
A Proof of the Lower Bounds

A.1 Lower Bound on the Exploration Cost: Proof of Theorem 1

Let us denote, for any model µ ∈ RK×M and agent m , k⋆m ∶= argmaxk∈[K] µ
′
k,m (which is assumed

unique). Define the set of alternative models in RK×M with respect to µ ∶

Alt(µ) ∶= {λ ∶ ∃m,∃k ≠ k⋆m ∶ λ
′
k,m > λ

′
k⋆m,m} ,

where λ′k,m ∶= ∑n∈[M]wn,mλk,n for any arm k and agent m . Assume that stopping time τ is almost
surely finite under µ for algorithmA. Let event Eµ ∶= {∃m ∶ k̂m ≠ k⋆m} . As algorithmA is δ-correct,
it holds that Pµ(Eµ) ≤ δ and Pλ(Eµ) ≥ 1− δ for all λ ∈ Alt(µ) . As this event belongs to the filtration
generated by all past observations up to the final stopping time τ , using Theorem 1 from [15] and
δ ≤ 1/2 , it holds that

1

2
∑
k,m

τk,m(µk,m − λk,m)
2
≥ log (

1

2.4δ
) . (3)

We first prove that, for any k,m , τk,m > 0 . Indeed, if wm,m ≠ 0 , it is possible to pick λ that only
differs from µ by the entry λk,m , in such a way that arm k becomes optimal (or sub-optimal) for
user m . From Equation (3), we get 1

2
τk,m(µk,m − λk,m)

2 > 0 and the conclusion follows.

We now fix agent m and k ≠ k⋆m , and try to find a more informative alternative model λ . We look
for it in a family of alternative models under which only arms k and k⋆m are modified, for all agents,
in order to make arm k optimal for agent m . Given two nonnegative sequences (δn)n∈[M] and
(δ′n)n∈[M] , we define λ = (λk′,n)k′ such that

⎧⎪⎪
⎨
⎪⎪⎩

λk′,n = µk′,n if k′ ∉ {k, k⋆m} ,
λk,n = µk,n + δn ,
λk⋆m,n = µk⋆m,n − δ

′
n ,

that satisfies
∑

n∈[M]
wn,m (δn + δ

′
n) ≥∆

′
k,m . (4)

Now arm k is optimal for agent m. From Equation (3),

∑
n

τk,n
δ2n
2
+∑

n

τk⋆m,n
(δ′n)

2

2
≥ log (

1

2.4δ
) .

Hence, it holds that

inf
δ,δ′∶(4) holds

[∑
n

τk,n
δ2n
2
+∑

n

τk⋆m,n
(δ′n)

2

2
] .

The infimum can be computed in closed form using constraint optimization. Introducing a Lagrange
multiplier λ, from the KKT conditions, we get that, for any agent n ,

τk,nδn − λwn,m = 0 ,

τk⋆m,nδ
′
n − λwn,m = 0 ,

λ(∑
n′

wn′,m (δn′ + δ
′
n′) −∆

′
k,m) = 0 .

Using furthermore that τk,n and τk⋆m,n are positive,

δn =
∆′k,mwn,m/τk,n

∑n′∈[M]w
2
n′,m (

1
τk,n′

+ 1
τk⋆m,n′

)

and δ′n =
∆′k,mwn,m/τk⋆m,n

∑n′∈[M]w
2
n′,m (

1
τk,n′

+ 1
τk⋆m,n′

)

.

The conclusion follows by plugging these expressions to get the expression of the infimum.

14



A.2 Regret Lower Bound: Proof of Theorem 3

Given a bandit instance µ, we can consider two sets of possible changes of distributions: changes that
are allowed to change the distributions of optimal arms (k∗m)m∈[M], and those that cannot

Alt(µ) ∶= {λ = (λk,m)k,m ∈ RK×M
∶ ∃m ∈ [M], k ≠ k∗m ∶∑

n

λk,mwn,m >∑
n

λk∗m,nwn,m} ,

B(µ) ∶= Alt(µ)⋂{λ = (λk,m)k,m ∈ RK×M
∶ ∀m ∈ [M], λk∗m,m = µk∗m,m} .

For cumulative regret, the change-of-distribution lemma becomes an asymptotic result, stated below
Lemma 6. Fix µ ∈ RK×M , and let us consider λ ∈ Alt(µ). Then, for any ε > 0, there exists
T0 = T0(µ,λ, ε) , such that, for any T ≥ T0

∑
m,k

Eµ[Nk,m(T )]
(µk,m − λk,m)

2

2
≥ (1 − ε) log(T ) .

Proof. The proof uses a change-of-distribution, following a technique proposed by [16]. Using the
data processing inequality, and lettingHT be the observations available to the central server (which
sees all local rewards under our assumptions), we have that

KL (PHT
µ ,PHT

λ ) ≥ kl (Pµ(ET ),Pλ(ET )) ,

where KL is the Kullback-Leibler divergence and PHT
µ is the distribution of the observation under

the bandit model µ , and ET is any event. Using that

KL (PHT
µ ,PHT

λ ) = ∑
k,m

Eµ[Nk,m(T )]
(µk,m − λk,m)

2

2

together with the lower bound kl(p, q) ≥ (1 − p) log(1/(1 − q)) − log(2), where kl is the binary
relative entropy and for any distributions p, q, yields

∑
k,m

Eµ[Nk,m(T )]
(µk,m − λk,m)

2

2
≥ (1 − Pµ(ET )) log(

1

Pλ(ET )
) − log(2) .

We now pick the event

ET = {Nk⋆m,T (T ) ≤
T

2
} ,

and use that ET is very unlikely under µ as for any γ ∈ (0,1) ,

Pµ(ET ) = Pµ

⎛

⎝
∑

k≠k⋆m
Nk,m(T ) ≥

T

2

⎞

⎠
=
2∑k≠k⋆m Eµ[Nk,m(T )]

T
=
oT→∞(T

γ)

T
,

and very likely under any λ for which k⋆m is suboptimal as, for any γ ∈ (0,1) ,

Pλ(ET ) = Pλ (Nk⋆m,T (T ) >
T

2
) =

2Eλ[Nk⋆m,m(T )]

T
=
oT→∞(T

γ)

T
,

where we exploit the fact that the algorithm is uniformly efficient (its regret and therefore its number of
sub-optimal draws is o(T γ) under any bandit model). The conclusion follows from some elementary
real analysis to prove that the right hand side of the inequality is larger than (1 − ε) log(T ) for T
large enough (how larger depends in a complex way of µ,λ, ε and the algorithm).

At this point, we would really like to select the alternative model λ that leads to the tightest inequality
in Lemma 6. For example, using Lemma 7 below, we find that the best way to make an arm k ≠ k⋆m
better than k⋆m consists in choosing

λk,n(T ) = µk,n +
∆k,mwn,m/Eµ[Nk,m(T )]

∑m′∈[M]
w2

n′,m

Eµ[Nk,n′(T )]

,
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for any n ∈ [M] and λk′,n(T ) = µk′,n for any arm k′ ≠ k. However, this choice of alternative λ
depends on T , hence we cannot apply Lemma 6, which is asymptotic in T and holds for a fixed λ .
We have to be careful to be able to exchange the lim inf over T and the infimum over alternatives in
the constraints, and we will be able to do so only for changes of measures that are restricted to B(µ) .

