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Abstract

We study the two-stage vertex-weighted online bipartite matching problem of
Feng, Niazadeh, and Saberi (SODA ‘21) in a setting where the algorithm has ac-
cess to a suggested matching that is recommended in the first stage. We evaluate
an algorithm by its robustness R, which is its performance relative to that of the
optimal offline matching, and its consistency C, which is its performance when
the advice or the prediction given is correct. We characterize for this problem the
Pareto-efficient frontier between robustness and consistency, which is rare in the
literature on advice-augmented algorithms, yet necessary for quantifying such an
algorithm to be optimal. Specifically, we propose an algorithm that is R-robust
and C-consistent for any (R,C) with 0  R  3

4 and
p
1�R +

p
1� C = 1,

and prove that no other algorithm can achieve a better tradeoff.

1 Introduction

Online bipartite matching is a fundamental model used to assign incoming requests to servers, in-
coming workers to jobs, incoming impressions to online advertisers, etc. Traditionally, it has been
studied in either the adversarial setting, where nothing is assumed about the future; or the stochastic

setting, where future arrivals are assumed to follow a distributional model. However, algorithms for
the former tend to be overly conservative in their decisions; whereas algorithms for the latter can
perform terribly when the assumed model is wrong. Therefore, a recently budding literature has
studied advice-augmented online algorithms, which use a machine-learned prediction to refine their
decisions, but do not perform as terribly when the prediction is wrong.

In many problems including online matching, there is an inherent tradeoff between an algorithm’s
performance when the prediction is correct, called its consistency, and the algorithm’s performance
under the worst-case future, called its robustness. This is because a high consistency can only
be achieved by optimizing as if the predicted future was correct, resulting in a decision that can be
terrible in the worst case. Conversely, a high robustness requires hedging against all possible futures,
which does not sufficiently prioritize the one predicted to come true.

In this paper we characterize a tight robustness-consistency tradeoff for online bipartite matching,
by adding advice to the model of Feng et al. [1] where the online vertices arrive in two stages (but
many online vertices can arrive simultaneously). That is, we derive a continuum of algorithms for
two-stage online bipartite matching that define the Pareto-efficient frontier of the tradeoff between
performance when a prediction is right vs. performance when it is wrong. To our knowledge, Pareto-
efficiency results are rare in the literature on advice-augmented online algorithms, especially when
it comes to online matching (as we review in Subsection 1.3); yet, they are necessary for quantifying
an advice-augmented online algorithm to be optimal. We now concretely explain the model, our
algorithm, and the Pareto-efficient frontier it achieves between robustness and consistency.
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1.1 Model and Results

We study the two-stage version of the maximum vertex-weighted bipartite matching problem (see
Subsection 1.2 for other variants). In this problem, there is an underlying bipartite graph G =
(D,S,E), where D stands for “demand” and S stands for “supply”. The vertices in S are weighted
and offline (i.e. known in advance), while the vertices in D arrive online in two batches D1 and D2.
After the vertices in each batch arrive, all their incident edges to S are revealed, and the algorithm
chooses a matching in the resulting subgraph. (In particular, note that the first time the algorithm
needs to make a decision is after the entire batch D1 has arrived.) The algorithm’s choices are
irrevocable, and the goal of the problem is to maximize the total weight of the matched offline
vertices after both batches have arrived. Observe that the optimal second-stage decision is clearly to
select the max-weight matching subject to the matching already chosen in the first stage; therefore
the complexity of the problem boils down to finding a good first-stage matching.

In the advice-augmented model we introduce, the algorithm receives a suggested matching A to
make after the edges incident to the first-stage vertices D1 have been revealed. Our model allows
for an arbitrary advice A, although typically A would be the matching that, for a given (probabilistic)
prediction of D2 and its incident edges, maximizes the (expected) total weight matched after both
stages have arrived. (There is a different line of work (see [2]) that assumes access to an oracle that
gives perfect advice and studies the minimum number of queries needed to obtain a given guarantee.)

