therefore, the vicinal risk boils
down to

3Note, the original VRM paper uses Pyi(y) = δyi(y) which simply is a special case of this notation.
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Rv(f) =
1

n

n∑
i=1

∫
`(f(x),y)dPxi,yi

(x,y). (1)

When the integral in the above summation is intractable, a Monte Carlo estimate with m samples can
be used as follows:∫

`(f(x),y)dPxi,yi(x,y) ≈ 1

m

m∑
j=1

`(f(x̄j), ȳj); (x̄j , ȳj) ∼ Pxi,yi(x,y). (2)

Several approaches in deep learning can be seen as a special instance of VRM. For exam-
ple, training a neural network with multiple augmentations is a special case where the aug-
mented inputs are the samples from the unknown vicinal distribution. A widely used applica-
tion of VRM is the procedure to obtain a robust base classifier to design certifiable classifiers.

Figure 1: Beta(α, α) pdf for varying α.

For example, if Pxi,yi(x,y) = Pxi(x)δyi(y) and Pxi(x)
is a Gaussian distribution centered at xi, Eq. (2) can be
computed by taking the average loss over gaussian per-
turbed inputs x̄ while keeping the target labels same. Min-
imizing such a risk would lead to a classifier that is robust
to additive noise bounded within an `2 ball. This is exactly
the procedure that has been widely adopted in the random-
ized smoothing literature in order to obtain a base neural
network for which a certifiable smooth classifier can be
obtained [Lecuyer et al., 2019, Cohen et al., 2019]4. Be-
low we discuss another highly effective use case of VRM
called Mixup which is the main focus of this work.

Mixup Built on the fundamentals of VRM, the vicinal distribution defined in Mixup [Zhang et al.,
2018] is as follows:

Pxi,yi
(x,y) = Eλ[(δx̄i

(x), δȳi
(y))],

where λ ∼ Beta(α, α) ∈ [0, 1], α ∈ (0,∞), x̄i = λxi + (1 − λ)xj and ȳi = λyi + (1 − λ)yj .
Note that the vicinal distribution here not only depends on (xi,yi) but also on another input-output
pair (xj ,yj) drawn from the same training dataset. For a fixed α (parameter of the Beta distribution,
refer Figure 1), implementing Mixup would require taking multiple Monte Carlo samples5 for each
datapoint (refer Eq. (2)) which can be computationally prohibitive. Therefore, in practice, only
one sample (m = 1) per Beta distribution per pair of samples from a batch is considered at a time.
Although this procedure might look like a crude approximation to the original objective, it has
resulted in highly promising results in a variety of applications and is very well accepted in the
research community. Without undermining the remarkable success of such a simple approach, below
we highlight two of its behavioural characteristics that, as we show, might limit its effectiveness:

• Small cross-validated α� 1: The shape of the vicinal distribution depends on the hyper-
parameter of the Beta distribution, therefore, the values of α decides the strength of the
convex interpolation factor λ. Since high values of α would encourage λ ≈ 0.5 resulting in
an interpolated x̄ that is perceptually different from x (inducing a mismatch between train
and test distributions), the cross-validated value of α for Mixup in most cases turns out
to be very small (α ≈ 0.2) in order to provide good generalization. Such small values of
α leads to sharp peaks at 0 and 1 (refer Figure 1). Therefore, effectively, Mixup ends up
slightly perturbing a clean sample in the direction of another sample even though the vicinal
distribution has the potential to explore a much larger interpolation space.

• High-entropy behaviour: As mentioned earlier, m = 1 is used in practice, therefore, it
is very unlikely that the interpolation factor λ ∈ {0, 1} even for small values of α. Thus,
the model never gets exposed to uninterpolated clean samples during training and hence,
it always learns to predict interpolated (or smoothed) labels ȳ for every input. Just like
DNNs with cross-entropy loss are overconfident because of their high capacity and target

4Based on our understanding, the current literature do not mention this procedure as an instance of VRM.
5We do not investigate how m depends on α.
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Figure 2: Mixup vs RegMixup in practice. Illustration of how the cross-validated α affects the
shape of the Beta distribution in both cases. Red regions represent 80% of the probability mass.
Mixup typically samples λ ≈ 0 or 1, while for RegMixup λ ≈ 0.5. In the first case, one of the two
interpolating images dominates the interpolated one; in the latter, a wide variety of images containing
features from both the images in the pair are obtained.