We first assume that lim infT→∞
R(T )
log(T ) is finite, and call its value ℓ(µ) (this is fine as otherwise any

lower bound trivially holds). By definition of the lim inf , there exists a sequence (Ti)i∈N such that

lim inf
T→∞

R(T )

log(T )
= lim

i→∞
∑

m∈[M],k≠k⋆m
∆′k,m

Eµ[Nk,m(Ti)]

log(Ti)
= ℓ(µ) .

The fact that this sequence has a limit, and that the gaps are positive, implies that each sequence
(Eµ[Nk,m(Ti)]/log(Ti))i∈N is bounded. Therefore, there must exist a subsequence, that we denote
(T ′i )i∈N of (Ti)i∈N such that

∀m ∈ [M], k ≠ k⋆m, lim
i→∞

Eµ[Nk,m(T
′
i )]

log(T ′i )
= ck,m ,

for some real values (ck,m)k∈[K],m∈[M] , and, in particular,

ℓ(µ) = ∑
m∈[M],k≠k⋆m

∆′k,mck,m .

Now, it follows from Lemma 6 that, for any λ ∈ Alt(µ) ,

lim inf
T→∞

∑
k,m

Eµ[Nk,m(T )]

log(T )

(µk,m − λk,m)
2

2
≥ 1 .

But we have no idea about the behavior of the sequence (Eµ[Nk,m(T )]/log(T ))T ∈N for k = km⋆ ,
this is why we have to consider only λ ∈ B(µ) , for which we deduce that

lim
i→∞

∑
m∈[M],k≠k⋆m

Eµ[Nk,m(T
′
i )]

log(T ′i )

(µk,m − λk,m)
2

2
≥ 1 ,

∑
m∈[M],k≠k⋆m

ck,m
(µk,m − λk,m)

2

2
≥ 1 .

(the lim inf being the lowest value of the limit of any subsequence). This proves that

ℓ(µ) ≥min
c

∑
m∈[M],k≠k⋆m

∆′k,mck,m ,

under the constraints that c = (ck,m)k,m∶k≠k⋆m belongs to the constraint set

C =

⎧⎪⎪
⎨
⎪⎪⎩

(ck,m)k,m∶k≠k⋆m ∶ ∀λ ∈ B(µ), ∑
m∈[M],k≠k⋆m

ck,m
(µk,m − λk,m)

2

2
≥ 1

⎫⎪⎪
⎬
⎪⎪⎭

.

We now establish that

C ⊆ ⋃
k,m

⎧⎪⎪
⎨
⎪⎪⎩

(ck,n)k,m∶k≠k⋆n ∶ ∑
n∶k≠k⋆n

w2
n,m

ck,n
≤
(∆′k,m)

2

2

⎫⎪⎪
⎬
⎪⎪⎭

, (5)

by selecting some well chosen elements in B(µ).

First, for every (m,k) ∈ [M] × [K] such that k ≠ k⋆m , for every δ = (δn)n∶k⋆n≠k , we define an
instance λδ by λδ

k,n = µk,n + δn for any n ∈ [M] such that k ≠ k⋆n , and λδ
k,n = µk,n otherwise. We

observe that λδ belongs to B(µ) if

∑
n∈[M]∶k≠k⋆n

wn,mδn >∆
′
k,m ,

as this leads to ∑n∈[M]wn,mλk,n > ∑n∈[M]wn,mλk⋆m,n , and arm k⋆m being sub-optimal in λδ . For
all c ∈ C ,

min
δ∶∑n∶k≠k⋆n

wn,mδn≥∆′k,m

∑
n∈[M]∶k⋆n≠k

ck,n
δ2n
2
≥ 1 .
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From Lemma 7, this leads to

∑
n∈[M]∶k⋆n≠k

w2
n,m

ck,n
≤
(∆′k,m)

2

2
.

Now we consider (m,k) ∈ [M] × [K] , such that k = k⋆m . In this case, we define an instance λδ by
λδ
k⋆m,n = µk⋆m,n − δn for any n ∈ [M] such that k⋆m ≠ k

⋆
n, and λδ

k,n = µk,n otherwise. We observe that
λδ belongs to B(µ) if

∑
n∈[M]∶k≠k⋆n

wn,mδn > min
k′∈[K]∶k′≠k⋆m

∆′k′,m =∆
′
k⋆m,m ,

as this leads to ∑n∈[M]wn,mλk⋆m,n <maxk′≠k⋆m ∑nwn,mµk′,n and arm k⋆m being sub-optimal in λδ .
For any c ∈ C,

min
δ∶∑n∶k≠k⋆n

wn,mδn≥∆′
k⋆m,m

∑
n∶k⋆n≠k⋆m

ck,n
δ2n
2
≥ 1 ,

and Lemma 7 leads to

∑
n∈[M]∶k⋆n≠k⋆m

w2
n,m

ck,n
≤
(∆′k⋆m,m)

2

2
.

In conclusion, for c ∈ C , we proved that, for every (k,m) ∈ [K] × [M] ,

∑
n∈[M]∶k⋆n≠k

w2
n,m

ck,n
≤
(∆′k,m)

2

2
,

which proves the inclusion (5) and concludes the proof, as the minimum over a larger set is (poten-
tially) smaller.

Lemma 7. Let N be a set of indices, and (cn)n∈N be all positive. The minimizer over δ ∈ R∣N ∣ of

∑n∈N cn
δ2n
2
, under the constraint that ∑n∈N δnwn,m ≥ dm , satisfies

∀n ∈ N , δn =
dmwn,m/cn

∑n′∈N
w2

n′,m

cn′

,

and the minimum is equal to

d2m
2
(∑
n∈N

w2
n,m

cn
)

−1

.

Lemma 7 is proven using classical techniques for solving constrained minimization problems.

B Proof of Theorem 2

We recall the good event E defined in Lemma 3. First, the following lemma ensures the correctness
of Algorithm 1 on E , which holds with probability 1 − δ from Lemma 3.

Lemma 8. On event E , when stopping, W-CPE-BAI outputs k̂m = k⋆m for each agent m.

Proof. On event E , it is not possible that one agent m eliminates arm k⋆m from its set Bm(r + 1) at
any round r ; otherwise, if jm(r) ∈ argmaxj∈Bm(r){µ̂

′
j,m(r) −Ωj,m(r)} , jm(r) ≠ k

⋆
m , then the

elimination criterion and event E imply that µ′k⋆m,m < µ
′
jm(r),m , which is absurd.

Then we upper bound the exploration cost when E holds. We denote by R the (random) number of
rounds used by the algorithm, and, for all m ∈ [M] and k ≠ k⋆m , by Rk,m the (random) last round in
which k is still a candidate arm for player m

Rk,m ∶= sup{r ≥ 0 ∶ k ∈ Bm(r)} .
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By definition of Algorithm 1, R = maxmmaxk≠k⋆m Rk,m. We first provide upper bounds on Rk,m

and R. To achieve this, we introduce the following notation for any k ∈ [K],m ∈ [M] ,

rk,m ∶= min{r ≥ 0 ∶ 4 × 2−r <∆′k,m} and rmax ∶= max
m∈[M]

max
k≠k⋆m

rk,m .

The following upper bounds can be easily checked.

Lemma 9. ∀k,m, rk,m ≤ log2 (8/∆
′
k,m) and rmax ≤ log2 (8/∆

′
min) .

Using the fact that W-CPE-BAI is only halving the proxy gaps of arms that are not eliminated, we
can write down the value of the proxy gaps for these arms.

Lemma 10. ∀m ∈ [M] and k ∈ Bm(r), ∆̃k,m(r) = 2
−r .

