A Appendix

Preliminaries

Throughout the appendix, we make frequent use of Gaussian integrals. We introduce short-hand notations $\int D t \equiv \int \frac{d t}{\sqrt{2 \pi}} e^{-t^{2} / 2}$ and $H(x) \equiv \int_{x}^{\infty} D t$. Also, when we do not specify the integration range it is understood that we are integrating from $-\infty$ to ∞.

A. 1 Capacity supplemental materials

A.1. 1 Replica calculation of distribution-constrained capacity

In this section, we present the replica calculation of the distribution-constrained storage capacity of a perceptron.
As described in main text Eqn.2, we need to perform a quenched average $\langle\cdot\rangle$ over the patterns $\boldsymbol{\xi}^{\mu}$ and labels ζ^{μ} for $\log V$, which can be carried out using the replica trick, $\langle\log V\rangle=\lim _{n \rightarrow 0}\left(\left\langle V^{n}\right\rangle-1\right) / n$. Following [29, 28], we consider first integer n, and at the end perform analytic continuation of $n \rightarrow 0$. The replicated Gardner volume is:

$$
\begin{equation*}
V=\frac{\prod_{\alpha=1}^{n} \int d \boldsymbol{w}^{\alpha}\left[\prod_{\mu=1}^{P} \Theta\left(\zeta^{\mu} \frac{\boldsymbol{w}^{\alpha} \cdot \boldsymbol{\xi}^{\mu}}{\left\|\boldsymbol{w}^{\alpha}\right\|}-\kappa\right)\right] \delta\left(\left\|\boldsymbol{w}^{\alpha}\right\|^{2}-N\right) \delta\left(\int d k(\hat{q}(k)-q(k))\right)}{\prod_{\alpha=1}^{n} \int d \boldsymbol{w}^{\alpha} \delta\left(\left\|\boldsymbol{w}^{\alpha}\right\|^{2}-N\right)} \tag{13}
\end{equation*}
$$

Let's rewrite the Heaviside step function using Fourier representation of the δ-function $\delta(x)=$ $\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x}$ as (defining $z_{\alpha}^{\mu}=\zeta^{\mu} \frac{\boldsymbol{w}^{\alpha} \cdot \boldsymbol{\xi}^{\mu}}{\left\|\boldsymbol{w}^{\alpha}\right\|}$)

$$
\begin{equation*}
\Theta\left(z_{\alpha}^{\mu}-\kappa\right)=\int_{\kappa}^{\infty} d \rho_{\alpha}^{\mu} \delta\left(\rho_{\alpha}^{\mu}-z_{\alpha}^{\mu}\right)=\int_{\kappa}^{\infty} d \rho_{\alpha}^{\mu} \int \frac{d x_{\alpha}^{\mu}}{2 \pi} e^{i x_{\alpha}^{\mu}\left(\rho_{\alpha}^{\mu}-z_{\alpha}^{\mu}\right)} \tag{14}
\end{equation*}
$$

Note that now all the $\boldsymbol{\xi}^{\mu}, \zeta^{\mu}$ dependence is in $e^{-i x_{\alpha}^{\mu} z_{\alpha}^{\mu}}$. We perform the average with respect to $\xi_{i}^{\mu} \sim p\left(\xi_{i}^{\mu}\right)=\mathcal{N}(0,1)$ and $p\left(\zeta^{\mu}\right)=\frac{1}{2} \delta\left(\zeta^{\mu}+1\right)+\frac{1}{2} \delta\left(\zeta^{\mu}-1\right)\left(\right.$ also note that $\left.\left\|\boldsymbol{w}^{\alpha}\right\|=\sqrt{N}\right)$:

$$
\begin{align*}
\left\langle\prod_{\mu \alpha} e^{-i x_{\alpha}^{\mu} z_{\alpha}^{\mu}}\right\rangle_{\xi \eta} & =\prod_{\mu j}\left\langle\exp \left\{-\frac{i}{\sqrt{N}} \zeta^{\mu} \xi_{j}^{\mu} \sum_{\alpha} x_{\alpha}^{\mu} w_{j}^{\alpha}\right\}\right\rangle_{\xi \zeta} \\
& =\prod_{\mu i}\left\langle\exp \left\{-\frac{\left(\zeta^{\mu}\right)^{2}}{2 N} \sum_{\alpha \beta} x_{\alpha}^{\mu} x_{\beta}^{\mu} w_{i}^{\alpha} w_{i}^{\beta}\right\}\right\rangle_{\zeta} \tag{15}\\
& =\prod_{\mu} \exp \left\{-\frac{1}{2 N} \sum_{\alpha \beta} x_{\alpha}^{\mu} x_{\beta}^{\mu} \sum_{i} w_{i}^{\alpha} w_{i}^{\beta}\right\} .
\end{align*}
$$

Introducing the replica overlap parameter $q_{\alpha \beta}=\frac{1}{N} \sum_{i} w_{i}^{\alpha} w_{i}^{\beta}$, and notice that the μ index gives P identical copies of the same integral. We can suppress the μ indices and write

$$
\begin{equation*}
\left\langle\prod_{\mu \alpha} \Theta\left(z_{\alpha}^{\mu}-\kappa\right)\right\rangle_{\xi \zeta}=\left[\int_{\kappa}^{\infty}\left(\prod_{\alpha} \frac{d \rho_{\alpha} d x_{\alpha}}{2 \pi}\right) e^{K}\right]^{P} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
K=i \sum_{\alpha} x_{\alpha} \rho_{\alpha}-\frac{1}{2} \sum_{\alpha \beta} q_{\alpha \beta} x_{\alpha} x_{\beta} \tag{17}
\end{equation*}
$$

captures all the data dependence in the quenched free energy landscape, and therefore it is called the 'energetic' part of the free energy. In contrast, the δ-functions in Eqn 13 are called 'entropic' part because they regulate what kind of weights are considered in the version space (space of viable weights).

The entropic part

$$
\begin{equation*}
\delta\left(N q_{\alpha \beta}-\sum_{i} w_{i}^{\alpha} w_{i}^{\beta}\right)=\int \frac{d \hat{q}_{\alpha \beta}}{2 \pi} \exp \left\{i N \hat{q}_{\alpha \beta} q_{\alpha \beta}-i \hat{q}_{\alpha \beta} \sum_{i} w_{i}^{\alpha} w_{i}^{\beta}\right\} \tag{18}
\end{equation*}
$$

Note that the normalization constraint $\delta\left(\left\|\boldsymbol{w}^{\alpha}\right\|^{2}-N\right)$ is automatically satisfied by requiring $q_{\alpha \alpha}=1$. Using replica-symmetric ansatz: $\hat{q}_{\alpha \beta}=-\frac{i}{2}\left(\Delta \hat{q} \delta_{\alpha \beta}+\hat{q}_{1}\right)$, and $q_{\alpha \beta}=(1-q) \delta_{\alpha \beta}+q$, we have

$$
\begin{equation*}
i N \sum_{\alpha \beta} \hat{q}_{\alpha \beta} q_{\alpha \beta}=\frac{n N}{2}\left[\Delta \hat{q}+\hat{q}_{1}(1-q)\right]+\mathcal{O}\left(n^{2}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
-i \sum_{\alpha \beta} \hat{q}_{\alpha \beta} \sum_{i} w_{i}^{\alpha} w_{i}^{\beta} & =-\frac{1}{2}\left(\Delta \hat{q}+\hat{q}_{1}\right) \sum_{\alpha} \sum_{i}\left(w_{i}^{\alpha}\right)^{2}-\frac{1}{2} \hat{q}_{1} \sum_{(\alpha \beta)} \sum_{i} w_{i}^{\alpha} w_{i}^{\beta} \\
& =-\frac{1}{2} \Delta \hat{q} \sum_{\alpha} \sum_{i}\left(w_{i}^{\alpha}\right)^{2}-\frac{1}{2} \hat{q}_{1} \sum_{i}\left(\sum_{\alpha} w_{i}^{\alpha}\right)^{2} \tag{20}\\
& \stackrel{\text { HST }}{=}-\frac{1}{2} \Delta \hat{q} \sum_{\alpha} \sum_{i}\left(w_{i}^{\alpha}\right)^{2}+\sqrt{-\hat{q}_{1}} \sum_{i} t_{i}\left(\sum_{\alpha} w_{i}^{\alpha}\right)
\end{align*}
$$

where in the last step HST denotes Hubbard-Stratonovich transformation $\int \frac{d t}{\sqrt{2 \pi}} e^{-t^{2} / 2} e^{b t}=e^{b^{2} / 2}$ that we use to linearize the quadratic term at the cost of introducing an auxiliary Gaussian variable t to be averaged over later.
Recall that $\hat{q}(k)=\int e^{i k w} \hat{p}(w)=\frac{1}{N} \sum_{i}^{N} e^{i k w_{i}^{\alpha}}$, the distribution constraint becomes

$$
\begin{align*}
\delta\left(\int d k(\hat{q}(k)-q(k))\right) & =\delta\left(\int d k\left(\frac{1}{N} \sum_{i}^{N} e^{i k w_{i}^{\alpha}}-q(k)\right)\right) \\
& =\int \frac{d \hat{\lambda}_{\alpha}(k)}{2 \pi} \exp \left\{\int d k i \hat{\lambda}_{\alpha}(k)\left(\sum_{i} e^{i k w_{i}^{\alpha}}-N q(k)\right)\right\} \tag{21}
\end{align*}
$$