We define consistency based on this suggested matching, and explain later how it reduces to the
standard notion of consistency based on prediction error (see Subsection 1.2). That is, we define an
algorithm’s consistency as how well it performs relative to the best matching that could have been
obtained by exactly following the advice in the first stage. Meanwhile, we define an algorithm’s
robustness using the standard notion of competitive ratio, which is the algorithm’s performance
relative to the optimal maximum-weight matching in hindsight. We then say that an algorithm is
C-consistent and R-robust, respectively, if its consistency is at least C and robustness is at least R
for all possible graphs G and suggested matchings A. Formally, this requires

inf
G,A

ALG(G,A)

ADVICE(G,A)
� C and inf

G,A

ALG(G,A)

OPT(G)
� R, (1)

where following the earlier descriptions, ALG(G,A) is the algorithm’s expected performance when
given advice A and the graph ends up being G, ADVICE(G,A) is the performance from following
advice A exactly on graph G, and OPT(G) is the maximum-weight matching in graph G. Note
that since ADVICE(G,A)  OPT(G), any algorithm that is R-robust is automatically at least R-
consistent. However, C can be higher than R, and having a consistency guarantee is desirable when
the advice is good, because intuitively ADVICE(G,A) will be large and close to OPT(G).

We now describe our algorithm. Here, it is convenient to consider the fractional relaxation of the
problem, which allows vertices to be filled partially. In Section 2 we formally define the fractional
problem and show how to losslessly round any fractional solution to a randomized matching, so that
we can focus on defining our algorithm for the fractional problem.

First, in the absence of advice (i.e. when one only cares about robustness), traditional algorithms
for online matching can be described as using a penalty function to “balance” how much to fill the
offline vertices; the optimal competitive ratio is usually achieved by carefully choosing the right
penalty function. Using a linear penalty function, Feng et al. [1] give an algorithm for two-stage
bipartite matching that is 3

4 -robust, which they prove is optimal. However, since this algorithm
makes no use of the advice, it is only 3

4 -consistent. On the other hand, note that the naive algorithm
which always follows the advice exactly is 1-consistent but 0-robust. At this point, a natural idea for
obtaining a continuum of robustness-consistency guarantees is to run the algorithm of Feng et al. [1]
with probability p, and otherwise run the naive algorithm with probability 1 � p. As the coin-flip
probability p ranges from 0 to 1, the robustness/consistency of this coin-flip algorithm ranges along
the line between (R,C) = (0, 1) and (R,C) = ( 34 ,

3
4 ) (see the orange dashed line in Figure 1).

To improve upon these naive guarantees, we revisit the penalty function approach. Our main insight
is that for any given robustness level R 2 [0, 3

4 ], there is actually a family of penalty functions
that guarantees R-robustness. While a traditional algorithm for online matching would choose the
same penalty function for all the offline vertices, we observe that by choosing different penalty
functions, we can incentivize the algorithm to prioritize matching to the vertices that are suggested
by the advice, all while guaranteeing R-robustness. We prove that such an algorithm ends up being
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Figure 1: Robustness-consistency tradeoff curves for various algorithms.

C-consistent, where C is the unique value (decreasing in R) that satisfies the equation
p
1�R +p

1� C = 1. This curve is also plotted in Figure 1 and is a significant improvement over the
straight-line interpolation. This elementary, symmetric curve also happens to be tight.

Organization of paper. Notation and the reduction from integer to fractional matching is presented
in Section 2. Our algorithm is formally defined in Section 3. Proofs of robustness and consistency
are sketched in Section 4 and Section 5 respectively, highlighting our new techniques. The hardness
instance certifying our tradeoff curve of

p
1�R +

p
1� C = 1 to be tight is presented in Sec-

tion 6. For the full, most up-to-date version of the paper which includes all proofs, please refer to
https://arxiv.org/abs/2206.11397.

1.2 Discussion of Other Variants and Definitions

Multi-stage variant. Classical models of online matching and budgeted allocation [3, 4] allow more
than two stages of online arrivals, and algorithms that hybridize between a fixed “advice” algorithm
and traditional algorithms that “balance” against the adversary were introduced in Mahdian et al.
[5]. However, under this framework it is difficult to define how the advice algorithm should react
if the observed arrivals start to diverge from its predictions, making any tightness results between
robustness and consistency elusive. Instead, we focus on the elegant two-stage model of Feng et al.
[1], avoiding any complexities in how the advice should adapt to the accuracy of past predictions.

We note that the guarantees in Mahdian et al. [5] do not apply to our setting, since they do not handle
the innovation in Feng et al. [1] of allowing multiple online vertices to arrive simultaneously. How-
ever, even supposing they could be generalized with no loss, their guarantees would be significantly
worse than ours (see Figure 1, which plots in green the tradeoff curve described in Theorem 4.1 in
their paper). In fact, as observed in the upper-left part of Figure 1, the guarantees of Mahdian et al.
[5] can be worse than the simplistic coin-flip algorithm that either runs the “advice” algorithm, or
runs the “balance” algorithm from the multi-stage setting1. This demonstrates the need for a simpler
advice-augmented online matching framework as we propose, in which the Pareto-efficient tradeoff
between robustness and consistency can be exactly understood.