Using the important relationship between proxy gaps and the confidence width as established in
Lemma 4, we can further show that

Lemma 11. On E , for any m ∈ [M], k ≠ k⋆m, Rk,m ≤ rk,m .

Proof. Assume E holds. For any suboptimal arm k for agent m, at round r = rk,m, if k /∈ Bm(r),
then Rk,m < rk,m . Otherwise, if k ∈ Bm(r), then we know that k⋆m ∈ Bm(r), as event E holds (see
the proof of Lemma 8). Then

µ̂′k,m(r) +Ωk,m(r) ≤(1) µ
′
k,m + 2Ωk,m(r)

≤(2) µ
′
k,m + 2∆̃k,m(r) = µ

′
k,m + 4∆̃k,m(r) − 2∆̃k,m(r)

<(3) µ
′
k,m +∆

′
k,m − 2∆̃k,m(r) = µ

′
k⋆m,m − 2∆̃k,m(r)

≤(1) µ̂
′
k⋆m,m(r) +Ωk⋆m,m(r) − 2∆̃k,m(r)

≤(2),(4) max
j∈Bm(r)

{µ̂′j,m(r) −Ωj,m(r)} + 2 ⋅ 2
−r
− 2 ⋅ 2−r ,

Ô⇒ µ̂′k,m(r) +Ωk,m(r) < max
j∈Bm(r)

{µ̂′j,m(r) −Ωj,m(r)} ,

where (1) is using that event E holds ; (2) is using Lemma 4 ; (3) is using the definition of r = rk,m,
the fact that k ∈ Bm(r) and Lemma 10 and (4) is using that k, k⋆m ∈ Bm(r) and Lemma 10. It follows
that k /∈ Bm(rk,m + 1) and Rk,m ≤ rk,m.

The previous lemma straightforwardly implies that

Corollary 1. R ≤ rmax ≤ log2(8/∆
′
min) .

Moreover, it also permits to prove that, in the last round R, the proxy gaps are lower bounded by the
gaps.

Corollary 2. At final round R, and for any agent m and suboptimal (with respect to m) arm k ≠ k⋆m,
if E holds,

∆̃k,m(R) ≥
1

8
∆′k,m .

Proof. If R < rk,m , by definition of rk,m , we have that ∆̃k,m(R) ≥ (1/4)∆
′
k,m ≥ (1/8)∆

′
k,m . If

R ≥ rk,m , we first observe that ∆̃k,m(R) = ∆̃k,m(Rk,m) = (1/2)∆̃k,m(Rk,m − 1) by definition of
the algorithm (the gaps remain frozen when an arm is eliminated, and they are halved otherwise). As
Rk,m − 1 < rk,m by Lemma 11, by definition of rk,m , it follows that

4∆̃k,m(Rk,m − 1) >∆
′
k,m

and we conclude that ∆̃k,m(R) ≥ (1/8)∆
′
k,m .
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Note that, for any m ∈ [M] , ∆̃k⋆m,m(R) = mink≠k⋆m ∆̃k,m(R) by Algorithm 1. Now, for any
m ∈ [M], k ∈ [K] , using Corollary 2, and the fact that the proxy gaps are non-increasing between
two consecutive phases, we get

∀k ∈ [K],∀m ∈ [M],∀r ≤ R, ∆̃k,m(r) ≥ ∆̃k,m(R) ≥
∆′k,m
8

.

Using Lemma 2 and the fact that proxy gaps are non-increasing, for any round r ≤ R , the optimal
allocation t(r) ∈ P̃⋆ ((

√
2∆̃k,m(r))k,m) satisfies

∑
k,m

tk,m(r) ≤ 32∑
k,m

t′k,m ,

where t′ ∈ P̃⋆ (∆′) , hence

max
r≤R

⎡
⎢
⎢
⎢
⎢
⎣

∑
k,m

tk,m(r)

⎤
⎥
⎥
⎥
⎥
⎦

≤ 32T̃ ⋆W (µ) . (6)

For every k ∈ [K],m ∈ [M], we now introduce

r′k,m ∶= sup{r ≤ R ∶ dk,m(r) ≠ 0} ,

so that nk,m(R) = nk,m(r
′
k,m) . Using Lemma 12 stated below, and the fact that function βδ is

nondecreasing in each coefficient of its argument (see its definition in Lemma 3),

nk,m(R) = nk,m(r
′
k,m) ≤ tk,m(r

′
k,m)βδ(nk,⋅(r

′
k,m)) + 1

≤ tk,m(r
′
k,m)βδ(nk,⋅(R)) + 1 .

Lemma 12. For any k,m, r ≥ 0, either dk,m(r) = 0, or nk,m(r) = nk,m(r − 1) + dk,m(r) <
tk,m(r)βδ(nk,⋅(r)) + 1 .

Proof. At fixed r ≥ 0, for any set S ⊆ [K] × [M], let us prove by induction on ∣S∣ ≥ 1 7

∀k,m, d′k,m(r) ∶= (dk,m(r) − 1S((k,m)))+

Ô⇒ ∀(k,m) ∈ S,
nk,m(r − 1) + d

′
k,m(r)

βδ(nk,⋅(r − 1) + dk,⋅(r))
< tk,m(r)

or dk,m(r) = 0 .

At ∣S∣ = 1 ∶ Let us denote S = {(k′,m′)} . If dk′,m′(r) = 0 , then it is trivial. Otherwise,
∑k,m d′k,m(r) < ∑k,m dk,m(r) , and then, by minimality of solution d(r) , at least one constraint
from the optimization problem of value ∑k,m dk,m(r) has to be violated. For any (k,m) /∈ S , by
definition of d(r) and nondecreasingness of βδ ,

nk,m(r − 1) + d
′
k,m(r) = nk,m(r − 1) + dk,m(r)

≥ tk,m(r)βδ(nk,⋅(r − 1) + dk,⋅(r))

≥ tk,m(r)βδ(nk,⋅(r − 1) + d
′
k,⋅(r)) .

That means, necessarily the only constraint that is violated is the one on (k′,m′) . Using the
nondecreasingness of βδ ∶

nk′,m′(r − 1) + dk′,m′(r) − 1 = nk′,m′(r − 1) + d
′
k′,m′(r)

< tk′,m′(r)βδ(nk′,⋅(r − 1) + d
′
k,⋅(r))

≤ tk′,m′(r)βδ(nk′,⋅(r − 1) + dk,⋅(r)) .

Combining the two ends of the inequality proves the claim.

7For any x ∈ NM , (x)+ ∶= (max(0, xm))m∈[M] , and 1S is the indicator function of set S .
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At ∣S∣ > 1 ∶ At fixed (k′,m′) ∈ S , we can apply the claim to S ∖ {(k′,m′)}. Moreover, if
dk′,m′(r) = 0 , then the claim is proven. Otherwise, by appealing to the extremes,

nk′,m′(r − 1) + d
′
k′,m′(r) ≥ tk′,m′(r)βδ(nk′,⋅(r − 1) + dk,⋅(r)) .

Let us then consider the following allocation:

∀k,m, d′′k,m(r) ∶= dk,m(r) − 1{(k′,m′)}((k,m)) .

It can be checked straightforwardly – using the nondecreasingness of βδ – that d′′ satisfies all required
constraints for any pair (k,m) ∈ [K] × [M] , and that ∑k,m d′′k,m(r) = ∑k,m dk,m(r) − 1 , which,
by minimality of d , is absurd. Then the claim is proven for ∣S∣ > 1 . Then Lemma 12 is proven by
considering S = [K] × [M] .