Delta distribution [Guo et al., 2017], DNNs with Mixup turns out to be relatively less
confident because the network retains its high capacity but observes only target smoothed
labels. This underconfident behaviour results in high-entropy for both in-distribution and
out-of-distribution samples. This is undesirable as it will not allow predictive uncertainty to
reliably differentiate in-distribution samples from out-of-distribution ones.

We validate the consequences of the above limitations of Mixup with the following simple experiment.
In Figure 3, we provide heat-maps to show how the entropy of the predictive distribution varies when
interpolating samples belonging to different classes. The heat-map is created as follows. First, we train
a WideResNet28-10 (WRN) [Zagoruyko and Komodakis, 2016] using the CIFAR-10 (C10) dataset.
Then, we randomly choose 1K pairs of samples {xi,xj} from the dataset such that yi 6= yj

6. For each
pair, via convex combination, we synthesize 20 samples x̄s using equally spaced λs between 0 to 1.

Figure 3: Heatmaps of the entropy
profiles as the interpolation factor λ ∈
[0, 1] between samples of two classes
varies. Left (DNN), Middle (Mixup),
Right (RegMixup). Note, RegMixup in-
duces high-entropy barrier separating in-
distribution & out-distribution samples.

The heat-map is then created using all the 20K samples.
The intensity of each (λ, H) bin in the heat-map indicates
the number of samples in that bin. Note, DNN (trained
with vanilla cross-entropy loss) shows low entropy (thus
yielding overconfidence) irrespective of where the interpo-
lated sample lies. However, Mixup shows higher entropy
for almost all λs (thus yielding lower confidence on in-
distribution samples as well). The impact of this behaviour
is shown in Table 1. Though Mixup provides improved
accuracy compared to DNN for in-distribution (IND) and
covariate shift experiments, the high entropy behaviour
makes it much worse than DNN when exposed to out-of-
distribution detection task. For example, when SVHN
is used as the OOD dataset, the performance of Mixup
drops by nearly 8.47% compared to DNN. This clearly
shows that the distributions of the per-sample entropies on
the in-distribution and out-of-distribution sets are harder
to separate. However, there is a clear improvement of nearly 5% for covariate shift experiments,
implying that Mixup augmentations do improve robustness in this aspect. Note that, in the context
of calibration, Mixup’s confidence reducing behaviour (equivalent to providing higher predictive
entropy) was also observed by [Wen et al., 2021].

6Note, it is highly likely that yi 6= yj even if we do not impose this constraint as the problems under
consideration have many classes.
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RegMixup We now provide a very simple modification to Mixup that not only alleviates its
aforementioned limitation on detecting OOD samples, but also significantly improves its performance
on in-distribution and covariate-shift samples. We propose to use the following approximation to the
data-distribution

P (x,y) =
1

n

n∑
i=1

(γδxi
(x)δyi

(y) + (1− γ)Pxi,yi
(x,y)),

where Pxi,yi(x,y) is the mixup vicinal distribution and γ ∈ [0, 1] is the mixture weight. The
above approximation is simply an explicit assemble of ERM and VRM based approximations to
data-distribution. Though, in theory, VRM subsumes ERM, we argue that because of the crude
approximations needed to prevent increasing the training cost, it does not fully realize its potential.
Therefore, explicitly combining them might result in a practically more expressive model. We provide
extensive experimental evidence to support this hypothesis. Implementation wise, for each sample xi
in a batch, another sample xj is drawn randomly from the same batch to obtain interpolated x̄i and
ȳi, and then the following loss is minimized

CE(pθ(ŷ|xi),yi) + η CE(pθ(ŷ|x̄i), ȳi), (3)
where CE(.,.) denotes the standard cross-entropy loss, the hyperparameter η ∈ R≥0, and p(.) the
softmax output of a neural network parameterized by θ. Note, dividing Eq. (3) by (1 + η) is exactly
the same as using a data-distribution with γ = 1/1+η. In practice, we observe the model’s performance
to not vary much with η and using η = 1 (equivalent to γ = 0.5) to provide highly effective results.
Refer to Algorithm 1 for an overview of the RegMixup training procedure.

What does this simple modification bring to the model? (1) VRM now subsumes ERM because
the vicinal distribution can perfectly represent the ERM training distribution. This is because of
the fact that irrespective of the values of m and α, the model will always be exposed to the clean
training samples as well. (2) The interpolation factor λ can potentially explore a much wider space as
the presence of clean samples might help in controlling the performance drop due to the train/test
distribution shift. Therefore, if α� 1 was actually the most effective solution, the cross validation
would automatically find it.

