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A Explanation methods

Methods to facilitate the understanding of machine learning models are usually classified into two
main categories: transparent-box design and black-box model explanation [27]. Transparent-box
design concerns methods that produce inherently interpretable models such as logistic regressors and
decision trees [12, 32]. Black-box model explanation corresponds to approaches designed to explain
how black-box models produce their outcomes. For instance, global explanations techniques (e.g.,
TREPAN [20] and DECTEXT [11]) focus on explaining the whole logic of black-box models by
training an inherently interpretable surrogate model. On the other hand, local explanations aim at
explaining black-box models decisions on single data points (e.g., LIME [38], and GRADCAM [40]).
For simplicity, in this paper, we focus on fairwashing performed with global explanation models.

B Related Work

We highlight some of the differences in settings, assumptions and solutions between our work and
[44, 25]:

Setting We rely on explainer models while they use a published data subset for fairness auditing. In
particular, they reveal some subset of the training data and their predictions. We follow the setting
considered in the literature introducing fairwashing [2, 3]. Slack et al. explanations require input
perturbations while ours require the model owner to provide an interpretable model.

Assumptions Slack et al. assume that fairness auditing is performed via model-agnostic local
explanations (e.g., LIME and SHAP) [44]. Both [44] and [25] assume an ideal detector with
knowledge of the underlying training distribution of the model; and query access to the black-box
model. However, we only assume access to black-box model predictions on the suing set. We stress
that this dataset is available before any formal audit takes place (in the form of asking for model
explanations). This does not constitute query access to the black-box model; in fact it is only dataset
access, which here is the predictions on the suing set.

Solutions [44, 25] attempt to detect fairwashing using a Kolmogorov-Smirnov (KS) test over the
underlying and company-provided subset distribution to determine if the data subset was honestly
provided. More precisely, they show that detection is difficult when fairwashing is conducted
by minimizing the Wasserstein distance between the distributions while subject to fairness; this
optimization also minimizes the upper-bound of the advantage (i.e., distinguishability) of the KS test.
This differs from our setting in which an informed malicious company must optimize the fairness
subject to both fidelity (loss) and the detection threshold. Explanation methods like LIME and SHAP
perturb inputs to gauge feature relevance, inadvertently querying with synthetic data that may be
detected with out-of-distribution detection. Queries determined to originate from explainers are
fed to a fair model whereas in-distribution points are given to the biased model. In contrast, our
detection method is non-cooperative (we require no additional information from the black-box model
as the auditor already has the predictions on the suing set) and therefore does not rely on input
perturbations.

C Fidelity

Definition 6 (Fidelity [20]). The fidelity of an interpretable model I(·) with respect to a black-box
model B(·) is defined as the relative accuracy of I(·) with respect to B(·):

Fidelity(I, B) = Pr
X⇠D

[ŶB = ŶI | X], (12)

where D is a data distribution, ŶI is the prediction of the interpretable model and ŶB is the prediction
of black-box model. ŶI and ŶB are assumed to be both binary-valued random variables.

D Additional Proofs

Below we iterate the full proof for Theorem 1, the main theorem in the paper.
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Proof. Define T
+
a , the true-positive rate of I(·) with respect to B(·) on X ⇠ Da, in which Da

denotes the distribution over data with attribute a 2 A. Define F
+
a , the false-positive rate of I(·) with

respect to B(·) on X ⇠ Da:

T
+
a = Pr[ŶI = 1 | ŶB = 1, A = a], F

+
a = Pr[ŶI = 1 | ŶB = 0, A = a] For a 2 {0, 1}.

(13)
Note that by definition, T

+
a , F

+
a 2 [0, 1]. We denote �̃, �

0
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T
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0 , T+
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+
1 , and

YB |A. Recall from Definition 3 that we define �I := Pr
h
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i
� Pr

h
ŶI = 1 | A = 1

i
.

We use Bayes’ formula to re-write Pr
h
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i
, a 2 A = {0, 1} in terms of the aforemen-
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Given our derivation above, we continue by substituting terms into �I :

�I = Pr
h
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Now that we have derived �I in terms of our desired terms and �B , we eliminate �I from the equation
for �:
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Corollary 1. Let T
+
1 , F

+
1 as defined in Section 3. Then:

1 + F
+
1 � T

+
1 > 0.