By summing the upper bound on (nk,m(R))k,m over [K]×[M], we can upper bound the exploration
cost τ as

τ ∶= ∑
k,m

nk,m(R) ≤ ∑
k,m

tk,m(r
′
k,m)βδ(nk,⋅(R)) +KM

≤ ∑
k,m

tk,m(r
′
k,m)β

∗
(τ) +KM

≤ ∑
k,m

∑
r≤R

tk,m(r)β
∗
(τ) +KM

≤ Rmax
r≤R

⎡
⎢
⎢
⎢
⎢
⎣

∑
k,m

tk,m(r)

⎤
⎥
⎥
⎥
⎥
⎦

β∗(τ) +KM

≤ log2 (8/∆
′
min)max

r≤R

⎡
⎢
⎢
⎢
⎢
⎣

∑
k,m

tk,m(r)

⎤
⎥
⎥
⎥
⎥
⎦

β∗(τ) +KM

where we use Corollary 1 and introduce the quantity

β∗(τ) ∶= βδ (τ1M) = 2(gM (
δ

KM
) + 2M ln (4 + ln (τ))) where ∀n ∈ [M],1M(n) = 1 .

Using Equation (6) and Lemma 1,

τ ≤ 32T̃ ⋆W (µ) log2 (8/∆
′
min)β

∗
(τ) +KM ≤ 32T ⋆W (µ) log2(8/∆

′
min)β

∗
(µ) +KM .

Therefore, τ is upper bounded by

sup{n ∈ N⋆ ∶ n ≤ 32T ⋆W (µ) log2(8/∆
′
min)β

∗
(n) +KM} .

Applying Lemma 15 in [24] with

∆ = (

√

32T ⋆W (µ) log2 (8/∆
′
min))

−1
,

a = KM + 2gM (
δ

KM
) ,

b = 4M ,

c = 4 ,

d = e−1 ( using ∀n, log(n) ≤ ne−1 ) ,

τ is upper bounded by

T̂W (µ) ∶= 32T ⋆W (µ) log2 (8/∆
′
min) [KM + 2gM (

δ

KM
)

+4M ln(4 + 1,024
(T ⋆W (µ) log2 (8/∆

′
min))

2

e
(KM + 2gM (

δ

KM
) + 4M(2 +

√
e))

2

)] ,
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which satisfies τ T̂W (µ) ≤ a + b ln(c + dτT̂W (µ)) . Using that gM(x) ≃ x +M log log(x) in the
regime of small values of δ , we obtain that

T̂W (µ) = 32T
⋆
W (µ) log2 (8/∆

′
min) log(1/δ) + oδ→0 (log(1/δ)) .

The upper bound on the communication cost follows from the upper bound on the number of phases
given in Corollary 1.

C Supplementary Lemmas and Proofs

We report here technical lemmas and their proofs, ordered by section.

C.1 Collaborative Best-Arm Identification

Lemma 13. Introducing the quantity

T̃ ⋆W (µ) ∶= min
t∈(R+)K×M

∑
(k,m)∈[K]×[M]

tk,m s.t. ∀m ∈ [M], k ∈ [K], ∑
n∈[M]

w2
n,m

tk,n
≤
(∆′k,m)

2

2
,

it holds that T̃ ⋆W (µ) ≤ T
⋆
W (µ) ≤ 2T̃

⋆
W (µ) .

Proof. Let us denote by C and C̃ the two constraint sets such that T ⋆W (µ) =min{∑k,m tk,m ∣ t ∈ C}

and T̃ ⋆W (µ) = min{∑k,m tk,m ∣ t ∈ C̃} . The inequality T̃ ⋆W (µ) ≤ T
⋆
W (µ) is obtained by noticing

that C ⊆ C̃. To prove the other inequality, we consider τ̃ ∈ argmin{∑k,m tk,m ∣ t ∈ C̃} . Then, for
any agent m ∈ [M] , arm k ≠ k⋆m ,

∑
n∈[M]

w2
n,m (

1

2τ̃k,n
+

1

2τ̃k⋆m,n
) =

1

2

⎛

⎝
∑

n∈[M]

w2
n,m

τ̃k,n

⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤(∆′

k,m
)
2
/2

+
1

2

⎛

⎝
∑

n∈[M]

w2
n,m

τ̃k⋆m,n

⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤(∆′
k⋆m,m

)
2

/2∶=min{(∆′
k′,m

)
2
/2∣k′≠k⋆m}

≤ (∆′k,m)
2
/2 .

Then 2τ̃ ∈ C , therefore by minimality, T ⋆W (µ) ≤ 2T̃
⋆
W (µ) .

Lemma 14. Consider ∆ ,∆′ ∈ (R+)K×M , such that τ ∈ P̃⋆(∆) and τ ′ ∈ P̃⋆(∆′) . Then

(i). If there exists α > 0 such that: ∀k ∈ [K],∀m ∈ [M], α∆k,m ≤∆
′
k,m,

∑
k,m

τ ′k,m ≤
1

α2 ∑
k,m

τk,m .

(ii). If there exists β > 0 such that: ∀k ∈ [K],∀m ∈ [M],∆′k,m ≤ β∆k,m. Then
1

β2 ∑
k,m

τk,m ≤ ∑
k,m

τ ′k,m .

Proof. The proof follows from the fact that τ and τ ′ are minimal. In particular, to prove (ii), let
τ ′′k,m = β

2τ ′k,m for any k ∈ [K] , m ∈ [M] . Then, for any agent m and arm k,

∑
n∈[M]

w2
n,m

τ ′′k,n
= ∑

n∈[M]

w2
n,m

β2τ ′k,n
≤
1

2
(
∆′k,m
β
)

2

≤
∆2

k,m

2
.

By minimality of τ ,

∑
m∈[M]

τk,m ≤ ∑
m∈[M]

τ ′′k,m = β
2
∑

n∈[M]
τ ′k,m .

(i) similarly follows.
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C.2 A Near-Optimal Algorithm For Best Arm Identification

Lemma 15. Let us define

βδ(N) ∶= 2(gM (
δ

KM
) + 2

M

∑
m=1

ln(4 + ln(Nm))) ,

for any N ∈ (N∗)M , where

∀δ ∈ (0,1), gM(δ) ∶=MC
gG (log(1/δ)/M) ,

∀x > 0,CgG(x) ∶= min
λ∈(0.5,1)

gG(λ) + x

λ
,

and ∀λ ∈ (0.5,1), gG(λ) ∶= 2λ − 2λ log(4λ) + log(ζ(2λ)) − 0.5 log(1 − λ) ,
where ζ is the Riemann zeta function. Then, the good event

E ∶= {∀r ∈ N,∀m,∀k, ∣µ̂′k,m(r) − µ
′
k,m∣ ≤ Ωk,m(r)} .

holds with probability larger than 1 − δ.

Proof. Using Proposition 24 from [23] on µ′k,m, for any arm k and agent m, directly yields

P
⎛
⎜
⎝
∃r ≥ 0, ∣µ̂′k,m(r) − µ

′
k,m∣ >

¿
Á
ÁÀ2(gM (

δ

KM
) + 2

M

∑
n=1

ln(4 + ln(nk,n(r))))∑
n

w2
n,m

nk,n(r)

⎞
⎟
⎠
≤

δ

KM

(using the notation of the paper, consider µ = µk,⋅ and c =W⋅,m). Then all that is needed to conclude
is to apply a union bound on [K] × [M]

P (Ec) = P
⎛
⎜
⎝
∃m ∈ [M],∃k ∈ [K],∃r ≥ 0, ∣µ̂′k,m(r) − µ

′
k,m∣ >

¿
Á
ÁÀ2βδ(nk,⋅(r))∑

n

w2
n,m

nk,n(r)

⎞
⎟
⎠

≤ ∑
m∈[M]

∑
k∈[K]

δ

KM
≤ δ .