Note that $\sum_{i} \int d k i \hat{\lambda}_{\alpha}(k) e^{i k w_{i}^{\alpha}}=2 \pi i \sum_{i} \lambda_{\alpha}\left(-w_{i}^{\alpha}\right)$ by inverse Fourier transform. Next,

$$
\begin{align*}
-i N \int d k \hat{\lambda}_{\alpha}(k) q(k)= & -i N \int d k\left(\int d w e^{i k w} \lambda_{\alpha}(w)\right)\left(\int d w^{\prime} e^{i k w^{\prime}} q\left(w^{\prime}\right)\right) \\
& =-2 \pi i N \int d w d w^{\prime} \lambda_{\alpha}(w) q\left(w^{\prime}\right) \delta\left(w+w^{\prime}\right) \tag{22}\\
& =-2 \pi i N \int d w q(w) \lambda_{\alpha}(-w)
\end{align*}
$$

Now we can write down the full free energy. We ignore overall constant coefficients such as 2π 's and i 's in the integration measure, which become irrelevant upon taking the saddle-point approximation. We also leave out the denominator of V, as it does not depend on data and is an overall constant. Note that under the replica-symmetric ansatz the replica index α gives n identical copies of the same integral and thus the replica index α can be suppressed (same for synaptic index i):

$$
\begin{equation*}
\left\langle V^{n}\right\rangle=\int d q d \hat{\lambda}(k) d \Delta \hat{q} d \hat{q}_{1} e^{n N\left(G_{0}+G_{1}\right)} \tag{23}
\end{equation*}
$$

where (please note that q is replica overlap, and $q(w)$ is the imposed target distribution)

$$
\begin{align*}
G_{0} & =\frac{1}{2} \Delta \hat{q}+\frac{1}{2} \hat{q}_{1}(1-q)-2 \pi i \int d w q(w) \lambda(-w)+\langle\log Z(t)\rangle_{t} \\
Z(t) & =\int d w \exp \left\{2 \pi i \lambda(-w)-\frac{1}{2} \Delta \hat{q} w^{2}+\sqrt{-\hat{q}_{1}} t w\right\} \tag{24}
\end{align*}
$$

Note that integrals in Eqn 23 can be evaluated using saddle-point approximation in the thermodynamic limit $N \rightarrow \infty$.
Redefining $2 \pi i \lambda(-w)-\frac{1}{2} \Delta \hat{q} w^{2} \rightarrow-\lambda(w)$ and $-\hat{q}_{1} \rightarrow \hat{q}_{1}$, we have

$$
\begin{align*}
G_{0} & =\frac{1}{2} \Delta \hat{q}-\frac{1}{2} \hat{q}_{1}(1-q)+\int d w q(w) \lambda(w)-\frac{1}{2} \Delta \hat{q} \int d w q(w) w^{2}+\langle\log Z(t)\rangle_{t} \tag{25}\\
Z(t) & =\int d w \exp \left\{-\lambda(w)+\sqrt{\hat{q}_{1}} t w\right\}
\end{align*}
$$

We seek the saddle-point solution for G_{0} with respect to the order parameters $\Delta \hat{q}, \lambda(w)$, and \hat{q}_{1} :

$$
\begin{gather*}
0=\frac{\partial G_{0}}{\partial \Delta \hat{q}} \Rightarrow 1=\int d w q(w) w^{2}=\left\langle w^{2}\right\rangle_{q(w)} \tag{26}\\
0=\frac{\partial G_{0}}{\partial \lambda(w)} \Rightarrow q(w)=\left\langle\frac{1}{Z(t)} \exp \left\{-\lambda(w)+\sqrt{\hat{q}_{1}} t w\right\}\right\rangle . \tag{27}
\end{gather*}
$$

We observe that the saddle-point equation Eqn 26 fixes the second moment of the imposed distribution $q(w)$ to 1 and therefore can be thought of as a second moment constraint. G_{0} now simplifies to

$$
\begin{equation*}
G_{0}=-\frac{1}{2} \hat{q}_{1}(1-q)+\int d w q(w) \lambda(w)+\langle\log Z(t)\rangle_{t} \tag{28}
\end{equation*}
$$

The remaining \hat{q}_{1} saddle-point equation is a bit more complicated,

$$
\begin{equation*}
0=\frac{\partial G_{0}}{\partial \hat{q}_{1}}=-\frac{1}{2}(1-q)+\frac{t}{2 \sqrt{\hat{q}_{1}}}\left\langle\frac{1}{Z(t)} \int d w w \exp \left\{-\lambda(w)+\sqrt{\hat{q}_{1}} t w\right\}\right\rangle_{t} \tag{29}
\end{equation*}
$$

Integration by parts for the second term in rhs:

$$
\begin{align*}
1-q & =\frac{1}{\sqrt{\hat{q}_{1}}} \int D t \frac{1}{Z} \sqrt{\hat{q}_{1}} \int d w w^{2} \exp \left\{-\lambda(w)+\sqrt{\hat{q}_{1}} t w\right\} \\
& -\frac{1}{\sqrt{\hat{q}_{1}}} \int D t \frac{1}{Z^{2}} \sqrt{\hat{q}_{1}}\left(\int d w w \exp \left\{-\lambda(w)+\sqrt{\hat{q}_{1}} t w\right\}\right)^{2} \tag{30}\\
& =\left\langle\left\langle w^{2}\right\rangle_{f(w)}\right\rangle_{t}-\left\langle\langle w\rangle_{f(w)}^{2}\right\rangle_{t}
\end{align*}
$$

where in the last step we have defined an induced distribution $f(w)=$ $Z(t)^{-1} \exp \left\{-\lambda(w)+\sqrt{\hat{q}_{1}} t w\right\}$. Since the second moments are fixed to 1 , we have

$$
\begin{equation*}
q=\left\langle\langle w\rangle_{f(w)}^{2}\right\rangle_{t} \tag{31}
\end{equation*}
$$

which gives a nice interpretation of q in terms of the average overlap of w in the induced distribution $f(w)$.

Limit $q \rightarrow 1$

We are interested in the critical load α_{c} where the version space (space of viable weights) shrinks to a single point, i.e., there exists only one viable solution. Since q measures the typical overlap between weight vectors in the version space, the uniqueness of the solution implies $q \rightarrow 1$ at α_{c}. In this limit, the order parameters $\left\{\hat{q}_{1}, \lambda(w)\right\}$ diverges and we need to re-derive the saddle point equations Eqn 27 and Eqn 31 in terms of the undiverged order parameters $\{u, r(w)\}$:

$$
\begin{equation*}
\hat{q}_{1}=\frac{u^{2}}{(1-q)^{2}} ; \quad \lambda(w)=\frac{r(w)}{1-q} \tag{32}
\end{equation*}
$$

Now G_{0} becomes

$$
\begin{equation*}
G_{0}=\frac{1}{1-q}\left\{-\frac{1}{2} u^{2}+\int d w q(w) r(w)+(1-q)\langle\log Z(t)\rangle_{t}\right\} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
Z(t)=\int d w \exp \frac{1}{1-q}\{-r(w)+u t w\} \tag{34}
\end{equation*}
$$

We can perform a saddle-point approximation for the w integral in $Z(t)$ at the saddle value w such that $r^{\prime}(w)=u t$:

$$
\begin{equation*}
Z(t)=\exp \left\{\frac{-r(w)+u t w}{1-q}\right\} \tag{35}
\end{equation*}
$$

Then

$$
\begin{equation*}
G_{0}=\frac{1}{1-q}\left\{-\frac{1}{2} u^{2}+\int d w q(w) r(w)-\langle r(w)\rangle_{t}+u\langle t w\rangle\right\} \tag{36}
\end{equation*}
$$

Let's use integration by parts to rewrite

$$
\begin{align*}
\int d w q(w) r(w) & =-\int Q(w) r^{\prime}(w) d w \tag{37}\\
\langle r(w)\rangle_{t} & =\int \frac{d t}{\sqrt{2 \pi}} e^{-t^{2} / 2} r(w)=-\int P(t) r^{\prime}(w) d w
\end{align*}
$$

where $Q(w)$ is the CDF of the imposed distribution $q(w)$ and $P(t)=\frac{1}{2}\left[1+\operatorname{Erf}\left(\frac{t}{\sqrt{2}}\right)\right]$ is the normal CDF.