Proof. Note that F
+
1 , T

+
1 2 [0, 1], therefore 1 + F

+
1 � T

+
1 � 0. We will show 1 + F

+
1 � T

+
1 = 0

if and only if T
+ = 1 and F

+ = 0, i.e. if I(·) has perfect fidelity w.r.t. B(·). We re-arrange
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Table 1: The accuracy (Acc.) and demographic parity gap (Gap) of the black-box models–AdaBoost,
Deep Neural Networks (DNN), Random Forests (RF) and Gradient Boosted Decision Trees (XgBoost)
evaluated on the suing set.

Dataset AdaBoost DNN RF XgBoost
Acc. Gap Acc. Gap Acc. Gap Acc. Gap

COMPAS 0.68 0.21 0.68 0.25 0.67 0.25 0.68 0.27
Adult Income 0.85 0.12 0.85 0.16 0.86 0.17 0.86 0.17
Bank Marketing 0.91 0.07 0.91 0.09 0.91 0.10 0.91 0.10

1 + F
+
1 � T

+
1 = 0 as:

T
+
1 � F

+
1 = 1

Since F
+
1 , T

+
1 2 [0, 1] and the size of interval [0, 1] is 1 � 0 = 1 = T

+
1 � F

+
1 , T

+
1 and F

+
1 must be

endpoints 1 and 0, respectively.

E Details on Experimental Setup of FRAUD-Detect

In this section, we provide additional details on our experimental setup.

Datasets. COMPAS [5] is a recidivism dataset released by ProPublica that includes data on 6, 167
offenders in prison from Broward County (Florida), with the classification task consisting in pre-
dicting whether an inmate will re-offend in the two years after their release.3 We consider race
(African-American, Caucasian) as the sensitive attribute in COMPAS. Adult Income [22] in-
cludes 48,842 profiles of individuals, each characterized by 13 attributes, drawn from the U.S census.
The Adult Income binary classification task is to predict whether an individual’s income will ex-
ceed $50,000 a year. We use gender (Female, Male) as the sensitive attribute in Adult Income.
Finally, Bank Marketing [34] constitutes information collected from a direct marketing campaign
of a Portuguese banking institution between 2008 to 2013. This dataset contains 41,188 profiles
of individuals, each described by 20 attributes with the classification task being the prediction of
subscription to a term deposit. We consider age (between 30-60 or not between 30-60) as the
sensitive attribute in Bank Marketing.

Training of black-box and interpretable models. For each experiment, the dataset is split randomly
into three partitions: the training set (67%), the suing set (16.5%) and the testing set (16.5%),
following the same procedure as in [3]. Each experiment is repeated with 10 separate random seeds.
The black-box models are learned from the training data points with their associated true labels.
However, the interpretable models are trained from the suing set, which has been labelled by the
black-box model. More precisely, we use the exponentiated gradient algorithm [1] subject to the
fairwashing constraint from the FairLearn Library [9] to learn the fairwashed interpretable model.
The exponentiated gradient algorithm when applied for fairness identifies the saddle point solution
jointly maximizing the fairness and minimizing the loss. To learn the fairwashed interpretable
model of the informed adversary, we extend the Fairness In The Rashomon Set (FaiRS) [19]
framework by adding an additional constraint on CKL. FaiRS reduces the problem of minimizing the
unfairness under two constraints on the fidelity and CKL to a saddle point problem, which is solved
with the exponentiated gradient technique [1]. Table 1 summarizes the performance of the considered
black-box models on each suing set.

Implementation. FRAUD-Detect solely requires the confusion matrices from the interpretable
model for both the majority and minority group. These matrices are flattened, then compared via KL
as outlined in Equation 10. Experiments were conducted on Intel Xeon Silver 4110 CPUs (2.10 GHz,
8GB RAM) and the KL divergence detector implemented in Python 3.8 using scikit-learn [36]. Given
that the KL divergence constraint is not a linear constraint on the confusion matrices, the extended
version of FaiRS may fail to obtain the global minimum of the demographic parity gap on the set

3We note that considerable bias and confounding exists in the true labels for recidivism datasets at large.
We do not necessarily condone use of recidivism datasets. However, COMPAS exists as a standard fairness
benchmark and thus, we use COMPAS to validate our method.
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Figure 4: Kullback–Leibler divergence between confusion matrices of subpopulations, CKL and
demographic parity gap as a function of ✏ fairwashing in interpretable models explaining black-box
models using Adult Income dataset. We use Logistic Regression (LR) and Decision Tree (DT) as
interpretable models, while AdaBoost, Deep Neural Network (DNN), Random Forest (RF) and
Gradient Boosted Decision Trees (XgBoost) are used as black-box models.
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Figure 5: Kullback–Leibler divergence between confusion matrices of subpopulations, CKL and
demographic parity gap as a function of ✏ fairwashing in interpretable models explaining black-box
models using Marketing dataset. We use Logistic Regression (LR) and Decision Tree (DT) as
interpretable models, while AdaBoost, Deep Neural Network (DNN), Random Forest (RF) and
Gradient Boosted Decision Trees (XgBoost) are used as black-box models.

of high-fidelity interpretable models. In our experiments, our approach converges for two datasets,
namely COMPAS and Marketing, but does not achieve the global minimum of the demographic
parity gap for Adult Income. We are planning to address this in future work by focusing on detecting
fairwashing using linear constraints.