C.3 Regret Lower Bound

Lemma 16. Introducing the quantity

C̃⋆W (µ) ∶= min
c∈(R+)K×M

K

∑
k=1

M

∑
m=1

ck,m∆′k,m s.t. ∀k ∈ [K],∀m ∈ [M],
M

∑
n=1

w2
n,m

ck,n
≤
∆′k,m
2σ2

,

it holds that C⋆W (µ) ≤ C̃
⋆
W (µ) ≤ 4C

⋆
W (µ) .

Proof. Let c and c̃ be the solutions to the optimization problems of C⋆W (µ) and C̃⋆W (µ), respectively.
Note that, for any agent m , cm,k∗m = +∞ because, in the optimization problem related to the regret
lower bound, these terms do not contribute to the objective. The lower bound follows from the
definition of c and the fact that (c̃k,m)m,k≠k∗m satisfy the same constraints as (c̃k,m)m,k≠k∗m .

Next, we prove the upper bound on C̃⋆W (µ) . For any k ∈ [K] , define S∗k = {m ∶ k = k∗m} and
Sk = {m ∶ k /= k

∗
m} (note that for any k ∈ [K], {S∗k ,Sk} is a partition of [M]). For k ∈ [K] and

m ∈ Sk , let c′k,m = 2ck,m . For k ∈ [K] and m ∈ S∗k , let c′k,m = c
1
k,m, where

c1 ∈ arg min
τ∈(R+)K×M

K

∑
k=1
∑

m∈S∗
k

τk,m∆′k,m s.t.∀k ∈ [K],m ∈ [M], ∑
n∈S∗

k

w2
n,m

τk,n
≤
(∆′k,m)

2

4
.
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Note that c′k,m satisfy the same constraints as c̃k,m: ∀k ∈ [K],m ∈ [M],∑M
n=1

w2
n,m

c′
k,n
≤
(∆′k,m)

2

2
. We

thus have

K

∑
k=1

M

∑
m=1

c̃k,m∆′k,m ≤
K

∑
k=1

M

∑
m=1

c′k,m∆k,m

=
K

∑
k=1
∑

m∈Sk

c′k,m∆k,m +
K

∑
k=1
∑

m∈S∗
k

c′k,m∆k,m

= 2
K

∑
k=1
∑

m∈Sk

ck,m∆′k,m +
K

∑
k=1
∑

m∈S∗
k

c′k,m∆k,m

= 2C⋆W (µ) +
K

∑
k=1
∑

m∈S∗
k

c1k,m∆′k,m

≤ 4C⋆W (µ) .

The first inequality holds by minimality of c̃ . To prove the second inequality, for all m ∈ [M] , let
us define c′′k∗m,m = 2∑k≠k∗m ck,m , and c′′k,m = ∞ for k ≠ k⋆m . Note that c′′ satisfy the constraints
in the definition of c1 . Thus, by minimality of c1 , and using the fact that, for any m ∈ [M] ,
∆′k⋆m,m ∶=mink≠k⋆m ∆′k,m , we have

K

∑
k=1
∑

m∈S∗
k

c1k,m∆′k,m ≤
K

∑
k=1
∑

m∈S∗
k

c′′k,m∆′k,m

= 2
K

∑
k=1

∑
k,m∈S∗

k

⎛

⎝
∑

j≠k∗m
cj,m
⎞

⎠
∆′k,m

= 2
K

∑
k=1
∑

m∈Sk

ck,m∆′k∗m,m

≤ 2
K

∑
k=1
∑

m∈Sk

ck,m∆′k,m

= 2C⋆W (µ) ,

which completes the proof.

D Extension to Top-N Identification

A generalization of the best arm identification problem is Top-N identification, which is the problem
of finding the N optimal arms (for mixed rewards) for each agent. For any model µ ∈ RK×M , weight
matrix W ∈ [0,1]M×M , such that µ′ = µW , any agent m , and positive integer N ≤ K , let us
define 8

S⋆m ∶=
⎧⎪⎪
⎨
⎪⎪⎩

k ∈ [K] ∣ µ′k,m ≥
N

max
k′∈[K]

µ′k′,m =
N

max
k′∈[K]

∑
n∈[M]

wn,mµk′,n

⎫⎪⎪
⎬
⎪⎪⎭

.

In this case, an algorithm for Top-N identification returns at the end of the exploration phase a set of
N arms denoted Ŝm for agent m . δ-correctness is defined as follows

8We define operation maxN such that maxN
i∈S f(i) is the N th (without multiplicity) greatest value in set

{f(i) ∶ i ∈ S} for any function f ∶ S ↦ R.
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Pµ (∀m ∈ [M], Ŝm ⊆ S
⋆
m) ≥ 1 − δ .

Note that there might be more than N arms in a given set S⋆m,m ∈ [M] . Similarly to best arm
identification, we also assume here that the set of top-N arms is unique – that is, for any m, ∣S⋆m∣ = N .

Lower Bound for Top-N Identification For Top-N identification, one can prove, similarly to the
proof of Theorem 1 – using Lemma 1 in [28] to define the set of alternative models – the following
result, which is valid for Gaussian rewards with fixed variance σ2 = 1 , and any weight matrix W
such that all diagonal coefficients are positive,
Theorem 4. Let µ be a fixed matrix of means in RK×M . For any δ ∈ (0,1/2] , let A be a δ-correct
algorithm under which each agent communicates each reward to the central server after it is observed,
and let us denote for any k ∈ [K],m ∈ [M] , τk,m ∶= EAµ [Nk,m(τ)] , where τ is the stopping time.
For any m ∈ [M], k /∈ S⋆m, l ∈ S⋆m , denoting µ′ = µW , it holds that

∑
n

w2
n,m (

1

τk,n
+

1

τl,n
) ≤
(µ′k,m − µ

′
l,m)

2

2 log(1/(2.4δ))
,

and therefore Expµ(A) ≥ N
⋆
W (µ) log (

1
2.4δ
) , where

N⋆W (µ) ∶= min
t∈RK×M

∑
(k,m)∈[K]×[M]

tk,m

s.t. ∀m,k /∈ S⋆m(µ), l ∈ S
⋆
m(µ), ∑

n∈[M]
w2

n,m (
1

tk,n
+

1

tl,n
) ≤
(µ′k,m − µ

′
l,m)

2

2
.