Practical implications of such simple modification on the behaviour and the performance of the model

• Large cross-validated α � 1 : As anticipated, the model is now able to explore strong
interpolations because of the additional cross-entropy term over the unperturbed training
data. Interestingly, the cross-validated α that we obtained in fact is very high (α ∈ {10, 20},
see Appendix B.3 for cross-validation details) leading to λ ≈ 0.5. Therefore, as opposed to
the standard Mixup, RegMixup prefers having strong diverse interpolations during training.
Refer Figure 2 for visualizations.

• Maximizing a soft proxy to entropy (knowingly unknowing the unknown): It is straight-
forward to notice that a value of λ ≈ 0.5 would lead to x̄ that is a heavy mix of two samples
(mimicking OOD samples, refer Fig. 2), and the corresponding target label vector ȳ would
have almost equal masses corresponding to the labels of the interpolating samples. There-
fore, minimizing CE(pθ(y|x̄i), ȳi) in this case is equivalent to maximizing a soft proxy to
entropy defined over the label support of yi and yj (note, exact entropy maximization would
encourage equal probability masses of 0.5 for these labels). We find this observation intrigu-
ing as RegMixup naturally obtains a cross-validated α that leads to a maximum likelihood
solution having high-entropy on heavily interpolated samples. This is an extremely desirable
property as it allows models to reliably differentiate between in and out distribution samples.
Thus, Mixup automatically acts as a regularizer in this case.

Cov. Shift OOD Detection
C10 (Test) C10-C C100 SVHN T-ImageNet

Models Accuracy (↑) Accuracy (↑) AUROC (↑) AUROC (↑) AUROC (↑)
DNN 96.14 76.60 88.61 96.00 86.44

Mixup 97.01 81.68 83.17 87.53 84.02
RegMixup (Our) 97.46 83.13 89.63 96.72 90.19

Table 1: In-distribution, covariate shift, and out-of-
distribution detection results for WRN trained on CIFAR-10
(C10). C10-C is the corrupted version of C10.

The entropy heat-map in Figure 3
clearly shows that as opposed to DNN
and Mixup, the entropy for RegMixup
is very low for λ close to either 0 or
1, however, it increases and remains
high for all other intermediate interpo-
lation factors, practically creating an
entropy barrier.

Also, as shown in Table 1, RegMixup
provides improvements in both accu-
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racy (in-distribution and covariate-shift) and out-of-distribution robustness. An interesting observation
is that Mixup’s performance on OOD (T-ImageNet) dropped by 2.4% compared to DNN whereas Reg-
Mixup performed 3.75% better than DNN. Thus, in this case, it effectively improved the performance
of Mixup by nearly 6.15%.

3 Related Works

Covariate-Shift Robustness It is well known that neural networks performance can severely
degrade when exposed to covariate shift [Taori et al., 2016, Recht et al., 2019, Wang et al., 2019].
In image classification, for instance, covariate shift could occur due to changes in environmental
conditions [Hendrycks and Dietterich, 2019] and the image capturing process, data sampling [Recht
et al., 2019, 2018, Lu et al.], stylised representations of the objects (e.g. in paintings or drawings)
[Wang et al., 2019, Hendrycks et al., 2021] etc. In the field of out-of-distribution generalization,
many techniques assume the availability of sets of samples presenting such variations at training
time [Shi et al., 2021, Yao et al., 2022, Wang et al., 2021], other techniques suggest leveraging
augmentations to mimic a set of variations that would allow the model to learn features that generalize
better [Hendrycks et al., 2020b,a] or self-supervision [Hendrycks et al., 2019a, Shen et al., 2022].