Now the saddle-point equation

$$
\begin{equation*}
0=\frac{\partial G_{0}}{\partial r^{\prime}(w)} \Rightarrow Q(w)=P(t) \tag{38}
\end{equation*}
$$

determines $w(t)$ implicitly. The u equation gives

$$
\begin{equation*}
0=\frac{\partial G_{0}}{\partial u} \Rightarrow u=\langle t w\rangle_{t}=\left\langle\frac{d w}{d t}\right\rangle_{t} \tag{39}
\end{equation*}
$$

where in the last equality we have used integration by parts. Using Eqn $3839 G_{0}$ is simplified to

$$
\begin{equation*}
G_{0}=\frac{1}{2(1-q)}\left\langle\frac{d w}{d t}\right\rangle_{t}^{2} \tag{40}
\end{equation*}
$$

The energetic part

We would like to perform a similar procedure as shown above, to Eqn 17 using the replica-symmetric ansatz. We observe that the effect of the distribution constraint is entirely captured in G_{0} and therefore G_{1} is unchanged compared with the standard Gardner calculation of perceptron capacity. We reproduce the calculation here for completeness.
Under the replica-symmetric ansatz $q_{\alpha \beta}=(1-q) \delta_{\alpha \beta}+q$, Eqn 17 becomes

$$
\begin{align*}
& K=i \sum_{\alpha} x_{\alpha} \rho_{\alpha}-\frac{1-q}{2} \sum_{\alpha} x_{\alpha}^{2}-\frac{q}{2}\left(\sum_{\alpha} x_{\alpha}\right)^{2} \tag{41}\\
& \text { HST }_{=} \sum_{\alpha} x_{\alpha} \rho_{\alpha}-\frac{1-q}{2} \sum_{\alpha} x_{\alpha}^{2}-i t \sqrt{q} \sum_{\alpha} x_{\alpha}
\end{align*}
$$

where we have again used the Hubbard-Stratonovich transformation to linearize the quadratic piece. Performing the Gaussian integrals in x_{α} (define $\alpha=\frac{P}{N}$),

$$
\begin{equation*}
n G_{1}=\alpha \log \left[\left\langle\int_{\kappa}^{\infty} \frac{d \rho}{\sqrt{2 \pi(1-q)}} \exp \left\{-\frac{(\rho+t \sqrt{q})^{2}}{2(1-q)}\right\}\right\rangle_{t}^{n}\right] \tag{42}
\end{equation*}
$$

At the limit $n \rightarrow 0$,

$$
\begin{equation*}
n G_{1}=\alpha n\left\langle\log \left[\int_{\kappa}^{\infty} \frac{d \rho}{\sqrt{2 \pi(1-q)}} \exp \left\{-\frac{(\rho+t \sqrt{q})^{2}}{2(1-q)}\right\}\right]\right\rangle_{t} \tag{43}
\end{equation*}
$$

Perform the Gaussian integral in ρ and define $\tilde{\kappa}=\frac{\kappa+t \sqrt{q}}{\sqrt{1-q}}$, we have

$$
\begin{equation*}
G_{1}=\alpha \int D t \log H(\tilde{\kappa}) \tag{44}
\end{equation*}
$$

At the limit $q \rightarrow 1, \alpha \rightarrow \alpha_{c}, \int_{-\infty}^{\infty} D t$ is dominated by $\int_{-\kappa}^{\infty} D t$, and $H(\tilde{\kappa}) \rightarrow \frac{1}{\sqrt{2 \pi} \tilde{\kappa}} e^{-\tilde{\kappa}^{2} / 2}$. The $\mathcal{O}\left(\frac{1}{1-q}\right)$ (leading order) contribution gives

$$
\begin{equation*}
G_{1}=-\frac{1}{2(1-q)} \alpha_{c} \int_{-\kappa}^{\infty} D t(\kappa+t)^{2} \tag{45}
\end{equation*}
$$

Let $G=G_{0}+G_{1}$. As $n \rightarrow 0,\left\langle V^{n}\right\rangle=e^{n(N G)} \rightarrow 1+n(N G)$, and $\langle\log V\rangle=\lim _{n \rightarrow 0} \frac{\left\langle V^{n}\right\rangle-1}{n}=$ $N G$.
Combining with Eqn 40 (relabel $t \leftrightarrow x$ to distinguish between the two auxiliary Gaussian variables), we have

$$
\begin{equation*}
\langle\log V\rangle=\frac{N}{2(1-q)}\left[\left\langle\frac{d w}{d x}\right\rangle_{x}^{2}-\alpha_{c} \int_{-\kappa}^{\infty} D t(\kappa+t)^{2}\right] \tag{46}
\end{equation*}
$$

Capacity α_{c} is reached when Eqn 13 goes to zero. We arrive at the distribution-constrained capacity

$$
\begin{equation*}
\alpha_{c}(\kappa)=\alpha_{0}(\kappa)\left\langle\frac{d w}{d x}\right\rangle_{x}^{2} \tag{47}
\end{equation*}
$$

where $\alpha_{0}(\kappa)=\left[\int_{-\kappa}^{\infty} D t(\kappa+t)^{2}\right]^{-1}$ is the unconstrained capacity.

Instructive Examples

(1) Standard normal distribution $w \sim \mathcal{N}(0,1)$.

In this case $w=x$ and $\alpha_{c}(\kappa)=\alpha_{0}(\kappa)$.
(2) Normal distribution with nonzero mean $w \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. This is the example discussed in the main text Fig.1.
In this case $w=\mu+\sigma x$ and $\mu^{2}+\sigma^{2}=1$ due to the second moment constraint Eqn 26. Then $\alpha_{c}(\kappa)=\sigma^{2} \alpha_{0}(\kappa)$.
(3) Lognormal distribution $w \sim \frac{1}{\sqrt{2 \pi} w} \exp \left\{-\frac{(\ln w-\mu)^{2}}{2 \sigma^{2}}\right\}$.

In this case $w=e^{\mu+\sigma x}$ where $\mu=-\sigma^{2} . \alpha_{c}(\kappa)=\sigma^{2} e^{-\sigma^{2}} \alpha_{0}(\kappa)$.

Geometrical interpretation

Note that although the Jacobian factor $\left\langle\frac{d w}{d x}\right\rangle_{x}$ takes a simple form, in practice sometimes it might not be the most convenient form to use. Integrating by parts $(p(x)=\mathcal{N}(0,1))$,

$$
\begin{equation*}
\left\langle\frac{d w}{d x}\right\rangle_{x}=\int d x p(x) w x \tag{48}
\end{equation*}
$$

Now define $u=P(x)$ so that $d u=p(x) d x$ and $w=Q^{-1}(P(x))=Q^{-1}(u)$, we can express the Jacobian in terms of the CDFs

$$
\begin{equation*}
\left\langle\frac{d w}{d x}\right\rangle_{x}=\int_{0}^{1} d u\left(Q^{-1}(u) P^{-1}(u)\right) \tag{49}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
\left\langle\frac{d w}{d x}\right\rangle_{x} & =\frac{1}{2}\left[\int_{0}^{1} d u\left(Q^{-1}(u)\right)^{2}+\int_{0}^{1} d u\left(P^{-1}(u)\right)^{2}-\int_{0}^{1} d u\left(Q^{-1}(u)-P^{-1}(u)\right)^{2}\right] \tag{50}\\
& =\frac{1}{2}\left[2-W_{2}(P, Q)^{2}\right]
\end{align*}
$$

where we have used second moments equal to 1 and the definition of the Wasserstein- k distance in the second equality. Therefore, we have arrived at the geometric interpretation of the Jacobian term

$$
\begin{equation*}
\left\langle\frac{d w}{d x}\right\rangle_{x}=1-\frac{1}{2} W_{2}(P, Q)^{2} . \tag{51}
\end{equation*}
$$