F Additional results

FRAUD-Detect successfully detects fairwashing. Figures 4 and 5 illustrate both the demographic
parity gap and CKL of interpretable models as a function of ✏ for two datasets (Adult income and
Bank marketing), respectively.
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FRAUD-Detect is robust to the informed adversary. Figures 6 and 7 show the range of the
demographic parity gap of high-fidelity fairwashed interpretable models subjected to a constraint
on the CKL by solving the optimization problem of Equation (11). We use four types of black-box
models (AdaBoost, XgBoost, DNN and Random Forest).

G Fairwashing Detection Thresholds

Table 2 reports several fairwashing detection thresholds observed in Figures 2, 4 and 5.

Table 2: CKL values for each dataset, black-box model, and interpretable model. These values are
chosen from average KL divergence values at 5% and 50% fairwashing.

Dataset IM AdaBoost DNN
5% 50% 5% 50%

COMPAS DT 0.105 ± 0.035 0.206 ± 0.078 0.136 ± 0.037 0.185 ± 0.065
LR 0.101 ± 0.029 0.164 ± 0.075 0.143 ± 0.044 0.231 ± 0.104

Adult Income DT 0.128 ± 0.067 0.148 ± 0.086 0.134 ± 0.015 0.154 ± 0.029
LR 0.132 ± 0.069 0.170 ± 0.117 0.128 ± 0.017 0.213 ± 0.048

Bank Marketing DT 0.035 ± 0.022 0.034 ± 0.025 0.045 ± 0.017 0.046 ± 0.018
LR 0.033 ± 0.018 0.036 ± 0.022 0.042 ± 0.015 0.049 ± 0.020

Dataset IM RF XgBoost
5% 50% 5% 50%

COMPAS DT 0.149 ± 0.040 0.227 ± 0.095 0.170 ± 0.041 0.248 ± 0.119
LR 0.145 ± 0.043 0.215 ± 0.088 0.164 ± 0.044 0.261 ± 0.124

Adult Income DT 0.154 ± 0.017 0.170 ± 0.024 0.153 ± 0.011 0.196 ± 0.036
LR 0.151 ± 0.016 0.207 ± 0.044 0.148 ± 0.012 0.200 ± 0.041

Bank Marketing DT 0.048 ± 0.013 0.054 ± 0.014 0.053 ± 0.015 0.059 ± 0.016
LR 0.045 ± 0.014 0.048 ± 0.015 0.052 ± 0.014 0.053 ± 0.015

H Per seed fine grain CKL versus fairness

Figures 8, 9, and 10 show the per-seed results aggregated to form figures 2, 4, and 5, respectively.
In these figures (especially in 8 and 10), the order of increasing black-box fairnesses across the
10 seeds is often replicated in the order of decreasing interpretable model CKL values across the
same seeds; thus a seed with a low black-box fairness has higher CKL values than a seed with high
black-box fairness.

Some seeds from the logistic regression interpretable model (e.g. Figure 9 AdaBoost and logistic
regression green and grey lines) show discontinuities at high epsilons where fairwashing is significant.
There, the CKL values jump to infinity due to a division by zero in the KL log term when there are 0s
in the minority subpopulation confusion matrix.

We also observe that for several seeds across all datasets and models, the fairness of the honest
interpretable model is imperfectly aligned and usually higher than the black-box fairness. This is
unintentional fairwashing, which may arise from the relatively small capacity of the interpretable
model compared to the black-box model.

I Bounds for KL Divergence of the Confusion Matrices

First, denote �1 = �B(1 + F
+
1 � T

+
1 ) = �B(F�

1 + F
+
1 ) and similarly �0 = �B(F�

0 + F
+
0 ).