Out-Of-Distribution Detection While some authors suggest introducing an OOD reject option
[Geifman and El-Yaniv, 2019], the most recent literature tends to focus on leveraging a threshold
classifier on an uncertainty measure computed on top of the predictive distribution of a network. For
the latter approach, it is therefore convenient for a model to produce high uncertainty predictions
when facing OOD samples, and low uncertainty predictions when fed in-distribution samples [Liu
et al., 2020a]. Within this family of approaches, the most popular ones are the expensive Deep
Ensembles (DE) [Lakshminarayanan et al., 2017]. Note, the computational cost of DE scales linearly
with the number of members, and also recent works have observed a few limitations of naively using
ensembles directly [Wen et al., 2021, Ashukha et al., 2020]. There are several efficient variants of DE
where the ensemble members are obtained either by processing multiple inputs and multiple outputs
at the same time [Havasi et al., 2021], adding member-specific components to the network [Wen
et al., 2020], or by finding optima in distinct basins of low loss [Huang et al., 2017a]. Significant
attention has also been paid to Bayesian techniques where either stochastic gradient descent is being
modified to perform approximate inference [Chen et al., 2014, Zhang et al., 2020, Durmus et al.,
2016] or an approximation to Gaussian Processes is being utilized (specifically, we focus on SNGP
[Liu et al., 2020a]), or Bayesian Logistic Regression is being used during inference via Laplace
approximation (specifically, we focus on KFAC-LLLA [Kristiadi et al., 2020]). Techniques utilizing
distance functions in the feature space have also been suggested [van Amersfoort et al., 2020].

Model calibration Modern NNs have been shown to be miscalibrated [Guo et al., 2017], i.e. they
exhibit a mismatch between the model’s confidence and its accuracy. It has been observed that
temperature scaling [Guo et al., 2017] or replacing the typical cross-entropy loss [Chung et al., 2021,
Thulasidasan et al., 2019, Mukhoti et al., 2020] can be highly effective to reduce this mismatch.
Also, ensemble learning has been observed to help in reducing miscalibration [Lakshminarayanan
et al., 2017, Wen et al., 2021, Rahaman and Thiery, 2020]. However, it has been shown that good
calibration on in-distribution data does not necessarily imply good calibration performance under
covariate-shift [Ovadia et al., 2019].

4 Experiments

Datasets and Network Architectures We employ the widely used WideResNet28-10 (WRN)
[Zagoruyko and Komodakis, 2016] and ResNet50 (RN50) [He et al., 2016] architectures. We train
them on CIFAR-10 (C10) and CIFAR-100 (C100) datasets. We employ RN50 to perform experiments
on ImageNet-1K [Deng et al., 2009] dataset. We report the average of all the metrics computed on 5
seeds. For further details about the code base and the hyperparameters, refer to Appendix B.

For Covariate Shift (CS) experiments on models trained on C10 and C100, we resort to the widely
used CIFAR10-C (C10-C) and CIFAR100-C (C100-C) datasets, corrupted versions of C10 and
C100 [Hendrycks and Dietterich, 2019]. These datasets are made by applying 15 synthetically
generated but realistic corruptions at 5 degrees of intensity on the test sets of C10 and C100,
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respectively. For CIFAR-10, we also use the CIFAR-10.1 (C10.1) [Recht et al., 2018] and CIFAR-
10.2 (C10.2) [Lu et al.] datasets designed to test the generalization of CIFAR-10 classifiers to natural
covariate shifts. To the best of our knowledge there is no such analogous dataset for CIFAR-100. For
ImageNet-1K experiments, we use the widely considered ImageNet-A (A) [Hendrycks et al., 2019b],
ImageNet-R (R) [Hendrycks et al., 2021], ImageNetv2 (V2) [Recht et al., 2019], and ImageNet-
Sketch (SK) [Wang et al., 2019] datasets for covariate shift experiments. We report the calibration
experiments on both in-distribution and covariate shifted inputs in Appendix A.

For Out-of-Distribution (OOD) detection, following SNGP [Liu et al., 2020a], we use C100 and
SVHN Netzer et al. [2011] as OOD datasets for models trained on C10. Similarly, for models trained
on C100, we use C10 and SVHN as OOD datasets. Additionally, we also consider the Tiny-ImageNet
(T-ImageNet) dataset [Le and Yang, 2015] as OOD set in both the cases. For models trained on
ImageNet-1K, we use ImageNet-O (O) [Hendrycks et al., 2019b] as the OOD dataset.

Methods considered for comparisons Besides the natural comparison of our method with
Mixup [Zhang et al., 2018] and networks trained via ERM on the standard cross-entropy loss
(which we will refer to as DNN), we consider several other methods from the OOD detection and CS
literature. For models trained on C10 and C100, we consider:

• DNN-SN and DNN-SRN: taking inspiration from [Liu et al., 2020a], we consider DNN
models trained with Spectral Normalization (SN) [Miyato et al., 2018a] and Stable Rank
Normalization (SRN) [Sanyal et al., 2020] to control the bi-Lipschitz constant of the
networks, which has been shown to affect the generalization properties of neural networks.