A.1.2 Theory for an arbitrary number of synaptic subpopulations

In this section, we generalize our theory in the above section to the set up of a perceptron with M synaptic populations indexed by m, \boldsymbol{w}^{m}, such that each w_{i}^{m} satisfies its own distributions constraints $w_{i}^{m} \sim q_{m}\left(w^{m}\right)$. We denote the overall weight vector as $\boldsymbol{w} \equiv\left\{\boldsymbol{w}^{m}\right\}_{m=1}^{M} \in \mathbb{R}^{N \times 1}$, where the total number of weights is $N=\sum_{m=1}^{M} N_{m}$. The replica overlap now becomes $q_{\alpha \beta}=$ $\frac{1}{N} \sum_{m}^{M} \sum_{i}^{N_{m}} w_{i}^{m \alpha} w_{i}^{m \beta}$. The distribution constraint becomes (see Eqn 21 for the case of $M=1$)

$$
\begin{equation*}
\prod_{m} \delta\left(\int d k^{m}\left(\frac{1}{N_{m}} \sum_{i}^{N_{m}} e^{i k^{m} w_{i}^{m \alpha}}-q_{m}\left(k^{m}\right)\right)\right) \tag{52}
\end{equation*}
$$

We introduce $\hat{q}_{\alpha \beta}, \lambda_{m}(k)$ to write the δ-functions into Fourier representations, and use replicasymmetric ansatz $\hat{q}_{\alpha \beta}=-\frac{i}{2}\left(\Delta \hat{q} \delta_{\alpha \beta}+\hat{q}_{1}\right)$, and $q_{\alpha \beta}=(1-q) \delta_{\alpha \beta}+q$ as before. After similar manipulations that lead to Eqn 25, the entropic part of the free energy becomes ($g_{m}=N_{m} / N$ is the fraction of weights in m-th population)

$$
\begin{align*}
G_{0}= & \frac{1}{2} \Delta \hat{q}-\frac{1}{2} \hat{q}_{1}(1-q)+\sum_{m} g_{m} \int d w^{m} q_{m}\left(w^{m}\right) \lambda_{m}\left(w^{m}\right) \\
& -\frac{1}{2} \Delta \hat{q} \sum_{m} g_{m} \int d w^{m} q_{m}\left(w^{m}\right)\left(w^{m}\right)^{2}+\sum_{m} g_{m}\left\langle\log Z_{m}(t)\right\rangle_{t}, \tag{53}\\
Z_{m}(t)= & \int d w^{m} \exp \left\{-\lambda_{m}\left(w^{m}\right)+\sqrt{\hat{q}_{1}} t w^{m}\right\} .
\end{align*}
$$

Now the second moment constraint $0=\partial G_{0} / \partial \Delta \hat{q}$ (Eqn 26) becomes the weighted sum of second moments from each population:

$$
\begin{equation*}
1=\sum_{m} g_{m} \int d w^{m} q_{m}\left(w^{m}\right)\left(w^{m}\right)^{2}=\sum_{m} g_{m}\left\langle\left(w^{m}\right)^{2}\right\rangle_{q_{m}} \tag{54}
\end{equation*}
$$

We take the $q \rightarrow 1$ limit as before:

$$
\begin{equation*}
\hat{q}_{1}=\frac{u^{2}}{(1-q)^{2}} ; \quad \lambda_{m}\left(w^{m}\right)=\frac{r_{m}\left(w^{m}\right)}{1-q} . \tag{55}
\end{equation*}
$$

Use saddle-point approximation for $Z_{m}(t)$ and integrate by parts as in Eqn 35 37, the entropic part becomes

$$
\begin{equation*}
G_{0}=\frac{1}{1-q}\left\{-\frac{1}{2} u^{2}+\sum_{m} g_{m} r_{m}^{\prime}\left(w^{m}\right)\left[P(x)-Q_{m}\left(w^{m}\right)\right]+u \sum_{m} g_{m}\left\langle t w^{m}\right\rangle_{t}\right\} \tag{56}
\end{equation*}
$$

Now the saddle-point equation for order parameters $r_{m}^{\prime}\left(w^{m}\right)$ and u gives

$$
\begin{align*}
P(x) & =Q_{m}\left(w^{m}\right) \\
u & =\sum_{m} g_{m}\left\langle t w^{m}\right\rangle_{t}=\sum_{m} g_{m}\left\langle\frac{d w^{m}}{d t}\right\rangle_{t} \tag{57}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
G_{0}=\frac{1}{2(1-q)}\left[\sum_{m} g_{m}\left\langle\frac{d w^{m}}{d t}\right\rangle_{t}\right]^{2} \tag{58}
\end{equation*}
$$

The energetic part (Eqn 35) remains unchanged and thus (relabel $t \leftrightarrow x$)

$$
\begin{equation*}
\alpha_{c}(\kappa)=\alpha_{0}(\kappa)\left[\sum_{m} g_{m}\left\langle\frac{d w^{m}}{d x}\right\rangle_{x}\right]^{2} . \tag{59}
\end{equation*}
$$

E/I balanced lognormals

Now we specialize to the biologically realistic E/I balanced lognormal distributions described in the main text. We are interested the case with two synaptic populations $m=E, I$ that models the excitatory/inhibitory synpatic weights of a biological neuron. $w_{i}^{E} \sim \frac{1}{\sqrt{2 \pi} \sigma_{E} w^{E}} \exp \left\{-\frac{\left(\ln w^{E}-\mu_{E}\right)^{2}}{2 \sigma_{E}^{2}}\right\}$ and $w_{i}^{I} \sim \frac{1}{\sqrt{2 \pi} \sigma_{I} w^{I}} \exp \left\{-\frac{\left(\ln w^{I}-\mu_{I}\right)^{2}}{2 \sigma_{I}^{2}}\right\}$. Let's denote the E / I fractions as $g_{E}=r$ and $g_{I}=1-r$. The CDF of the lognormals are given by

$$
\begin{equation*}
Q_{m}\left(w^{m}\right)=H\left[\frac{1}{\sigma_{m}}\left(\mu_{m}-\ln w^{m}\right)\right] . \tag{60}
\end{equation*}
$$

The corresponding inverse CDF is

$$
\begin{equation*}
Q_{m}^{-1}(u)=\exp \left\{\mu_{m}-\sigma_{m} H^{-1}(u)\right\} . \tag{61}
\end{equation*}
$$

The capacity is therefore

$$
\begin{align*}
\alpha_{c} & =\alpha_{0}\left[\sum_{m} g_{m} \int_{0}^{1} d u Q_{m}^{-1}(u) P^{-1}(u)\right]^{2} \\
& =\alpha_{0}\left[r \int_{0}^{1} d u H^{-1}(u) \exp \left\{\mu_{E}-\sigma_{E} H^{-1}(u)\right\}+(1-r) \int d u H^{-1}(u) \exp \left\{\mu_{I}-\sigma_{I} H^{-1}(u)\right\}\right]^{2} . \tag{62}
\end{align*}
$$

This model has five parameters $\left\{r, \sigma_{E}, \sigma_{I}, \mu_{E}, \mu_{I}\right\}$. We use values of r reported in experiments (the ratio between of E . connections found and I. connections found).
We also have two constraints. The E/I balanced constraint $g_{E}\left\langle w^{E}\right\rangle_{q_{E}}=g_{I}\left\langle w^{I}\right\rangle_{q_{I}}$:

$$
\begin{equation*}
r e^{\mu_{E}+\frac{1}{2} \sigma_{E}^{2}}=(1-r) e^{\mu_{I}+\frac{1}{2} \sigma_{I}^{2}}, \tag{63}
\end{equation*}
$$

and the second moment constraint $1=\sum_{m} g_{m}\left\langle\left(w^{m}\right)^{2}\right\rangle_{q_{m}}$:

$$
\begin{equation*}
1=r e^{2\left(\mu_{E}+\sigma_{E}^{2}\right)}+(1-r) e^{2\left(\mu_{I}+\sigma_{I}^{2}\right)} . \tag{64}
\end{equation*}
$$

Therefore there are two free parameters left and we choose to express μ_{E} and μ_{I} in terms of the rest:

$$
\begin{align*}
& \mu_{I}=-\frac{1}{2} \sigma_{I}^{2}-\ln (1-r)-\frac{1}{2} \ln \left[\frac{e^{\sigma_{I}^{2}}}{1-r}+\frac{e^{\sigma_{E}^{2}}}{r}\right] \tag{65}\\
& \mu_{E}=-\frac{1}{2} \sigma_{E}^{2}-\ln r-\frac{1}{2} \ln \left[\frac{e^{\sigma_{I}^{2}}}{1-r}+\frac{e^{\sigma_{E}^{2}}}{r}\right] .
\end{align*}
$$

The parameter landscape is plotted against the two free parameters σ_{E} and σ_{I}. Here we report comparisons across different experiments [38, 9, 32, 47, 65, 74] similar to main text Fig. 4 (Fig. 4 (a) is included here for reference). We estimate σ_{E} and σ_{I} using the experimentally reported coefficient of variation $(C V)$ as it is a dimensionless quantity suitable for comparison across different experiments.