Depending on the context of the problem either subgroup could be the more sensitive subgroup, so
in Equation (6) we implicitly assumed that subgroup is z = 1: � = �1. Equation (10) defines the
detector based on the flattened confusion matrix, but since for a binary classification problem, the

20



rank of the confusion matrix is 2, it is enough to consider KL
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black-box model �B . In a detection problem, typically, we bound the type I error and minimize the
type II error. The particular choice of type I and type II error is context-dependent (are false positives
a bigger concern than false negatives or not?). In the context of fairwashing, a reasonable choice is
that
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That is, the cost of falsely detecting a fairwashed model is larger than missing fairwashing—due to
the legal and liability considerations, for instance.
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4That is to say, any two rates from the confusion matrix is enough to construct the full matrix. We note that
in this section, we work with false positive rate F+ and false negative rate F� to simplify the presentation. The
rest of the paper uses the entire confusion matrix which as we have pointed out in Theorem 1 is not necessary
but is also harmless.
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Equivalently, we can re-write these bounds in terms of F
+ and T

+ to match Theorem 1 (using the
fact that F

� = 1 � T
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 = min is the most conservative choice which increases the risk of false discovery (of fairwashing),
while  = max is a permissive choice that minimizes the risk of false discovery at the expense of
increase in the false negatives (not detecting fairwashing). A balanced choice for threshold could be
the intermediate point:
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where �(R) = R0/R1 and �l(R) = log �(R). In the last equation, we have used the taylor
expansion of log(1 � x) at x = 0.
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J Experimental results with two independent variables

In this section, we repeat experiments shown in Section 6 with the following adjustment:

CKL = KL([T+
0 , F

+
0 ], [T+

1 , F
+
1 ]),

in which we use only two independent variables of true-positive rate T
+ and false-positive rate F

+.
Figures 11, 12 and 13 show similar results as Figures 2, 4 and 5.
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Figure 12: KL among altered confusion matrices of subgroups versus demographic parity unfairness
of two explainable models, namely Logistic Regression (LR) and Decision Tree (DT), approximating
four black-box models, namely AdaBoost, Deep Neural Network (DNN), Random Forest (RF), and
Gradient Boosted Decision Trees (XgBoost) using Adult dataset. We consider 10 split of the dataset
to the training set for the black-box model and suing set for the interpretable model.
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Figure 13: KL among altered confusion matrices of subgroups versus demographic parity unfairness
of two explainable models, namely Logistic Regression (LR) and Decision Tree (DT), approximating
four black-box models, namely AdaBoost, Deep Neural Network (DNN), Random Forest (RF), and
Gradient Boosted Decision Trees (XgBoost), using Marketing dataset. We consider 10 split of the
dataset to the training set for the black-box model and suing set for the interpretable model.
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K Perfect Fairwashing is impossible

Theorem 2. Consider binary-valued random variables ŶB black-box model predictions, ŶI proxy
(interpretable) model predictions, and A a sensitive attribute; then these conditions cannot be satisfied
simultaneously:

1. Interpretable Model Demographic Parity

Pr
h
ŶI = 1 | A = 0

i
=
h
ŶI = 1 | A = 1

i

,

2. Non-detectable

Pr [YI = 1 | YB = 1, A = 0] = Pr [YI = 1 | YB = 1, A = 1] := T
+ (41)

Pr [YI = 1 | YB = 0, A = 0] = Pr [YI = 1 | YB = 0, A = 1] := F
+
. (42)

Proof. Let Equation (41) be equal to T
+, and Equation (42) to F

+. Define the base rates of the
black-box model on subpopulations 0 and 1 as:

µ0 = Pr[ŶB = 1|A = 0]

µ1 = Pr[ŶB = 1|A = 1].

Using the rule of total probabilities, for a 2 [0, 1],

Pr
h
ŶI = 1 | A = a

i
= Pr[ŶB = 1|A = a] Pr

h
ŶI = 1 | ŶB = 1, A = a

i

+ Pr[ŶB = 0|A = a] Pr
h
ŶI = 1 | ŶB = 0, A = a

i
(43)

= µa · T
+ + (1 � µa) · F

+ (44)

Fairness according to parity requires that

Pr
h
ŶI = 1 | A = 0

i
?
= Pr

h
ŶI = 1 | A = 1

i
. (45)

Substituting Equation (43) and Equation (45) and re-organizing we have:

(µ0 � µ1) · T
+ + ((1 � µ0) � (1 � µ1)) · F

+ ?
= 0 (46)

Case 1: If T
+ = F

+, by eliminating both and recognizing that (1 � µ0) = 1 � µ0, we see that the
equality Equation (45) reduces to 0 = 0 which is trivially correct.

Case 2: T
+ 6= F

+ Simplifying Equation (46) further and eliminating T
+ � F

+ 6= 0

µ0(T
+ � F

+) � µ1 · (T+ � F
+)

?
= (T+ � F

+)

, µ0
?
= 1 + µ1.