Unweighted variant. In the special case where all offline vertices have weight 1, a better robustness-
consistency tradeoff is possible—in fact, the simplistic coin-flip algorithm is optimal. This is be-
cause in the unweighted case, any maximal matching is at least 1

2 as large as optimal, and there-
fore naively following the advice is now 1

2 -robust (instead of 0-robust) and still 1-consistent. The
robustness-consistency guarantees are now defined by the straight line between (R,C) = ( 12 , 1)
and (R,C) = ( 34 ,

3
4 ), which is optimal.2 However, in the vertex-weighted variant the straight-line

guarantees are suboptimal, justifying the need for our approach in Subsection 1.1.

1In the multi-stage setting, the analogue of “balance” is only (1 � 1
e )-robust, hence the guarantees for the

coin-flip algorithm now range along the line between (R,C) = (0, 1) and (R,C) = (1 � 1
e , 1 � 1

e ) (see the
red dashed line in Figure 1).

2The instance which shows that this straight line tradeoff is tight for the unweighted setting is similar to the
instance in Section 6, and can be found in the full version of the paper.
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Edge-weighted variant. In this variant, the edges of the bipartite graph are weighted, and the aim
is to maximize the total weight of the edges in the matching. For 2-stage edge-weighted bipartite
matching, the naive coin-flip algorithm also turns out to be best-possible: The optimal tradeoff curve
is the line segment between (R,C) = (0, 1) and ( 12 ,

1
2 ). To see this, first note that the best possible

robustness is 1
2 . This is achieved by an algorithm that 1) with probability 1

2 , finds the maximum
matching M1 in the first stage and does nothing in the second stage, and 2) with probability 1

2 ,
does nothing in the first stage and finds the maximum matching M2 in the second stage.3 Thus, the
coin-flip algorithm which naively interpolates between the 1

2 -robust algorithm and the 1-consistent
algorithm (that always follows the advice) attains the tradeoff.

To show the tradeoff is tight, consider a first-stage graph consisting of a single edge with weight 1,
and suppose the advice suggests matching the edge. Let x be the probability the algorithm matches
the edge. Any R-robust algorithm must have x  1 � R, because if x > 1 � R then we cannot
maintain R-robustness if in the second stage, a single edge to the offline vertex arrives with very high
weight. Since x  1 � R, this means the maximum consistency on this instance is 1 � R (which
is the case if the second-stage graph is empty). Thus, just as in the unweighted case, a straight-line
tradeoff is also optimal in the edge-weighted variant.

Consistency defined based on prediction error. Many papers on prediction-augmented online al-
gorithms (reviewed in Subsection 1.3) do not analyze two separate ratios ALG(G,A)

OPT(G) and ALG(G,A)
ADVICE(G,A) .

Instead, they provide a general guarantee on ALG(G,A)
OPT(G) parameterized by prediction error, and define

consistency as the guarantee obtained when the error is 0. The prediction error captures how much
the prediction deviates from the truth, and its precise definition depends on the problem at hand.

Our definition of robustness and consistency can be easily translated to a guarantee involving pre-
diction error, because we can always define the error of advice A to be ⌘ := 1� ADVICE(G,A)

OPT(G,A) . When
we do so, our robustness/consistency guarantee immediately implies the parameterized guarantee
ALG(G,A)
OPT(G) � max{R, (1 � ⌘) (2

p
1�R � (1 � R))}, for any value of R 2 [0, 3

4 ] that we can set.
More generally, our definition can accommodate other notions of predictions and their associated
error, as long as it is possible to quantify how they affect the value of ADVICE(G,A).4

1.3 Further Related Work

Despite the recent surge of interest in both online matching and online algorithms with advice (see
the recent surveys Huang and Tröbst [7] and Mitzenmacher and Vassilvitskii [8] respectively), lit-
erature on online matching with advice has been relatively scant. We mention some papers in this
intersection below, as well as other related work.