Figure 6: Additional parameter landscape for the biologically-realistic distribution. (a)-(b) (theory from main text Eqn. 10 and simulations from DisCo-SGD): (a) Determination of capacity; (b) Example of weight distribution obtained in simulation. (c) Capacity (normalized by the optimal value in the landscape) as a function of the lognormal parameters σ_{E} and σ_{I}. Experimental value is shown in green with error bars, and optimal capacity is shown in red.

We then estimate σ assuming the underlying experimental E. or I. distributions are lognormal, such that $C V=\sqrt{e^{\sigma^{2}}-1}$. See e.g. Table S 2 in the supplementary materials of [18] for a complied list of $C V \mathrm{~s}$ for different experiments.
Note that despite the apparently different shape of distributions, all the experimentally measured parameter values are within the first quantile of the optimal values predicted by our theory.

A.1.3 Capacity for biased inputs and sparse label

In this section, we generalized our theory in Section A.1.1 to the set up of nonzero-mean input patterns $\boldsymbol{\xi}^{\mu}$ and sparse labels ζ^{μ} :

$$
\begin{align*}
& p\left(\xi_{i}^{\mu}\right)=\mathcal{N}\left(m, 1-m^{2}\right) \\
& p\left(\zeta^{\mu}\right)=f \delta\left(\zeta^{\mu}-1\right)+(1-f) \delta\left(\zeta^{\mu}+1\right) \tag{66}
\end{align*}
$$

In this case, we need to include a bias in the perceptron $\hat{\zeta}^{\mu}=\operatorname{sgn}\left(\frac{\boldsymbol{w} \cdot \boldsymbol{\xi}^{\mu}}{\|\boldsymbol{w}\|}-b\right)$ to be able to correctly classify patterns in general.

Note that $m=0$ and $f=1 / 2$ reduces to the case in Section A.1.1. We observe due to the multiplicative relation between the Jacobian term and the original Gardner capacity in Eqn 47 entropic effects (such as distribution constraints and sign-constraints) factors with the energetic effects (such as the nonzero mean inputs and sparse labels), and they don't interfere with each other. Therefore, the calculations for nonzero mean inputs and sparse labels are identical with the original Gardner case. Here we only reproduce the calculation for completeness. Readers already familiar with this calculation should skip this part.

The analog of Eqn 15 reads (define the local fields as $h_{i}^{\mu}=\sum_{\alpha} x_{\alpha}^{\mu} w_{i}^{\alpha}$)

$$
\begin{align*}
\prod_{\mu \alpha}\left\langle e^{-\frac{i}{\sqrt{N}} x_{\alpha}^{\mu} \zeta^{\mu} \xi^{\mu} \cdot \boldsymbol{w}^{\alpha}}\right\rangle_{\xi \zeta} & =\prod_{\mu i}\left\langle\exp \left\{-\frac{i}{\sqrt{N}} \zeta^{\mu} \xi_{i}^{\mu} h_{i}^{\mu}\right\}\right\rangle_{\xi \zeta} \\
& =\prod_{\mu i}\left\langle\exp \left\{-\frac{i m}{\sqrt{N}} \zeta^{\mu} h_{i}^{\mu}-\frac{1}{2 N}\left(1-m^{2}\right)\left(h_{i}^{\mu}\right)^{2}\right\}\right\rangle_{\zeta} \tag{67}\\
& =\prod_{\mu}\left\langle\exp \left\{-i m \zeta^{\mu} \sum_{\alpha} x_{\alpha}^{\mu} M_{\alpha}-\frac{1-m^{2}}{2} \sum_{\alpha \beta} x_{\alpha}^{\mu} x_{\beta}^{\mu} q_{\alpha \beta}\right\}\right\rangle_{\zeta}
\end{align*}
$$

where in the second equality we have carried out the Gaussian integral in $\boldsymbol{\xi}^{\mu}$ and in the third equality we introduced the order parameters

$$
\begin{equation*}
q_{\alpha \beta}=\frac{1}{N} \sum_{i} w_{i}^{\alpha} w_{i}^{\beta}, \quad M_{\alpha}=\frac{1}{\sqrt{N}} \sum_{i} w_{i}^{\alpha} \tag{68}
\end{equation*}
$$

Now the full energetic term becomes

$$
\begin{gathered}
\left\langle\Theta\left(\frac{1}{\sqrt{N}} \zeta^{\mu} \boldsymbol{\xi}^{\mu} \cdot \boldsymbol{w}^{\alpha}-b \zeta^{\mu}-\kappa\right)\right\rangle_{\xi \zeta} \\
=\prod_{\mu}\left\langle\int_{\kappa+b \zeta^{\mu}}^{\infty} \frac{d \lambda_{\alpha}^{\mu}}{2 \pi} \int d x_{\alpha}^{\mu} \exp \left\{-i m \zeta^{\mu} \sum_{\alpha} x_{\alpha}^{\mu} M_{\alpha}-\frac{1-m^{2}}{2} \sum_{\alpha \beta} x_{\alpha}^{\mu} x_{\beta}^{\mu} q_{\alpha \beta}\right\}\right\rangle_{\zeta} \\
=f \prod_{\mu} \int_{\kappa+b}^{\infty} \frac{d \lambda_{\alpha}^{\mu}}{2 \pi} \int d x_{\alpha}^{\mu} \exp \left\{i \sum_{\alpha} x_{\alpha}^{\mu}\left(\lambda_{\alpha}^{\mu}-m M_{\alpha}\right)-\frac{1-m^{2}}{2} \sum_{\alpha \beta} x_{\alpha}^{\mu} x_{\beta}^{\mu} q_{\alpha \beta}\right\} \\
+(1-f) \prod_{\mu} \int_{\kappa-b}^{\infty} \frac{d \lambda_{\alpha}^{\mu}}{2 \pi} \int d x_{\alpha}^{\mu} \exp \left\{i \sum_{\alpha} x_{\alpha}^{\mu}\left(\lambda_{\alpha}^{\mu}+m M_{\alpha}\right)-\frac{1-m^{2}}{2} \sum_{\alpha \beta} x_{\alpha}^{\mu} x_{\beta}^{\mu} q_{\alpha \beta}\right\} \\
=f \prod_{\mu} \int_{\frac{\kappa+b-m M_{\alpha}}{\sqrt{1-m^{2}}}}^{\infty} \frac{d \lambda_{\alpha}^{\mu}}{2 \pi} \int d x_{\alpha}^{\mu} \exp \left\{i \sum_{\alpha} x_{\alpha}^{\mu} \lambda_{\alpha}^{\mu}-\frac{1}{2} \sum_{\alpha \beta} x_{\alpha}^{\mu} x_{\beta}^{\mu} q_{\alpha \beta}\right\} \\
+(1-f) \prod_{\mu} \int_{\frac{\kappa-b+m M_{\alpha}}{\sqrt{1-m^{2}}}}^{\infty} \frac{d \lambda_{\alpha}^{\mu}}{2 \pi} \int d x_{\alpha}^{\mu} \exp \left\{i \sum_{\alpha} x_{\alpha}^{\mu} \lambda_{\alpha}^{\mu}-\frac{1}{2} \sum_{\alpha \beta} x_{\alpha}^{\mu} x_{\beta}^{\mu} q_{\alpha \beta}\right\} .
\end{gathered}
$$

Now G_{1} becomes

$$
\begin{equation*}
G_{1}=\frac{1}{1-q}\left\{f \int_{\frac{\kappa-b+m M}{\sqrt{1-m^{2}}}}^{\infty} D t\left(t+\frac{\kappa+b-m M}{\sqrt{1-m^{2}}}\right)^{2}+(1-f) \int_{\frac{-\kappa-b-m M}{\sqrt{1-m^{2}}}}^{\infty} D t\left(t+\frac{\kappa-b+m M}{\sqrt{1-m^{2}}}\right)^{2}\right\} \tag{69}
\end{equation*}
$$