But these are probabilities, for Equation (45) to hold we must have that

µ1 = 0 (47)
µ0 = 1,

which means that the black-box predictions exclusively depend on the sensitive attribute. In other
words, for demographic parity to hold for the interpretable model, the black-box models predictions
all samples of one subpopulation A = 0 and reject the others A = 0. Clearly, this is unfair to one
subpopulation.

To establish the impossibility result, we further show that such an assumption is equivalent to requiring
completely inaccurate black-box models with maximum error rates.
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Consider the “true” base rates for each subpopulation:

Pr[Y = 1 | A = 0] = Pr
h
Y = 1 | ŶB = 1, A = 0

i
µ0 + Pr

h
Y = 1 | ŶB = 0, A = 0

i
Pr
h
ŶB = 0 | A = 0

i

Pr[Y = 1 | A = 1] = Pr[Y = 1 | ŶB = 1, A = 1]µ1 + Pr
h
Y = 1 | ŶB = 1, A = 1

i
(1 � µ1)

If interpretable demographic parity Equation (47) holds then, these base rates reduce to:

Pr[Y = 1 | A = 0] = Pr
h
Y = 1 | ŶB = 1, A = 0

i

Pr[Y = 1 | A = 1] = Pr
h
Y = 1 | ŶB = 0, A = 1

i
=) Y ? ŶB | A =) ŶB ? Y | A.

In other words, the black-box model predictions is completely independent of the true label and
exclusively dependent on the sensitive attribute A.
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Figure 6: Range of the demographic parity gap of high-fidelity fairwashed logistic regression
interpretable models subjected to a constraint on the CKL (� 2 {0.01, 0.03, 0.05, 0.07, 0.10, 0.20}),
explaining AdaBoost, Deep Neural Network (DNN), Random Forest (RF) and Gradient Boosted
Decision Trees (XgBoost) black-box models trained on Adult Income dataset. Horizontal lines denote
the demographic parity gap of the black-box models.
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Figure 7: Range of the demographic parity gap of high-fidelity fairwashed logistic regression
interpretable models subjected to a constraint on the CKL (� 2 {0.01, 0.03, 0.05, 0.07, 0.10, 0.20}),
explaining AdaBoost, Deep Neural Network (DNN), Random Forest (RF) and Gradient Boosted
Decision Trees (XgBoost) black-box models trained on Marketing dataset. Horizontal lines denote
the demographic parity gap of the black-box models.
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Figure 8: Kullback–Leibler divergence, CKL, between confusion matrices of subgroups versus
demographic parity fairness of two interpretable models, namely Logistic Regression (LR) and
Decision Tree (DT), approximating four black-box models, namely AdaBoost, Deep Neural Network
(DNN), Random Forest (RF), and Gradient Boosted Decision Trees (XgBoost), using COMPAS
dataset. We consider 10 split of the dataset to the training set for the black-box model and suing set
for the interpretable model. Vertical dashed lines represent unfairness values of the black-box models.
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Figure 9: Kullback–Leibler divergence, CKL, between confusion matrices of subgroups versus
demographic parity fairness of two interpretable models, namely Logistic Regression (LR) and
Decision Tree (DT), approximating four black-box models, namely AdaBoost, Deep Neural Network
(DNN), Random Forest (RF), and Gradient Boosted Decision Trees (XgBoost) using Adult dataset.
We consider 10 split of the dataset to the training set for the black-box model and suing set for the
interpretable model. Vertical dashed lines represent unfairness values of the black-box models.
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Figure 10: Kullback–Leibler divergence, CKL, between confusion matrices of subgroups versus
demographic parity fairness of two interpretable models, namely Logistic Regression (LR) and
Decision Tree (DT), approximating four black-box models, namely AdaBoost, Deep Neural Network
(DNN), Random Forest (RF), and Gradient Boosted Decision Trees (XgBoost), using Marketing
dataset. We consider 10 split of the dataset to the training set for the black-box model and suing set
for the interpretable model. Vertical dashed lines represent unfairness values of the black-box models.
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Figure 11: KL among altered confusion matrices of subgroups versus demographic parity unfairness
of two explainable models, namely Logistic Regression (LR) and Decision Tree (DT), approximating
four black-box models, namely AdaBoost, Deep Neural Network (DNN), Random Forest (RF), and
Gradient Boosted Decision Trees (XgBoost), using COMPAS dataset. We consider 10 split of the
dataset to the training set for the black-box model and suing set for the interpretable model.
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