Proof. As mentioned, let us use Lemma 1 from [28] to define the set of alternative models to µ in
Top-N identification. If, for any agent m, S⋆m(µ) is the set of its top-N arms (of size N ) with respect
to mixed rewards, then

Alt(µ) ∶= {λ ∈ RK×M
∶ ∃m,S⋆m(µ) /⊆ S

⋆
m(λ)}

= {λ ∈ RK×M
∶ ∃m,∃k /∈ S⋆m(µ),∃l ∈ S

⋆
m(µ) ∶ λ

′
k,m > λ

′
l,m} ,

where λ′k,m ∶= ∑n∈[M]wn,mλk,n for any arm k and agent m . If we assume that stopping time τ is
almost surely finite under µ for algorithm A , then let event Eµ ∶= {∃m ∶ Ŝm /⊆ S

⋆
m(µ)} . Using the

δ-correctness of algorithm A, where δ ≤ 1/2 , by Theorem 1 from [15],

1

2
∑
k,m

τk,m(µk,m − λk,m)
2
≥ log (

1

2.4δ
) . (7)

Similarly to the best arm identification case, we can show that, since all diagonal coefficients of W
are positive, for any k ∈ [K],m ∈ [M] , τk,m > 0 . Consider now a fixed agent m, and two arms
k /∈ S⋆m(µ), l ∈ S

⋆
m(µ) . We will build an alternative model λ, similar enough to µ, where only arms

k and l are modified for all agents, such that l /∈ S⋆m(λ) and k ∈ S⋆m(λ) . The procedure is similar to
what we did in best arm identification. Given two nonnegative sequences (δn)n∈[M] and (δ′n)n∈[M],
we define λ = (λk′,n)k′∈[K] such that

⎧⎪⎪
⎨
⎪⎪⎩

λk′,n = µk′,n if k′ ∉ {k, l} ,
λk,n = µk,n + δn ,
λl,n = µl,n − δ

′
n ,

and which satisfies

(λ′k,m − µ
′
k,m) − (λ

′
l,m − µ

′
l,m) = ∑

n∈[M]
wn,m (δn + δ

′
n) ≥ µ

′
l,m − µ

′
k,m . (8)

From Equation (7),

inf
δ,δ′∶(8) holds

[∑
n

τk,n
δ2n
2
+∑

n

τl,n
(δ′n)

2

2
] .
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Solving this constrained optimization problem yields the following solution

δn =
(µ′l,m − µ

′
k,m)wn,m/τk,n

∑n′∈[M]w
2
n′,m (1/τk,n′ + 1/τl,n′)

and δ′n =
(µ′l,m − µ

′
k,m)wn,m/τl,n

∑n′∈[M]w
2
n′,m (1/τk,n′ + 1/τl,n′)

.

We conclude similarly to the best arm identification case.

Note that we retrieve the same bound as for the case N = 1 (i.e., best arm identification).

Relaxed Lower Bound Problem for Top-N Identification For Top-N identification, let us define

∀k,m,∆
′N
k,m ∶= {

maxNk′∈[K] µ
′
k′,m − µ

′
k,m if k /∈ S⋆m

µ′k,m −maxN+1k′∈[K] µ
′
k′,m otherwise ,

and Ñ⋆W (µ) the value of problem P̃⋆ (((∆
′N
k,m)

2/2)
k,m
) . The set of constraints N ∶=

{t ∣ ∀m ∈ [M],∀k /∈ S⋆m,∀l ∈ S⋆m,∑nw
2
n,m (

1
tk,n
+ 1

tl,n
) ≤

(µ′k,m−µ
′

l,m)
2

2
} is included in the set of

constraints Ñ ∶= {t ∣ ∀m ∈ [M],∀k ∈ [K],∑n
w2

n,m

tk,n
≤
(∆

′N
k,m)

2

2
} ∶ indeed, if t ∈ N , then for any

m ∈ [M], and any k /∈ S⋆m ,

∀l ∈ S⋆m , ∑
n

w2
n,m

tk,n
≤∑

n

w2
n,m (

1

tk,n
+

1

tl,n
) ≤
(µ′k,m − µ

′
l,m)

2

2

Ô⇒ ∑
n

w2
n,m

tk,n
≤ min

l∈S⋆m

(µ′k,m − µ
′
l,m)

2

2
=
(µ′k,m −maxNk′∈[K] µ

′
k′,m)

2

2
=
(∆

′N
k,m)

2

2
.

Similarly, for any agent m and l ∈ S⋆m(µ), one can check that ∑n
w2

n,m

tl,n
≤
(∆

′N
l,m)

2

2
, hence t ∈ Ñ .

Then N⋆W (µ) ≥ Ñ
⋆
W (µ) .

Algorithm for Top-N identification Algorithm 1 can then easily be adapted to Top-N identifica-
tion, with the following changes (the full algorithm is described in Algorithm 2)

1. Replace the stopping criterion (and the condition for the update of proxy gaps (∆̃k,m(r))k,m at
round r) with

∀m ∈ [M], ∣Bm(r)∣ ≤ N ,

2. Replace the elimination criterion with

Bm(r + 1)← {k ∈ Bm(r) ∣ µ
′
k,m +Ωk,m(r) ≥

N
max

i∈Bm(r)
(µ′i,m −Ωi,m(r))} .

Remark 2. Note that the proxy gap ∆̃k,m(r) no longer tracks the value of gap ∆′k,m for m ∈

[M], k ∈ [K] , but ∆
′N
k,m , and that on N = 1, this algorithm exactly coincides with Algorithm 1.

Analysis of Algorithm 2. First, such an algorithm is indeed δ-correct on event E (the same as
defined for Algorithm 1). Otherwise, for some agent m , there would be an arm l ∈ S⋆m which is
eliminated at round r from Bm(r + 1) . But, on event E , Lemma 3 implies that, for any r ≥ 0 ,
m ∈ [M] , and (i, j) ∈ [K]2 ,

µ̂′i,m(r)− µ̂
′
j,m(r)+Ωi,m(r)+Ωj,m(r) ≥ µ

′
i,m −µ

′
j,m ≥ µ̂

′
i,m(r)− µ̂

′
j,m(r)−Ωi,m(r)−Ωj,m(r) .
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Algorithm 2 Weighted Collaborative Phased Elimination for Top-N identification (W-CPE-TopN )
Input: δ ∈ (0,1), M agents, K arms, matrix W , N ∈ [K]
Initialize r ← 0, ∀k,m, ∆̃k,m(0)← 1, nk,m(0)← 1, ∀m,Bm(0)← [K]
Draw each arm k by each agent m once
repeat

# Central server
B(r)← ⋃m∈[M]Bm(r)

Compute t(r)← P̃⋆ ((
√
2∆̃k,m(r))k,m)

For all k ∈ [K], compute

(dk,m(r))m∈[M] ← arg min
d∈NM

∑
m

dm s.t. ∀m ∈ [M],
nk,m(r − 1) + dm

βδ(nk,⋅(r − 1) + d)
≥ tk,m(r)

Send to each agent m (dk,m(r))k,m and dmax ∶=maxn∈[M]∑k∈[K] dk,n(r)

# Agent m
Sample arm k ∈ B(r) dk,m(r) times, so that nk,m(r) = nk,m(r − 1) + dk,m(r)
Remain idle for dmax −∑k∈[K] dk,m(r) rounds
Send to the server empirical mean µ̂k,m(r) ∶= ∑s≤nk,m(r)Xk,m(s)/nk,m(r) for any k ∈ [K]

# Central server
Compute the empirical mixed means (µ̂′k,m(r))k,m based on (µ̂k,m(r))k,m and W
// Update set of candidate best arms for each user
for m = 1 to M do

Bm(r + 1)← {k ∈ Bm(r) ∣ µ̂
′
k,m(r) +Ωk,m(r) ≥

N
max

j∈Bm(r)
(µ̂′j,m(r) −Ωj,m(r))}

end for
// Update the gap estimates
For all k,m, ∆̃k,m(r + 1)← ∆̃k,m(r) × (1/2)

1(k∈Bm(r+1)∧∣Bm(r+1)∣>N)

r ← r + 1
until ∀m ∈ [M], ∣Bm(r)∣ ≤ N
Output: {k ∈ Bm(r) ∶m ∈ [M]}

Then, combining the right-hand inequality for j = l with the elimination criterion

N
max
i∈[K]

µ′i,m − µ
′
l,m ≥

N
max
i∈[K]
(µ̂′i,m(r) − µ̂

′
l,m(r) −Ωi,m(r) −Ωl,m(r))

≥
N

max
i∈Bm(r)⊆[K]

(µ̂′i,m(r) − µ̂
′
l,m(r) −Ωi,m(r) −Ωl,m(r)) > 0 ,

which is absurd because l ∈ S⋆m . Then, let us consider the following notation, for any m ∈ [M] ,
k /∈ S⋆m ,

Rk,m ∶= sup{r ≥ 0 ∶ k ∈ Bm(r)} and rNk,m ∶=min{r ≥ 0 ∶ 4∆̃k,m(r) <∆
′N
k,m} .