Note that the hat-variables \hat{M}_{α} conjugated with M_{α} are in subleading order to $\hat{q}_{\alpha \beta}$ in the thermodynamic limit, and therefore G_{0} is unchanged. Let $v=M-b / m$, we have now the capacity

$$
\begin{equation*}
\alpha_{c}(\kappa)=\left\langle\frac{d w}{d x}\right\rangle_{x}^{2}\left[f \int_{\frac{-\kappa+m v}{\sqrt{1-m^{2}}}}^{\infty} D t\left(t+\frac{\kappa-m v}{\sqrt{1-m^{2}}}\right)^{2}+(1-f) \int_{\frac{-\kappa-m v}{\sqrt{1-m^{2}}}}^{\infty} D t\left(t+\frac{\kappa+m v}{\sqrt{1-m^{2}}}\right)^{2}\right]^{-1} \tag{70}
\end{equation*}
$$

Figure 7: $\alpha_{c}(\kappa)$ for different values of input mean m and label sparsity f. Note that the blue curve corresponds to the vanilla case shown in main text Fig.4(c).
where the order parameter v needs to be determined from the saddle-point equation

$$
\begin{equation*}
f \int_{\frac{-\kappa+m v}{\sqrt{1-m^{2}}}}^{\infty} D t\left(t+\frac{\kappa-m v}{\sqrt{1-m^{2}}}\right)=(1-f) \int_{\frac{-\kappa-m v}{\sqrt{1-m^{2}}}}^{\infty} D t\left(t+\frac{\kappa+m v}{\sqrt{1-m^{2}}}\right) . \tag{71}
\end{equation*}
$$

In Fig 7 we numerically solve $\alpha_{c}(\kappa)$ for different values of m and f.

A. 2 Optimal transport theory

In recent years, Wasserstein distances has found diverse applications in fields ranging from machine learning [7, 26, 49] to geophysics [23, 24, 19, 45, 46]. In optimal transport theory, the Wasserstein- k distance arise as the minimal cost one needs to pay in transporting one probability distribution to another, when the moving cost between probability masses are measured by the L_{k} norm [72]. When one equips the probability density manifold with the Wasserstein- 2 distance as metric, it becomes the Wasserstein space, a Riemannian manifold of real-valued distributions with a constant nonnegative sectional curvature [41, 25, 20]. Note that in our statistical mechanical theory main text Eqn.3-5, the Wasserstein-2 distance naturally arises in the mean-field limit without assuming any a priori transportation cost.

Here we briefly review the theory of optimal transport. Intuitively, optimal transport concerns the problem of finding the shortest path of morphing one distribution into another. In the following, we will use the Monge formulation [66, 3].

Given probability distributions P and Q with supports X and Y, we say that $T: X \rightarrow Y$ is a transport map from P to Q if the push-forward of P through $T, T_{\#} P$, equals Q :

$$
\begin{equation*}
Q=T_{\#} P \equiv P\left(T^{-1}(Y)\right) \tag{72}
\end{equation*}
$$

Eqn 72 can be understood as moving probability masses $x \in X$ from distribution P to $y \in Y$ according to transportation map T, such that upon completion the distribution over Y becomes Q.

We are interested in finding a transportation plan that minimizes the transportation cost as measured by some distance function $d: X \times Y \rightarrow \mathbb{R}$:

$$
\begin{equation*}
C(T ; d)=\int_{X} d(T(x), x) p(x) d x \quad \text { s.t. } T_{\#} P=Q \tag{73}
\end{equation*}
$$

The transportation plan that minimizes Eqn 73 is called the optimal transport plan $T^{*}=$ $\operatorname{argmin}_{T} C(T ; d)$. When the distance function d is chosen to be the L_{k} norm, the minimal cost becomes the Wasserstein- k distance:

$$
\begin{equation*}
W_{k}(P, Q)=\left.\inf _{T} C\left(T ; L_{k}\right)\right|_{T_{\#} P=Q} \tag{74}
\end{equation*}
$$

Figure 8: An example optimal transport plan from standard normal, $p(x)$, to a lognormal distribution $q(w)$. The optimal transport plan T^{*} is plotted in between the distributions. T^{*} moves $p(x)$ units of probability mass x to location w, as indicated by the dashed line, and the colors are chosen to reflect the amount of probability mass to be transported.

In 1-dimension, the Wasserstein- k distance has a closed form given by main text Eqn.6, and the optimal transport map has an explicit formula in terms of the CDFs: $T^{*}=Q^{-1} \circ P$. An example of the optimal transport map and how it moves probability masses between distributions is given in Fig 8 for transport between $p(w)=\mathcal{N}(0,1)$ and $q(w)=\frac{1}{\sqrt{2 \pi} \sigma w} \exp \left\{\frac{(\ln w-\mu)^{2}}{2 \sigma^{2}}\right\}$. Note that in this case, the optimal transport plan is simply $T^{*}(x)=e^{\mu+\sigma x}$.
Now consider the manifold \mathcal{M} of real-valued probability distributions, where points on this manifold are probability measures that admits a probability density function. When endowed with the W_{k} metric, $\left(\mathcal{M}, W_{k}\right)$ becomes a metric space and is in particular a geodesic space [66, 3]. We can explicitly construct the geodesics connecting points on \mathcal{M}. We parameterize the geodesic by the geodesic time $\tau \in[0,1]$. Then given T^{*} an optimal transport plan, the intermediate probability distributions along the geodesic take the following form [66]:

$$
\begin{equation*}
P_{\tau}=\left((1-\tau) \mathrm{Id}+\tau T^{*}\right)_{\#} P \tag{75}
\end{equation*}
$$

where Id is the identity map and P_{τ} is a constant speed geodesic connecting $P_{\tau=0}=P$ and $P_{\tau=1}=Q$.
For the discrete case, we can describe the sample $\left\{w_{i}^{\tau}\right\}$ from P_{τ} in a simple manner in terms of the samples $\left\{w_{i}\right\}$ drawn from P and $\left\{\hat{w}_{i}\right\}$ drawn from Q. We can arrange the samples in the ascending order, or equivalently, forming their order statistics $\left\{x_{(i)}: x_{(1)} \leq \ldots \leq x_{(N)}\right\}$, which can be thought of as atoms in a discrete measure. Then in terms of the order statistics,

$$
\begin{equation*}
w_{(i)}^{\tau}=(1-\tau) w_{(i)}+\tau \hat{w}_{(i)} \tag{76}
\end{equation*}
$$

Upon infinitetesimal change in the geodesic time, $\tau \rightarrow \tau+\delta \tau$, the geodesic flow becomes

$$
\begin{equation*}
w_{(i)}^{\tau+\delta \tau}=w_{(i)}^{\tau}+\delta \tau\left(\hat{w}_{(i)}-w_{(i)}\right) \tag{77}
\end{equation*}
$$

Specializing to the case discussed in main text Section 3, $w_{(i)}=w_{(i)}^{\tau=0}$ is the initialization for the perceptron weight and therefore just a constant, we can promoted it $w_{(i)} \rightarrow w_{(i)}^{\tau}$ to fix the overall scale in the perceptron weight, then we arrive at main text Eqn.9.

A. 3 Generalization supplemental materials

A.3.1 Replica calculation of generalization with sign-constraint

In this section, we calculate the sign-constraint teacher-student setup. To ease notation, let's denote the teacher perceptron $\boldsymbol{w}_{\boldsymbol{t}} \equiv \boldsymbol{w}^{0}$ and the (replicated) student perceptron $\boldsymbol{w}_{s}^{a} \equiv \boldsymbol{w}^{a}$. Given random inputs $\boldsymbol{\xi}^{\mu}$ with $p\left(\xi_{i}^{\mu}\right)=\mathcal{N}(0,1)$, we generate labels by $\zeta^{\mu}=\operatorname{sgn}\left(\boldsymbol{w}^{0} \cdot \boldsymbol{\xi}^{\mu} /\left\|\boldsymbol{w}^{0}\right\|+\eta^{\mu}\right)$, where η^{μ} is input noise and $\eta^{\mu} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Let's denote the signs of the teacher perceptron as $s_{i}=\operatorname{sgn}\left(w_{i}^{0}\right)$. The student perceptron's weights are constrained to have the same sign as that of the teacher's, so we insert $\Theta\left(s_{i} w_{i}^{a}\right)$ in the Gardner volume to enforce this constraint (we leave out the denominator part of V as it does not depend on data and is an overall constant):

$$
\begin{equation*}
\left\langle V^{n}\right\rangle_{\xi \eta w^{0}}=\prod_{\alpha=1}^{n}\left\langle\int_{-\infty}^{\infty} \frac{d \boldsymbol{w}^{a}}{\sqrt{2 \pi}} \prod_{\mu=1}^{p} \Theta\left(\operatorname{sgn}\left(\frac{\boldsymbol{w}^{\mathbf{0}} \cdot \boldsymbol{\xi}^{\mu}}{\left\|\boldsymbol{w}^{\mathbf{0}}\right\|}+\eta^{\mu}\right) \frac{\boldsymbol{w}^{\boldsymbol{a}} \cdot \boldsymbol{\xi}^{\mu}}{\left\|\boldsymbol{w}^{a}\right\|}-\kappa\right) \prod_{i}^{N} \Theta\left(s_{i} w_{i}^{a}\right)\right\rangle_{\xi \eta w^{0}} \tag{78}
\end{equation*}
$$