Online matching with advice. Since Mahdian et al. [5], more recently Antoniadis et al. [9] have
introduced an online random-order edge-weighted bipartite matching problem with advice that pre-
dicts the edge weights adjacent to each offline vertex in some optimal offline matching. Lavastida
et al. [6] introduced a framework that formalizes when predictions can be learned from past data,
and their algorithmic performance degrades gracefully as a function of prediction error. Broadly
speaking, our work contrasts these three papers in that we are able to understand tight tradeoffs in
whether to trust some advice, although in an arguably simpler setting.

Online matching models in-between adversarial and stochastic. Instead of abstracting all in-
formation about the future into a single piece of prediction/advice that could be wrong, another
approach is to postulate an explicit model for how the future can deviate from past observations.
Examples of this include the semi-online bipartite matching model of Kumar et al. [10] and the
partially predictable model of Hwang et al. [11]. We note that random-order arrivals can also be
viewed as a form of partial predictability which allows learning [12], and moreover it is possible
to derive simultaneous guarantees under adversarial and random-order arrivals [13] which have the

3This algorithm is 1
2 -robust because the value of the optimal matching is at most the sum of the values of

M1 and M2. On the other hand, it is an easy exercise to find an example which shows that no algorithm can be
more than 1

2 -robust.
4As an example, Lavastida et al. [6] measure prediction error using a notion of total variation distance on

the number of each “type” of online vertex to arrive. They propose algorithms that take advice in the form of a
proportional allocation weight for each offline vertex.
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same flavor as robustness-consistency guarantees. Finally, we mention that the single sample model
in Kaplan et al. [14] can be viewed as a form of online matching with advice that is highly erroneous.

Optimality results in prediction-augmented online algorithms. Tight robustness-consistency
tradeoffs have become recently understood in prediction-augmented ski rental [15–17] and single-
commodity accept/reject problems [18, 19]. Our online matching problem contrasts these by having
a multi-dimensional state space, for which to our knowledge tightness results are rare. We should
mention that in multi-dimensional problems such as prediction-augmented caching [20] and online
welfare maximization [21], “optimality” results in which consistency can be achieved with no loss
of robustness (i.e. there is no “tradeoff”) have been derived.

Two-stage models. Two-stage models capture the essence of optimization under uncertainty, where
the first-stage decision must anticipate the uncertainty, and the second-stage decision is usually a
trivial recourse after the uncertainty (in our case the second-stage graph) has been realized. We refer
to Birge and Louveaux [22] and Bertsimas et al. [23] for broad overviews of two-stage stochastic
and robust optimization. In this paper we focus on the two-stage online matching model of Feng
et al. [1], introducing advice to this model and fully characterizing the tradeoff between obeying
vs. disobeying the advice. We note that a multi-stage online matching model motivated by batching
has also been recently considered in Feng and Niazadeh [24], and two-stage matching has been
formulated as a robust optimization problem in Housni et al. [25].

2 Preliminaries and Notation

The problem input consists of a bipartite graph G = (D,S,E), where the online vertices in D arrive
in two batches D1, D2. We index the vertices in D (resp. S) with i (resp. j). When the vertices
in Dk (k = 1, 2) arrive, all their incident edges to S are revealed, and the algorithm irrevocably
chooses a matching Mk between Dk and S. Each offline vertex j 2 S has a weight wj , and the
goal is to maximize

P
(i,j)2M1[M2

wj . We evaluate an algorithm by its robustness and consistency,
which were defined in Subsection 1.1.

Worst-case instances. The following observation is crucial to our analysis. Note that when bound-
ing robustness and consistency, one can assume WLOG that the second-stage graph consists of a
matching. To see this, suppose we are bounding robustness, and consider the edges not matched by
OPT(G) in the second stage. Deleting these edges does not change the value of OPT(G) and can
only decrease the value of the matching found by the algorithm. Therefore we may assume that the
second stage graph consists exactly of the matching selected by OPT(G) in the second stage. The
same argument shows that when bounding consistency, we may assume that the second-stage graph
consists exactly of the matching selected by ADVICE(G,A) in the second stage. Therefore from
now on we assume the second-stage graph is a matching.