• SNGP: Spectrally Normalized Gaussian Process [Liu et al., 2020a].
• DUQ: Deterministic Uncertainty Quantification [van Amersfoort et al., 2020].
• KFAC-LLLA: KFAC-Laplace Last Layer Approximation [Kristiadi et al., 2020] makes a

model Bayesian at test time by taking the Laplace approximation of the last layer [Ritter
et al., 2018]. We provide a simple outline of this approach in Appendix E.

• AugMix [Hendrycks et al., 2020b]: A data augmentation technique that applies randomized
augmentations to an input while enforcing them to be consistent during training. With
the recommended hyperparameters in the paper, it is almost 4× slower than DNN during
training while having the same inference requirements.

• DE: Deep Ensembles [Lakshminarayanan et al., 2017] with 5 members, requiring 5× more
compute than most single-model approaches such as DNN.

We would like to mention that, compared to vanilla DNN, our approach (RegMixup) is almost 1.5×
slower and Mixup is about 1.2× slower during training, while having the same inference requirements.
Due to the high compute requirements, for ImageNet-1K we consider DNN, Mixup and the two other
strongest baselines: AugMix and DE. We also cross-validate the hyperparameters on a 10% split of
the test set, which is removed at test time.

Few missing experiments: Below we provide extensive experiments for proper benchmarking.
The number of datasets and architectures we use lead to many combinations, a few of which we were
not able to produce good results for (even after extensive hyperparameter search), hence, some of the
entries in the tables are missing. For example, we could not make DUQ work on C100 as it exhibited
unstable behaviour. We could not produce promising results for SNGP on RN50 CIFAR experiments
using their official implementation. Similarly for AugMix RN50 experiments on C10 and C100. We
chose not to report these suboptimal numbers. Further details can be found in Appendix B.

Table entries: Bold represents the best among all the single-model approaches, and underlined
represents the best among all including the expensive Deep Ensembles.

Note, we do not consider methodologies requiring access to an external dataset during training (either
for CS or OOD ) as not only this would be an unfair comparison7, but we believe assuming such
knowledge is against the goal of this work, which is to develop models robust to unknown scenarios.

7since all the methods we consider do not leverage this information. RegMixup only relies on in-distribution
training data, just like other approaches, and makes no assumption on the type of CS nor on the OOD inputs.
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4.1 RegMixup Improves Accuracy on In-distribution and Covariate-shift Samples

Small-scale (CIFAR) Experiments on In-distribution Data In Table 2, we compare the accuracy
of various approaches on the in-distribution test sets of C10 and C100, respectively.

IND Accuracy
WRN28-10 RN50

C10 (Test) C100 (Test) C10 (Test) C100 (Test)
Methods Accuracy (↑) Accuracy (↑)

DNN 96.14 81.58 95.19 79.19
Mixup 97.01 82.60 96.05 80.12

RegMixup (our) 97.46 83.25 96.71 81.52
DNN-SN 96.22 81.60 95.20 79.27

DNN-SRN 96.22 81.38 95.39 78.96
SNGP 95.98 79.20 - -
DUQ 94.7 - - -

KFAC-LLLA 96.11 81.56 95.21 79.41
Augmix 96.40 81.10 - -

DE (5×) 96.75 83.85 96.23 82.09

Table 2: Accuracies (%) on IND samples for mod-
els trained on C10 and C100

Clearly,

• RegMixup outperforms Mixup in all
these experiments. In fact, RegMixup
is the best performing one among all
the single-model approaches.

• These improvements are non-trivial.
For instance, on WRN trained on C100,
it outperforms DNN and Mixup by
1.67% and 0.65%, respectively. It out-
performs SNGP with a significant mar-
gin of 4.05%.

Note how the single-model approaches specif-
ically designed to provide reliable predictive uncertainty estimations (for example, SNGP, DUQ,
KFAC-LLLA) underperform even compared to the vanilla DNN in terms of in-distribution accuracy.
In order to provide improved uncertainty estimates (as we will soon show), they trade clean data
accuracy. This type of behaviour is not observed in RegMixup.