We observe that upon redefining $s_{i} w_{i}^{a} \rightarrow w_{i}^{a}, s_{i} \xi_{i}^{\mu} \rightarrow \xi_{i}^{\mu}$, we can absorb the sign-constraints into the integration range of w from $[-\infty,+\infty]$ to $[0, \infty]$:

$$
\begin{equation*}
\left\langle V^{n}\right\rangle_{\xi \eta w^{0}}=\prod_{\alpha=1}^{n}\left\langle\int_{0}^{\infty} \frac{d \boldsymbol{w}^{a}}{\sqrt{2 \pi}} \prod_{\mu=1}^{p} \Theta\left(\operatorname{sgn}\left(\frac{\boldsymbol{w}^{\mathbf{0}} \cdot \boldsymbol{\xi}^{\mu}}{\left\|\boldsymbol{w}^{\mathbf{0}}\right\|}+\eta^{\mu}\right) \frac{\boldsymbol{w}^{\boldsymbol{a}} \cdot \boldsymbol{\xi}^{\mu}}{\left\|\boldsymbol{w}^{\boldsymbol{a}}\right\|}-\kappa\right)\right\rangle_{\xi \eta w^{0}} \tag{79}
\end{equation*}
$$

Therefore, sign constraint amounts to restricting all the weights to be positive. In the following, we denote \int_{0}^{∞} as \int_{c}.
Let's define the local fields as

$$
\begin{equation*}
h_{\mu}^{a}=\frac{\boldsymbol{w}^{a} \cdot \boldsymbol{\xi}^{\mu}}{\sqrt{N}} ; \quad h_{\mu}^{0}=\frac{\boldsymbol{w}^{\mathbf{0}} \cdot \boldsymbol{\xi}^{\mu}}{\sqrt{N}}+\eta^{\mu} \tag{80}
\end{equation*}
$$

We leave the average over teacher w^{0} to the very end.

$$
\begin{align*}
\left\langle V^{n}\right\rangle_{\xi \eta} & =\prod_{\mu a} \int_{c} \frac{d \boldsymbol{w}^{a}}{\sqrt{2 \pi}} \int d h_{\mu}^{a} \Theta\left(\operatorname{sgn}\left(h_{\mu}^{0}\right) h_{\mu}^{a}-\kappa\right)\left\langle\delta\left(h_{\mu}^{a}-\frac{\boldsymbol{w}^{a} \cdot \boldsymbol{\xi}^{\mu}}{\sqrt{N}}\right)\right\rangle_{\xi \eta} \\
& =\int_{c}\left(\prod_{a=1}^{n} \frac{d \boldsymbol{w}^{a}}{\sqrt{2 \pi}}\right) \int \prod_{\mu a} \frac{d h_{\mu}^{a} d \hat{h}_{\mu}^{a}}{2 \pi} \int \prod_{\mu} \frac{d h_{\mu}^{0} d \hat{h}_{\mu}^{0}}{2 \pi} \prod_{\mu a} \Theta\left(\operatorname{sgn}\left(h_{\mu}^{0}\right) h_{\mu}^{a}-\kappa\right) \\
& \times\left\langle\exp \left\{\sum_{\mu a}\left(i \hat{h}_{\mu}^{a} h_{\mu}^{a}-i \hat{h}_{\mu}^{a} \frac{\boldsymbol{w}^{a} \cdot \boldsymbol{\xi}^{\mu}}{\sqrt{N}}\right)+\sum_{\mu}\left(i \hat{h}_{\mu}^{0} h_{\mu}^{0}-i \hat{h}_{\mu}^{0} \frac{\boldsymbol{w}^{0} \cdot \boldsymbol{\xi}^{\mu}}{\sqrt{N}}-i \hat{h}_{\mu}^{0} \eta^{\mu}\right)\right\}\right\rangle_{\xi \eta} \\
& =\int_{c}\left(\prod_{a=1}^{n} \frac{d \boldsymbol{w}^{a}}{\sqrt{2 \pi}}\right) \int \prod_{\mu a} \frac{d h_{\mu}^{a} d \hat{h}_{\mu}^{a}}{2 \pi} \int \prod_{\mu} \frac{d h_{\mu}^{0} d \hat{h}_{\mu}^{0}}{2 \pi} \prod_{\mu a} \Theta\left(\operatorname{sgn}\left(h_{\mu}^{0}\right) h_{\mu}^{a}-\kappa\right) \\
& \times \exp \left\{\sum_{\mu a} i \hat{h}_{\mu}^{a} h_{\mu}^{a}+\sum_{\mu} i \hat{h}_{\mu}^{0} h_{\mu}^{0}\right\} \\
& \times \prod_{\mu} \exp \left\{-\frac{1}{2 N}\left[\sum_{a, b} \hat{h}_{\mu}^{a} \hat{h}_{\mu}^{b} \sum_{i} w_{i}^{a} w_{i}^{b}+N\left(\hat{h}_{\mu}^{0}\right)^{2}+2 \sum_{a} \hat{h}_{\mu}^{a} \hat{h}_{\mu}^{0} \sum_{i} w_{i}^{a} w_{i}^{0}\right]\right\} \tag{81}
\end{align*}
$$

where in the last step we perform the average over noise $\eta^{\mu} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and patterns $p\left(\xi_{i}^{\mu}\right)=$ $\mathcal{N}(0,1)$, and make use of the normalization conditions $\sum_{i}\left(w_{i}^{0}\right)^{2}=N$ and $\sum_{i}\left(w_{i}^{a}\right)^{2}=N$.

Now let's define order parameters

$$
\begin{equation*}
q_{a b}=\frac{1}{N} \sum_{i} w_{i}^{a} w_{i}^{b}, \quad R_{a}=\frac{1}{N} \sum_{i} w_{i}^{a} w_{i}^{0} \tag{82}
\end{equation*}
$$

We introduce conjugate variables $\hat{q}_{a b}$ and \hat{R}_{a} to write the δ-functions into its Fourier representations, and after some algebraic manipulations we can bring the Gardner volume into the following form $(\alpha \equiv p / N)$:

$$
\begin{equation*}
\left\langle\left\langle V^{n}\right\rangle\right\rangle_{\xi, z}=\int\left(\prod_{a} d \hat{q}_{1}^{a}\right)\left(\prod_{a b} d q^{a b} d \hat{q}^{a b}\right)\left(\prod_{a} d R^{a} d \hat{R}^{a}\right) e^{n N G} \tag{83}
\end{equation*}
$$

where $\left(\bar{h}_{\mu}^{0}=\gamma h_{\mu}^{0} ; \quad \gamma=1 / \sqrt{1+\sigma^{2}}\right)$

$$
\begin{align*}
n G= & n G_{0}+\alpha n G_{E} \\
n G_{0}= & -\frac{1}{2} \sum_{a b} \hat{q}^{a b} q^{a b}-\sum_{a} \hat{R}^{a} R^{a}+n\langle\ln Z\rangle_{w^{0}} \\
Z= & \int_{c}\left(\prod_{a} \frac{d w_{i}^{a}}{\sqrt{2 \pi}}\right) \exp \left\{\frac{1}{2} \sum_{a} \hat{q}_{1}^{a}\left(w_{i}^{a}\right)^{2}+\frac{1}{2} \sum_{a \neq b} \hat{q}^{a b} w_{i}^{a} w_{i}^{b}+\sum_{a} \hat{R}^{a} w_{i}^{a} w_{i}^{0}\right\} \\
n G_{1}= & \ln \int \prod_{a} \frac{d \hat{h}^{a} d h^{a}}{2 \pi} \int D \bar{h}^{0} \prod_{a} \Theta\left(\operatorname{sgn}\left(\frac{\bar{h}^{0}}{\gamma}\right) h^{a}-\kappa\right) \\
& \times \exp \left\{i \sum_{a} \hat{h}^{a} h^{a}-i \gamma \bar{h}^{0} \sum_{a} h^{a} R^{a}-\frac{1}{2} \sum_{a}\left(\hat{h}^{a}\right)^{2}\left[1-\left(\gamma R^{a}\right)^{2}\right]-\frac{1}{2} \sum_{a \neq b} \hat{h}^{a} \hat{h}^{b}\left(q^{a b}-\gamma^{2} R^{a} R^{b}\right)\right\} . \tag{84}
\end{align*}
$$