Reduction to fractional matching. The preceding observation about worst-case instances allows
us to focus on the fractional version of the problem, which is easier to analyze and defined as
follows. In each stage, the algorithm chooses a fractional matching instead of an integral one. Let
x = (xij : i 2 D1, j 2 S, (i, j) 2 E) be the fractional matching chosen in the first stage, so that
x satisfies the constraints xi :=

P
j:(i,j)2E xij  1 and xj :=

P
i:(i,j)2E xij  1. Similarly, let

y = (yij : i 2 D2, j 2 S, (i, j) 2 E) be the fractional matching in the second stage, which satisfies
yi :=

P
j:(i,j)2E yij  1 and yj :=

P
i:(i,j)2E yij  1�xj . The objective in the fractional problem

is to maximize
P

j2S wj(xj + yj). As mentioned earlier, the first stage decisions xj are the critical
ones; therefore we will use the terminology that each offline vertex j 2 S is filled to water level xj

at the end of the first stage.

Although the fractional problem seems at first to be easier than the integral problem, it turns out
to be straightforward to convert any fractional algorithm for two-stage bipartite matching into a
(randomized) integral one with the same robustness/consistency guarantees. To see why, consider
any fractional algorithm and let x be its first-stage output. To convert this to a randomized integral
algorithm, we sample an integral matching M1 with marginals equal to x (i.e. P((i, j) 2 M) = xij

5



ALGORITHM 1: Algorithm for Two-Stage Fractional Vertex-Weighted Bipartite Matching with Advice
Input: Suggested matching A in the first-stage graph and desired robustness level R.
1: (Define penalty functions) Let fL(x) = max{0, 1� 1�R

x } and fU(x) = min{1, 1�R
1�x }.

2: (First stage) When the first-stage vertices D1 arrive, let S1 ✓ S be the set of offline vertices that are in the
suggested matching A. Set fj = fL for all j 2 S1 and fj = fU for all j 2 S \ S1.
Solve the following optimization problem for the first-stage fractional matching x̄:

(P1) max
X

j2S

wj

✓
xj �

Z xj

0

fj(t)dt

◆

s.t. xi :=
X

j:(i,j)2E

xij  1 8 i 2 D1

xj :=
X

i2D1:(i,j)2E

xij  1 8 j 2 S

xij � 0 8 i 2 D1, (i, j) 2 E

3: (Second stage) When the second-stage vertices D2 arrive, solve for the optimal fractional matching ȳ
subject to the capacities already taken by x̄:

(P2) max
X

j2S

wjyj

s.t. yi :=
X

j:(i,j)2E

yij  1 8 i 2 D2

yj :=
X

i2D2:(i,j)2E

yij  1� x̄j 8 j 2 S

yij � 0 8 i 2 D2, (i, j) 2 E

4: Return x̄+ ȳ.

for all edges (i, j) in the first-stage graph).5 We then take M2 to be the maximum-weight matching
in the second-stage graph, subject to M1 already being chosen.

To analyze the (expected) weight of the integral matching M1 [M2, note that in the first stage the
expected weight of M1 is equal to that of x by construction. Now consider the second stage. As
we have argued, we may assume the second-stage graph consists of a matching; let (i, j) be one
of these edges. The contribution of (i, j) to the value of the fractional algorithm is wj(1 � xj),
because the remaining amount that offline vertex j can be filled is (1� xj). On the other hand, the
integral algorithm will match (i, j) in M2 if and only if j is unmatched in M1, which happens with
probability (1�xj). So the contribution of (i, j) to the expected increase of the integral algorithm is
also wj(1� xj). Since the integral version of the problem can be reduced to the fractional version,
we focus on the latter in the remainder of the paper.

3 Algorithm

As argued in Section 2, we can losslessly round a fractional matching to an integral one. Therefore
we focus on the fractional two-stage bipartite matching problem from now on. Our algorithm is
described in Algorithm 1. The main challenge is to commit to a matching x when the first-stage
graph is revealed, that incorporates some advice but maintains a worst-case competitive ratio.

Intuitively, the amount xj that each vertex j 2 S is filled to after the first stage is governed by three
factors. First, it should depend on the weight wj ; the larger wj is, the larger xj should be. Second,
it should depend on the advice; xj should be larger if j is recommended by the advice, and smaller
if not. Third, it should depend on how much the other offline vertices are filled; the larger xj is
compared to the other vertices competing to be filled, the more hesitant we should be of filling it
even further, because this can be exploited by a second-stage graph whose edges are incident to the

5Since the bipartite matching polytope is integral, x can be written as a convex combination of inte-
gral matchings. Such a convex combination can be found in polynomial time using algorithmic versions of
Carathéodory’s theorem.
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Figure 2: Plots of fL and fU for three values of R. Left: R = 0. Middle: R = 5
9 . Right: R = 3

4 .
The consistencies achieved are C = 1, C = 8

9 , C = 3
4 , respectively. In the right plot, the green

dashed line indicates the penalty function used by Feng et al. [1].

vertices which have already been filled the most. Typically, the third point is achieved by defining
a penalty f(xj) 2 [0, 1] on the marginal benefit of filling j, with f(xj) increasing in xj , which
encourages the balancing of the water levels across j 2 S. This is combined with the first point
by associating a potential wj(1 � f(xj)) with each j 2 S. The algorithm then decreases these
potentials while filling water levels, with the aim of equalizing them as much as possible.