Small-scale (CIFAR) Covariate Shift Experiments For C10-C and C100-C, as typical in the
literature, we report the accuracy averaged over all the corruptions and degrees of intensities in
Table 3. It is evident that our approach produces a remarkable improvement in the average accuracy
compared to all the baselines (except AugMix, we discuss later why that might be the case). For
instance, for C100-C WRN experiments, our method achieves an accuracy improvement of 6.9%
over DNN, of 3.86% over DE, and of 2.45% over Mixup. Similarly, for C10-C WRN, our method
achieves an improvement of almost 6.53% over DNN, of 4.81% over DE, and of 1.45% over Mixup.

For natural covariate shift datasets C10.1 and C10.2 as well, RegMixup outperforms all the baselines
(including AugMix). For instance, on C10.2, it obtains an improvement of 3.26% over DNN, of
1.5% over Mixup, and of 2.46% over the expensive DE.

Covariate Shift Accuracy
WRN28-10 R50

C10-C C10.1 C10.2 C100-C C10-C C10.1 C10.2 C100-C
Methods Accuracy (↑) Accuracy (↑)

DNN 76.60 90.73 84.79 52.54 75.18 88.58 83.31 50.62
Mixup 81.68 91.29 86.55 56.99 78.63 90.03 84.61 53.96

RegMixup (our) 83.13 92.79 88.05 59.44 81.18 91.58 86.72 57.64
DNN-SN 76.56 91.01 84.72 52.61 74.88 88.26 82.96 50.55

DNN-SRN 77.21 90.88 85.24 52.54 75.40 88.61 83.49 50.48
SNGP 78.37 90.80 84.95 57.23 - - - -
DUQ 71.6 - - 50.4 - - - -

KFAC-LLLA 76.56 90.68 84.68 52.57 75.18 88.34 83.50 50.85
AugMix 90.02 91.6 85.9 68.15 - - - -

DE (×5) 78.32 92.17 85.59 55.58 77.63 90.05 85.00 53.91

Table 3: Accuracies (%) on covariate shifted sam-
ples for models trained on C10 and C100.

IND Acc. Covariate Shift Acc OOD Det.
ImageNet-1K R A V2 Sk O

Acc (↑) Acc (↑) Acc (↑) Acc (↑) Acc (↑) AUROC (↑)
DNN 76.60 36.41 2.76 64.53 24.72 55.97

Mixup 77.15 39.05 3.29 64.58 26.34 55.54
RegMixup (our) 77.68 39.76 5.96 65.66 26.98 57.05

AugMix 76.88 38.29 2.63 64.94 25.61 56.91

DE (5×) 78.22 38.94 2.11 66.68 27.03 53.29

Table 4: ImageNet accuracies (%) on IND and CS
samples, and OOD detection performance.

Why AugMix performs extraordinarily well on
synthetically corrupted C10-C and C100-C but
not on natural distribution shift C10.1 and
C10.2? Looking at Table 3 one can observe Aug-
Mix’s extremely good performance on the C10-
C and C100-C. However, at the same time, the
model is underperforming with respect to Reg-
Mixup on C10.1 and C10.2. Similarly, AugMix
is outperformed by RegMixup on all ImageNet
CS experiments (and OOD as will be shown
soon). This seems to suggest that although the
augmentations used during the training of Aug-
Mix are not exactly same as that of the corrupted
test dataset, they tend to benefit from synthetic
forms of covariate shifts, hence the dramatic
improvement in these particular scenarios.

Large-scale (ImageNet-1K) Experiments on
In-distribution Data As shown in Table 4,
RegMixup scales to ImageNet-1K and exhibits improved accuracy with respect to both Mixup,
DNN, and AugMix. In particular, it is 1.08% better than DNN, 0.53% better than Mixup and 0.80%
better than AugMix. DE in this case is the best performing one.

Large-scale (ImageNet-1K) Covariate Shift Experiments In Table 4 we report the results for
common ImageNet-1K covariate-shift test sets. As it can be seen, RegMixup is either the best
performing one among all the single-model approaches, or it is the absolute winner including DE.
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WRN28-10 RN50
CIFAR10 (In-Distribution) CIFAR100 (In-Distribution) CIFAR10 (In-Distribution) CIFAR100 (In-Distribution)

Out-of-Distribution C100 SVHN T-ImageNet C10 SVHN T-ImageNet C100 SVHN T-ImageNet C10 SVHN T-ImageNet
Methods AUROC (↑) AUROC (↑) AUROC (↑) AUROC (↑)