Note that the random number of rounds used by Algorithm 2 is then RN =

maxm∈[M]maxNk/∈S⋆m
Rk,m . It is easy to prove that Lemma 4 and Lemma 10 still hold in Algo-

rithm 2. An equivalent result to Lemma 11 can be shown

Lemma 17. On event E , for any m ∈ [M] , k /∈ S⋆m , Rk,m ≤ r
N
k,m .
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Proof. For any m ∈ [M] , k /∈ S⋆m , r = rk,m , if k /∈ Bm(r) , then the claim is true. Otherwise, if
k ∈ Bm(r) , then

µ̂′k,m(r) +Ωk,m(r) ≤(1) µ′k,m + 2Ωk,m(r)

≤(2) µ′k,m + 4∆̃k,m(r) − 2∆̃k,m(r)

<(3)
N

max
i∈[K]

µ′i,m − 2∆̃k,m(r) =(4)
N

max
i∈Bm(r)

µ′i,m − 2∆̃k,m(r)

≤(1)
N

max
i∈Bm(r)

(µ̂′i,m(r) −Ωi,m(r) + 2Ωi,m(r)) − 2∆̃k,m(r)

Then

µ̂′k,m(r) +Ωk,m(r) ≤(2)
N

max
i∈Bm(r)

(µ̂′i,m(r) −Ωi,m(r) + 2∆̃i,m(r)) − 2∆̃k,m(r)

≤
N

max
i∈Bm(r)

(µ̂′i,m(r) −Ωi,m(r)) + 2
N

max
i∈Bm(r)

∆̃i,m(r) − 2∆̃k,m(r)

=(5)
N

max
i∈Bm(r)

(µ̂′i,m(r) −Ωi,m(r)) + 2 ⋅ 2
−r
− 2 ⋅ 2−r ,

Ô⇒ µ̂′k,m(r) +Ωk,m(r) <
N

max
i∈Bm(r)

(µ̂′i,m(r) −Ωi,m(r)) .

where (1) is using by using event E ; (2) is using Lemma 4 ; (3) uses r = rNk,m and k /∈ S⋆m ; (4) is
using event E , and, for all l ∈ S⋆m, l ∈ Bm(r) ; (5) holds because Lemma 10 is still valid and then, for
all j ∈ Bm(r), ∆̃j,m(r) = 2

−r . Then k is eliminated from Bm(r) at round at most r = rNk,m, hence
Rk,m ≤ r

N
k,m .

Using this result, the sample complexity analysis is the same as for best arm identification, which
yields
Theorem 5. With probability 1 − δ, Algorithm 2 outputs the Top-N arms for each agent using a total
number of samples no greater than

sup{n ∈ N∗ ∶ n ≤ 32N⋆W (µ) log2(8/∆
′
min)β

∗
(n) +KM} ,

where β∗(n) ∶= βδ(n1[M]) .

and we can use the same tools as in best arm identification to get an explicit upper bound depending
on N⋆W (µ) .

E Experimental study

The general weighted collaboration bandit framework has not been studied prior to this work. We
investigate its performance in the special case of federated learning with personalization [31], which
corresponds to choosing weight matrices of the form wn,m = α1(n =m) + 1−α

M
for any pair of

agents (n,m). In this special case, we propose a baseline for weighted collaborative best arm
identification which is a natural counterpart of the regret algorithm proposed by [31], and compare it
to our W-CPE-BAI algorithm.

E.1 A Simple BAI Algorithm Inspired by PF-UCB

We state below as Algorithm 3 a straightforward adaptation of the PF-UCB algorithm in [30] to
personalized federated best arm identification (BAI) ; meaning that only weight matrices of the
form wn,m = α1(n =m) +

1−α
M

for any pair of agents (n,m) are considered. The original regret
algorithm uses phased eliminations designed for each agent to identify their best arm together with
exploitation : when all best arms have been found, or when some agent is waiting for others to
finish their own exploration rounds, agents keep playing their empirical best arm. To turn this into a
δ-correct BAI algorithm, we remove the exploration rounds ; keep the same sampling rule within each

27



phase (in which the number of samples from each arm is proportional to some rate function f(r)) ;
and calibrate the size of the confidence intervals used to perform eliminations slightly differently,
introducing for any δ ∈ (0,1) function

∀r ≥ 0,Br(δ) ∶=

¿
Á
ÁÀ2 log (KMζ(β)rβ/δ)

MF (r)
.

where F (r) = ∑
r
p=1 f(p), for some β > 1 . In practice, we use β = 2 .

Algorithm 3, that we refer to as PF-UCB-BAI, follows the same general structure as our algorithm,
with the notable difference that the number of samples of an arm k ∈ Bm(r) in phase r is fixed in
advance. Under PF-UCB-BAI, when arm k is still in the active set B(r), agent m

• performs global exploration to sample it dgk,m(r) ∶= ⌈(1 − α)f(r)⌉ times

• and additionally performs local exploration to sample it dℓk,m(r) ∶= ⌈αMf(r)⌉ extra times
if furthermore k ∈ Bm(r) .

Overall, dk,m(r) ∶= d
g
k,m(r) + d

ℓ
k,m(r) = ⌈(1 − α)f(r)⌉1(k ∈ B(r)) + ⌈αMf(r)⌉1 (k ∈ Bm(r))

new samples from arm k are collected by agent m during phase r in order to update its estimate
µ̂k,m(r) –the average of all available nk,m(r) samples for arm k obtained by agent m– which is sent
to the central server.

The mixed mean of each arm (k,m) can then be computed by the server as

µ̂′k,m(r) ∶= (α +
1 − α

M
) µ̂k,m(r) +

1 − α

M
∑
m≠n

µ̂k,n(r) ,

and sent back to each agent. We note that, in [30], they propose that the server computes the average
µ̂k(r) ∶=

1
M ∑

M
m=1 µ̂k,m(r) across agents, and sends this value to each agent, who can then obtain

µ̂′k,m(r) ∶= αµ̂k,m(r) + (1 − α)µ̂k(r) .

Arm k is eliminated from the active set Bm(r) of agent m if

µ̂′k,m(r) +Br(δ) < max
j∈Bm(r)

(µ̂′j,m(r) −Bp(δ))

for the confidence parameter Br(δ). In the original algorithm, Br(δ) is replaced by some function
of r and T , however a simple adaptation of Lemma 1 in [30] (adding a union bound on r ∈ N) yields
the following result. Indeed, the original result crucially exploits the sampling rule, which we did not
change.
Lemma 18. Event

G ∶= {∀r ∈ N∗,∀m ∈ [M],∀k ∈ Bm(r), ∣µ̂
′
k,m(r) − µ

′
k,m∣ ≤ Br(δ)}

holds with probability 1 − δ.