Our main idea to address the second point, now that there is some advice, is to use a lower penalty
rate fL(xj) to incentivize the filling of offline vertices j 2 S1 that are matched by the advice, and
a higher penalty rate fU(xj) for j /2 S1. More specifically, for any desired “robustness” R, our
analysis characterizes the envelope of penalty functions f : [0, 1] ! [0, 1] (see Theorem 1) that
guarantees a worst-case competitive ratio of R, and defines fL, fU according to the lower, upper
boundaries of this envelope respectively.

Figure 2 plots the penalty functions fL and fU for three values of R. The parameter R 2 [0, 3
4 ]

affects the separation between fL and fU. If R = 0, then fL, fU are the constant functions 0, 1
respectively, from which it can be seen that Algorithm 1 will fully match all the vertices suggested
by the advice. Intuitively, setting R = 0 is desirable when we trust that the advice will perform
well. On the other extreme, setting R = 3

4 guarantees the maximum possible robustness, which is
not reliant on the advice. Surprisingly, even in this case there is a bit of separation between fL and
fU (see Figure 2), and hence the algorithm still discriminates between offline vertices j 2 S1 vs.
j /2 S1, despite its distrust in the advice. We plot one intermediate value where R = 5

9 .

Finally, having decided penalty functions for the offline vertices, there is still the question of how
to balance their potential levels when multiple online vertices D1 can arrive in the first stage. For-
tunately, this question was answered by Feng et al. [1], who show that problem P1 is the right one
to solve, and establish a neat structural decomposition on its solution. Our Lemma 1 is a simpli-
fied version of the structural decomposition from their paper, which suffices for our purposes, and
importantly, allowing for heterogeneous penalty functions across offline vertices j 2 S.
Definition 1. Let x̄ be the first-stage fractional matching found by Algorithm 1. For all j 2 S,

we say j is filled if x̄j = 1 or fj(x̄j) = 1. Let F denote the set of filled offline vertices, and let

U = S \ F denote the set of unfilled offline vertices.

Lemma 1. After the first-stage fractional matching, the following statements hold for all i 2 D1:

1. If i has any unfilled neighbor (i.e. j 2 U for some j with (i, j) 2 E), then x̄i = 1.

2. For any unfilled neighbor j and any neighbor k with x̄ik > 0, it must be that

wj(1� fj(x̄j))  wk(1� fk(x̄k)). (2)

We explain the intuition behind Lemma 1. Property 1 holds because if x̄i < 1 instead, then variable
x̄ij where j is any unfilled neighbor of i could have been increased to strictly improve the objective
of (P1). Meanwhile, Property 2 holds because if x̄ik > 0, i.e. i is being used to fill k in the current
solution, then the potential of k must be no less than the potential of any unfilled neighbor j that
could have been filled instead. We note that the structural decomposition in Feng et al. [1] is richer,
but our simplified properties suffice for our purposes and are easier to establish when our penalty
functions fj (due to heterogeneity) do not necessarily satisfy their boundary conditions such as
fj(0) = 0 or fj(1) = 1. For space reasons, the proof of Lemma 1 is in the full version of the paper.
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(a) The fully robust solution.
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(b) The algorithm’s first-stage
matching if the advice suggests
(1, 3), (2, 4).
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5
9

4
9

5
9

4
9

(c) The algorithm’s first-stage
matching if the advice suggests
(1, 2), (2, 3).

Figure 3: Example to illustrate the features of the algorithm. S is on the left and D1 is on the right.
The vertices in S are i = 1, 2, 3, 4 and the vertices in D1 are j = 1, 2 (labelling goes from top to
bottom). The number next to j 2 S is its weight wj . The green edges are suggested by the advice.