DNN 88.61 96.00 86.44 81.06 79.68 80.99 88.61 93.20 87.82 79.33 82.45 79.89
Mixup 83.17 87.53 84.02 78.37 78.68 80.61 84.24 89.40 84.89 77.02 76.86 80.14

RegMixup (our) 89.63 96.72 90.19 81.27 89.32 83.13 89.63 95.39 90.04 79.44 88.66 82.56
DNN-SN 88.56 95.59 87.71 81.10 83.43 82.26 88.19 93.46 87.55 79.20 80.78 79.90

DNN-SRN 88.46 96.12 87.43 81.26 85.51 82.41 88.82 93.54 87.82 78.77 82.39 79.70
SNGP 90.61 95.25 90.01 79.05 86.78 82.60 - - - - - -

KFAC-LLLA 89.33 94.17 87.81 81.04 80.32 81.57 89.54 93.13 88.32 79.30 82.80 80.17
Aug-Mix 89.78 91.3 88.99 81.10 76.64 80.56 - - - - - -

DE (5×) 91.25 97.53 89.52 83.26 85.07 83.40 91.38 96.90 90.5 81.93 85.08 82.15

Table 5: Out-of-distribution detection results (%) for WideResNet28-10 and ResNet50 for models
trained on C10 and C100. See Appendix B for the cross-validated hyperparameters.

For instance, on ImageNet-A, RegMixup performs 2.67% better than Mixup and 3.20% better than
DNN. Similarly, on ImageNet-V2 it performs 1.08% better than Mixup and 1.13% more than DNN.
RegMixup also outperforms AugMix on all the considered datasets, while is outperformed by DE on
ImageNet-V2 (by 1.02%) and performs competitively on ImageNet-SK.

These experiments clearly show the strong generalization of RegMixup under various in-distribution
and CS experiments. They also show that it does not trade clean data accuracy to do so.

4.2 Out-of-Distribution Detection Experiments

Following the standard procedure [Liu et al., 2020a], we report the performance in terms of AUROC8

for the binary classification problem between in- and out-distribution samples. The predictive
uncertainty of the model is typically used to obtain these curves. Given an uncertainty measure
(normally entropy, refer Appendix C for an extensive discussion), it is important for models to be
more uncertain on OOD samples than on in-distribution samples to be able to distinguish them
accurately. This behaviour would lead to a better AUROC.

We report the OOD detection results for small-scale experiments (CIFAR 10/100) in Table 5, and for
large-scale experiments (ImageNet) in Table 4. Compared to the single-model approaches, it is clear
that RegMixup outperforms all the baselines in both small-scale and large-scale experiments, except
only in one situation (C100 as OOD, trained on WRN) where SNGP outperformed it by an AUROC
of 0.98. In fact, on ImageNet experiments, RegMixup outperformed all the baselines including DE.
We would also like to highlight that RegMixup provides significantly better performance compared
to Mixup on all these experiments. For example, the improvement is more than 9% when SVHN is
treated as the OOD dataset for WRN trained on either C10 or C100 (refer Table 5). Similarly, we can
observe dramatic improvements on other experiments as well.

5 Conclusive Remarks

We proposed RegMixup, an extremely simple approach that combines Mixup with the standard cross-
entropy loss. We conducted a wide range of experiments and showed that RegMixup significantly
improved the reliability of uncertainty estimates of deep neural networks, while also provided a
notable boost in the accuracy. We showed that RegMixup did not just outperform Mixup, it also
outperformed most recent state-of-the-art approaches in providing reliable uncertainty estimates.

We hope that our work opens possibilities to explore situations where ERM and VRM can explicitly
be combined together for practical benefits. An example would be label smoothing [Müller et al.,
2019] that can be seen as an instance of VRM where the vicinal distribution is over the labels
and the marginal distribution of the input samples (e.g., images) is approximated using deltas. In
Appendix H we conduct a preliminary analysis using CutMix Yun et al. [2019] and recent techniques
to train Vision Transformers Dosovitskiy et al. [2021] that alternate between Mixup and CutMix.
Another possible future direction would be to use bi-modal vicinal distribution along with importance
sampling in order to ensure that the unperturbed samples as well are used during training with high
probability. The observation that RegMixup ends up acting as a soft proxy to entropy maximizer for
interpolated samples, a potential extension of our work regards the possibility of exploring different
interpolation techniques to enforce high entropy behaviour on those regions of the input space.

8Area Under Receiver Operating Characteristic curve.
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