On the good event G introduced in Lemma 18, observe that arm k∗m can never be eliminated from the
set Bm(r), therefore it has to be the guess k̂m that agent m outputs. This proves that Algorithm 3
is δ-correct for pure exploration for the special case of federated bandit with personalization. This
algorithm can therefore serve as a baseline to be compared to our proposal in this particular case.

We can also upper bound the sample complexity of this algorithm. Indeed, on event G, like in the
analysis of PF-UCB in [30], we can upper bound the number of rounds where arm k is sampled by
agent m by pk,m ∶= inf{r ∶ Br(δ) ≤∆

′
k,m/4}. When f(p) = 2p, one can prove that

pk,m

∑
p=1

f(p) = O
⎛

⎝

log(1/δ)

M(∆′k,m)
2

⎞

⎠
.

Summing the (deterministic) global and local exploration cost over rounds, arms and agents, yields
an exploration cost of order

O
⎛

⎝
∑

k∈[K]

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

1 − α

minn∈[M](∆
′
k,m)

2

⎞

⎠
+
⎛

⎝
∑

m∈[M]

α

(∆′k,m)
2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

log (
1

δ
)
⎞

⎠
.
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Algorithm 3 PF-UCB-BAI
Input: δ ∈ (0,1), M agents, K arms, matrix W .
f(r): sampling effort in phase r, Br(δ): size of the confidence intervals in phase r.
Initialize r ← 0 , ∀k,m,nk,m(0)← 0 , ∀m,Bm(0)← [K] , k̂m ← 0 .
repeat

# Central server
if ∣Bm(r)∣ = 1 then
k̂m ← the unique arm in Bm(r)
Bm(r) = ∅

end if
B(r)← ⋃m∈[M]Bm(r)
for k ∈ B(r),m ∈ [M] do

dk,m(r) = ⌈(1 − α)f(r)⌉ + ⌈αMf(r)⌉1 (k ∈ Bm(r))
end for
Send to each agent m (dk,m(r))k,m and dmax ∶=maxn∈[M]∑k∈[K] dk,n(r)

# Agent m
Sample arm k ∈ B(r) dk,m(r) times, so that nk,m(r) = nk,m(r − 1) + dk,m(r)
Remain idle for dmax −∑k∈[K] dk,m(r) rounds
Send to the server empirical mean µ̂k,m(r) ∶= ∑s≤nk,m(r)Xk,m(s)/nk,m(r) for any k ∈ [K]

# Central server
Compute the empirical mixed means (µ̂′k,m(r))k,m based on (µ̂k,m(r))k,m and W
// Update set of candidate best arms for each user
for m = 1 to M do

Bm(r + 1)← {k ∈ Bm(r) ∣ µ̂
′
k,m(r) +Br(δ) ≥ max

j∈Bm(r)
(µ̂′j,m(r) −Br(δ))}

end for
r ← r + 1

until ∣B(r)∣ = ∅
Output: {k̂m ∶m ∈ [M]}

E.2 Numerical experiments

As we did throughout the paper, we consider Gaussian bandits with fixed variance σ2 = 1. We denote
r̂ the average number of communication rounds across the R iterations of an experiment ; ĉ the
average exploration cost of the considered algorithm across the R iterations ; δ̂ the empirical error
frequency across the R iterations. r̂ and ĉ are reported ± their standard deviation rounded up to the
closest integer, except for δ̂, which is rounded up to the 2nd decimal place.

We consider a synthetic instance with K = 6 arms, M = 3 agents, for R = 100 iterations. In order to
generate randomly this instance, we sampled at random K ×M values xk,m from the distribution
N (0,1) , and set µk,m = xk,m/∥x∥F , 9 and tested if the associated ∆′min satisfied ∆′min ≥ 0.05 . We
repeated this sampling until this condition was fulfilled.

Comparison to PF-UCB-BAI Our first experiment is to compare our Algorithm 1 with the PF-
UCB-BAI baseline described above. For PF-UCB-BAI we use a phase length f(p) ∶= 2p log(1/δ) for
p ≥ 0 . For both algorithms, we set δ = 0.1 and experiment with α ∈ {0.4,0.5,0.6,0.7}. Results are
reported on the left-most table in Table 1. In terms of communication cost, W-CPE-BAI (Algorithm 1)
improves considerably over the baseline. Depending on the value α ∈ [0,1] (the closer it is to 1,
the less agents have to communicate in order to get good estimates of their mixed expected reward)
W-CPE-BAI improves or has an exploration cost which is similar to the baseline, up to a constant
lower than 2.

9
∥ ⋅ ∥F is the Frobenius norm for matrices.
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Table 1: Personalized collaborative BAI with varying α ∈ {0.4,0.5,0.6,0.7} ; the most ef-
ficient algorithm in terms of exploration cost is in bold type , all algorithms yield δ̂ = 0
up to the 5th decimal place (top table). Personalized collaborative BAI with varying δ ∈
{0.00001,0.0001,0.001,0.01,0.05,0.1} ; ratios are rounded up to the 1st decimal place.

α ALGORITHM r̂ ĉ δ̂

0.4 W-CPE-BAI 5± 0 87,918± 8,634 0.00
PF-UCB-BAI 12± 0 109,822± 30,335 0.00

0.5 W-CPE-BAI 5± 0 75,094± 7,596 0.00
PF-UCB-BAI 11± 0 73,561± 17,239 0.00

0.6 W-CPE-BAI 5± 0 78,334± 7,983 0.00
PF-UCB-BAI 11± 0 55,812± 14,793 0.00

0.7 W-CPE-BAI 5± 0 76,817± 10,953 0.00
PF-UCB-BAI 10± 0 45,765± 9,591 0.00

δ ĉ c∗ ĉ/c∗

0.1 75,094± 7,596 1,104 68.0
0.05 75,992± 8,468 1,639 46.4
0.01 80,457± 8,838 2,875 28.0
0.001 110,888± 31,613 4,643 23.9
0.0001 91,692± 9,121 6,411 14.3
0.00001 96,942± 9,885 8,180 11.9

Comparison to an oracle algorithm Our second experiment is to assess the asymptotic optimality
(up to some logarithmic factors) of our algorithm. In order to estimate the scaling in T ⋆(⋅), we have
implemented an oracle algorithm which has access to the true gaps ((∆′k,m)k,m) and can compute the

associated T ⋆W (µ). Then we compare the average exploration cost ĉ with c∗ ∶= ⌈T ⋆W (µ) log (
1

2.4δ
)⌉ ,

for δ ∈ {0.00001,0.0001,0.001,0.01,0.05,0.1} , and α = 0.5 . We reported the associated results in
the right-most table in Table 1. We can notice that, as δ decreases, the ratio ĉ/c∗ also decreases. As
predicted by our upper bound in Theorem 2, W-CPE-BAI does not attain asymptotic optimality even
for small values of δ, but has a scaling to T ⋆W (µ) log (

1
2.4δ
) which decreases as δ goes to 0.

Numerical considerations These experiments were run on a personal computer (configuration:
processor Intel Core i7-8750H, 12 cores @2.20GHz, RAM 16GB). In order to solve the optimization
problem defining the oracle t(r), we used CVXPy [9, 1], with the commercial solver MOSEK [27]
tuned to default parameters. To compute the number of samples (dk,m(r))k,m,r, we used the optimize
module from SciPy [33]. In our experiments with this implementation of W-CPE-BAI, we found that
when the instance is too hard –meaning that the associated ∆′min is small– the optimization part is
subject to numerical approximation errors, which prevents the computation of the oracle allocation.
This might however be mitigated by online optimization approaches, such as in [8].
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