3.1 Illustration of how our Algorithm uses Advice

As an example, suppose R = 5
9 and C = 8

9 , where we note that
p
1�R +

p
1� C = 1. Let

D1 consist of vertices i = 1, 2 and S consist of vertices j = 1, 2, 3, 4 with weights wj = 1, 1, 2, 4
respectively. The edges in the graph are (1, 1), (1, 2), (1, 3) and (2, 3), (2, 4).

We first demonstrate the case where the advice suggests edges (1,3) and (2,4), which would match
weight w3+w4 = 6 in the first stage. Intuitively, this advice is not so “extreme” in that it is greedily
matching the highest-weight vertices in S while it can, without assuming it can later match them in
the second stage. In this case our algorithm would follow the advice exactly (see Figure 3b), and
have a consistency of 1. Its robustness would be at least 6

7 , with the worst case being when the second
stage consists of a single edge (3,4), which cannot be matched by our algorithm but increases the
optimal offline matching from 6 to 7. Nonetheless, this suffices because 6

7 is well above the targeted
robustness of R = 5

9 .

We now demonstrate the case where the advice suggests edges (1,2) and (2,3) instead, perhaps
predicting that an edge (3,4) will allow us to match offline vertex 4 later. This advice is quite
“extreme” in that it is skipping the highest-weight vertex in S in the first stage, based on a second-
stage prediction which may not come to fruition. Following it exactly would give a weight of
w2 + w3 = 3 in the first stage, which cannot be more than 3

7 -robust6, significantly lower than the
target of 5

9 . Meanwhile, the maximally robust fractional matching based on linear penalty functions
(Feng et al. [1]; shown in Figure 3a), which judiciously balances between all the offline vertices, is
not 8

9 -consistent7. Our algorithm returns the solution in Figure 3c, which follows the advice in that
it completely prioritizes vertex 2 over vertex 1, but deviates by significantly filling offline vertex 4
(which has the highest weight) as a failsafe (although not as much as the fully robust solution). This
makes it both 5

9 -robust and 8
9 -consistent, and our algorithm can be adjusted accordingly to be both

R-robust and C-consistent for any values R,C satisfying
p
1�R+

p
1� C  1.

Based on these examples, we highlight two desirable features of our algorithm. First, it naturally
responds to the “extremity” of the advice, by deviating more from the more extreme advice (in the
2nd case) in order to maintain R-robustness. Second, from the definition of fU and fL in Algorithm 1
together with Lemma 1, it can be seen that if R  1

2 and the graph is unweighted, then our algorithm
will always follow the advice exactly. This is because fL(1) = R  1�R = fU(0), which implies
the algorithm will prioritize filling a vertex suggested by the advice over one that is not, even if the
former is completely filled and the latter is empty. Put another way, the algorithm automatically
recognizes that any maximal matching will be at least 1

2 -robust in an unweighted graph.

6The worst case is if the second-stage graph consists of a single edge (3, 2), in which case ALG(G,A) = 3
and OPT(G) = 7.

7If the second-stage graph consists of edges (3, 1) and (4, 4), then the fully robust solution gets a value of
1 + 3

11 + 2 · 7
11 + 4 = 72

11 whereas ADVICE(G,A) = 8. Their ratio is 9
11 , which is less than 8

9 .
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4 Analysis of Robustness

We begin by analyzing the robustness of Algorithm 1, which is its competitive ratio with respect
to the optimal matching in hindsight. The theorem below gives a characterization of the penalty
functions fj that are sufficient to guarantee R-robustness, which is what led to our plots in Figure 2.

Theorem 1. Let R 2 [0, 3
4 ]. Suppose we run Algorithm 1 where the functions fj satisfy the following

properties:

1. fj : [0, 1] ! [0, 1] is increasing,

2. 1� 1�R
x  fj(x)  1�R

1�x .

Then Algorithm 1 is R-robust.

The proof of Theorem 1 employs the online primal-dual technique. Based on the algorithm’s deci-
sions, we construct dual variables that are approximately feasible and lower bound the algorithm’s
objective value. (This is also the proof approach used by [1], but we note that the way our dual
variables are set is necessarily different in order to derive our results. ) The simplified structural
property (Lemma 1) allows us to characterize the envelope of functions that guarantee R-robustness
in the primal-dual analysis. Roughly speaking, the upper bound on fj guarantees approximate dual
feasibility for the first stage edges, while the lower bound on fj guarantees it for the second stage
edges. For space reasons, we have deferred the proof to the full version of the paper.

5 Analysis of Consistency

We now turn to analyzing the consistency of the algorithm. In the previous section, we described an
envelope of functions (see Figure 2) that were sufficient to guarantee R-robustness. For a desired
robustness level R, we now maximize consistency by setting the penalty functions fj to their lower
bound for vertices suggested by the advice, and to their upper bound for vertices not suggested by
the advice. The theorem below shows that this choice of the penalty functions achieves the desired
robustness-consistency tradeoff. Later in Section 6 we show this tradeoff to be tight.
Theorem 2. Let R 2 [0, 3

4 ], and let S1 be the set of offline vertices that are matched by the suggested

matching in the first-stage graph. Suppose we run Algorithm 1 with

• fj(x) = min{ 1�R
1�x , 1} for all j 2 S \ S1, and

• fj(x) = max{1� 1�R
x , 0} for all j 2 S1.

Then Algorithm 1 is (2
p
1�R� (1�R))-consistent.

Our high-level strategy for bounding consistency (which recall is ALG(G,A)
ADVICE(G,A) ) is to carefully split

the value of ALG(G,A), attributing a separate contribution to each first-stage vertex i 2 D1. We then
split the value of ADVICE(G,A) in a similar way. This decomposes the numerator and denominator
as sums over i 2 D1, which means it suffices to lower-bound the ratio of the terms corresponding to
each individual i 2 D1. For concreteness, consider some fixed i 2 D1 and let a 2 S be the offline
vertex that the advice suggests matching i to. The bad case for consistency is if x̄a is low, because
this means the algorithm deviated from the advice. However, because the potential functions are
chosen to incentivize matching to a, the only way x̄a can be low is if i is substantially matched
to other vertices with higher weight than wa, implying the algorithm must have collected a lot of
value from the vertices that were not recommended by the advice. The full proof, which makes this
intuition precise, is deferred to the full version of the paper for space reasons.

6 Tightness of the Robustness-Consistency Tradeoff

Theorems 1 and 2 together show that Algorithm 1 is able to be both R-robust and C-consistent, for
any (R,C) with R 2 [0, 3

4 ] and
p
1�R+

p
1� C = 1. We now show this tradeoff to be tight.
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1

2

1

2

w1 = w

w2 = 1

1� x

x

Figure 4: Illustration of the hardness instance. S is on the left and D is on the right. The first arrival
neighbors both vertices of S. The second arrival neighbors exactly one vertex of S, but it could be
either vertex. The advice is to match the green edge (1, 1).

The hardness instance. The hardness instance is illustrated in Figure 4. It is a graph where D has
two vertices i = 1, 2 that arrive one in each stage. S has two vertices j = 1, 2 with weights w1 = w
(for some w 2 [0, 1] that we will set later) and w2 = 1. The first-stage graph consists of both edges
(1, 1) and (1, 2), and the advice suggests matching along the edge (1, 1), which is “extreme” advice
in that offline vertex 1 has the lower weight one edge (which can be either (2, 1) or (2, 2)). Since
the algorithm does not know which edge will arrive in the second stage, it must hedge against both
possibilities when making its first-stage decision.
Theorem 3. Let w = 1p

1�R
� 1 in the instance described above.

8
Then any algorithm that is

R-robust is at most C-consistent where C = 2
p
1�R� (1�R).

Proof of Theorem 3. Let x := x11 and 1 � x := x12, so that the algorithm’s first-stage decision is
entirely characterized by the value of x. There are two cases.

1. Edge (2, 1) arrives in the second stage. Then ALG = w + 1� x and ADVICE = w.

2. Edge (2, 2) arrives in the second stage. Then ALG = wx+ 1 and ADVICE = 1 + w.

(Note that regardless of which edge arrives in the second stage, OPT is always equal to 1 +w.) For
the algorithm to be R-robust in Case 1, we must have

w + 1� x

1 + w
� R =) x  (1�R)(1 + w).

On the other hand, for the algorithm to be C-consistent in Case 2, we must have

wx+ 1

1 + w
� C =) x � C(1 + w)� 1

w
.

Since the algorithm does not know which of the two cases will happen in the second stage, it must
choose an x that satisfies both of the inequalities above. For a desired robustness R and consistency
C, this is only possible if

C(1 + w)� 1

w
 (1�R)(1 + w),

which when rearranged becomes

C  (1�R)w +
1

1 + w
.

Substituting w = 1p
1�R

� 1 above gives C  2
p
1�R� (1�R), as desired.

8This choice of w was obtained by minimizing (1�R)w + 1
1+w over w.
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