The energetic part G_{1} is the same as the unconstrained case in [61, 22]. After standard manipulations, we have

$$
\begin{equation*}
G_{1}=2 \int D t H\left(-\frac{\gamma R t}{\sqrt{q-\gamma^{2} R^{2}}}\right) \ln H\left(\frac{\kappa-\sqrt{q} t}{\sqrt{1-q}}\right) \tag{85}
\end{equation*}
$$

Entropic part

In this subsection, we perform the integrals in the entropic part, and we will see novel terms coming from the constraint on the student's integration range.
We start by assuming a replica-symmetric solution for the auxiliary variables introduced in the Fourier decomposition of the δ-functions,

$$
\begin{equation*}
\hat{R}^{a}=\hat{R} ; \quad \hat{q}^{a b}=\hat{q}+\left(\hat{q}_{1}-\hat{q}\right) \delta_{a b} ; \quad \hat{q}_{1}^{a}=\hat{q}_{1} ; \quad m_{i}^{a}=m_{i} ; \quad \hat{m}_{i}^{a}=\hat{m}_{i} \tag{86}
\end{equation*}
$$

and $q_{a b}=(1-q) \delta_{a b}+q$.
Then the entropic part,

$$
\begin{align*}
& Z=\int\left(\prod_{a} \frac{d w_{i}^{a}}{\sqrt{2 \pi}}\right) \exp \left\{\frac{1}{2}\left(\hat{q}_{1}-\hat{q}\right) \sum_{a}\left(w_{i}^{a}\right)^{2}+\hat{R} w_{i}^{0} \sum_{a} w_{i}^{a}+\frac{1}{2} \hat{q}\left(\sum_{a} w_{i}^{a}\right)^{2}\right\} \tag{87}\\
& \stackrel{\text { HST }}{=} \int t \int_{c}\left(\prod_{a} \frac{d w_{i}^{a}}{\sqrt{2 \pi}}\right) \exp \left\{\frac{1}{2}\left(\hat{q}_{1}-\hat{q}\right) \sum_{a}\left(w_{i}^{a}\right)^{2}+\left(\hat{R} w_{i}^{0}+t \sqrt{\hat{q}}\right) \sum_{a} w_{i}^{a}\right\},
\end{align*}
$$

where we have introduced Gaussian variable t to linearize quadratic term as usual. Now the integral becomes n identical copies and we can drop the replica index a,

$$
\begin{equation*}
G_{0}=-\frac{1}{2} \hat{q}_{1}+\frac{1}{2} \hat{q} q-\hat{R} R+\langle\ln Z\rangle_{t, w^{0}} \tag{88}
\end{equation*}
$$

We can bring the log term into the form of an induced distribution $f(w)$,

$$
\begin{align*}
Z & =\int_{0}^{\infty} \frac{d w}{\sqrt{2 \pi}} \exp [-f(w)] \tag{89}\\
f(w) & =\frac{1}{2}\left(\hat{q}-\hat{q}_{1}\right) w^{2}-\left(\hat{R} w^{0}+t \sqrt{\hat{q}}\right) w
\end{align*}
$$

Under saddle-point approximation, we obtain a set of mean field self-consistency equations for the order parameters:

$$
\begin{align*}
& 0=\frac{\partial G_{0}}{\partial \hat{q}_{1}} \Rightarrow 1=\left\langle\left\langle w^{2}\right\rangle_{f}\right\rangle_{t, w^{0}} \\
& 0=\frac{\partial G_{0}}{\partial \hat{R}} \Rightarrow R=\left\langle w^{0}\langle w\rangle_{f}\right\rangle_{t, w^{0}} \tag{90}\\
& 0=\frac{\partial G_{0}}{\partial \hat{q}} \Rightarrow q=\left\langle\langle w\rangle_{f}^{2}\right\rangle_{t, w^{0}} \\
& 0=\frac{\partial G_{1}}{\partial q} \Rightarrow \hat{q}=-2 \alpha \partial_{q} G_{1} \tag{91}\\
& 0=\frac{\partial G_{1}}{\partial R} \Rightarrow \hat{R}=\alpha \partial_{R} G_{1}
\end{align*}
$$

$q \rightarrow 1$ limit

In this limit the order parameter diverges, and we define the new set of undiverged order parameters as

$$
\begin{equation*}
\hat{R}=\frac{\tilde{R}}{1-q} ; \quad \hat{q}=\frac{\tilde{q}^{2}}{(1-q)^{2}} ; \quad \hat{q}-\hat{q}_{1}=\frac{\Delta}{1-q} \tag{92}
\end{equation*}
$$

Then

$$
\begin{align*}
f(w) & =\frac{1}{1-q}\left[\frac{1}{2} \Delta w^{2}-\left(\tilde{R} w^{0}+t \tilde{q}\right) w\right] \\
& =\frac{1}{1-q}\left[\frac{1}{2} \Delta\left(w-\frac{1}{\Delta}\left(\tilde{R} w^{0}+t \tilde{q}\right)\right)^{2}-\frac{1}{2 \Delta}\left(\tilde{R} w^{0}+t \tilde{q}\right)^{2}\right] \tag{93}
\end{align*}
$$

Then $\langle w\rangle_{f}=\frac{1}{\Delta}\left(\tilde{R} w^{0}+t \tilde{q}\right)$, and the integral over the auxiliary variable is dominated by values of t such that $\tilde{R} w^{0}+t \tilde{q}>0$. In the following, we denote $\left\langle[g(t)]_{+}\right\rangle_{t}$ as integrating over range of t such that $g(t)>0$. Then the self-consistency equations Eqn 90 take a compact form (after rescaling order parameters $\tilde{R} \rightarrow \tilde{R} \Delta, \tilde{q} \rightarrow \tilde{q} \Delta$)

$$
\begin{align*}
1 & =\frac{1}{\Delta}\left\langle\Theta\left(\tilde{R} w^{0}+t \tilde{q}\right)\right\rangle_{t, w^{0}} \\
1 & =\left\langle\left[\tilde{R} w^{0}+t \tilde{q}\right]_{+}^{2}\right\rangle_{t, w^{0}} \tag{94}\\
R & =\left\langle w^{0}\left[\tilde{R} w^{0}+t \tilde{q}\right]_{+}\right\rangle_{t, w^{0}}
\end{align*}
$$

Eqn 90 becomes $\left(\tilde{\kappa}=\kappa / \sqrt{1-\gamma^{2} R^{2}}\right)$

$$
\begin{align*}
\tilde{R} \Delta & =\frac{\alpha \gamma}{\sqrt{2 \pi}} \sqrt{1-\gamma^{2} R^{2}} \int_{-\tilde{\kappa}}^{\infty} D t(\tilde{\kappa}+t) \\
\frac{\Delta}{2}\left(2-\tilde{q}^{2} \Delta-2 \tilde{R} R\right)= & \alpha \int_{-\infty}^{\kappa} D t H\left(-\frac{\gamma R t}{\sqrt{1-\gamma^{2} R^{2}}}\right)(\kappa-t)^{2} \tag{95}
\end{align*}
$$

The free energy is (recall that $\gamma=1 / \sqrt{1+\sigma^{2}}$)

$$
\begin{equation*}
G=\frac{1}{2(1-q)}\left(\Delta-\tilde{q}^{2}-2 \tilde{R} R+\frac{1}{\Delta}\left\langle\left[\tilde{R} w^{0}+t \tilde{q}\right]_{+}^{2}\right\rangle_{t, w^{0}}\right)-\alpha \int_{-\infty}^{\kappa} D t H\left(-\frac{\gamma R t}{\sqrt{1-\gamma^{2} R^{2}}}\right)(\kappa-t)^{2} \tag{96}
\end{equation*}
$$

A.3.2 Replica calculation of generalization with distribution-constraint

In this subsection, we will consider the case where student weights are constrained to some prior distribution $q_{s}\left(w_{s}\right)$, while the teacher obeys a distribution $p_{t}\left(w_{t}\right)$, for an arbitrary pair q_{s}, p_{t}. We can write down the Gardner volume V_{g} for generalization as in the capacity case (main text Eqn.2):

$$
\begin{equation*}
V_{g}=\frac{\int d \boldsymbol{w}_{s}\left[\prod_{\mu=1}^{P} \Theta\left(\operatorname{sgn}\left(\frac{\boldsymbol{w}_{t} \cdot \boldsymbol{\xi}^{\mu}}{\left\|\boldsymbol{w}_{t}\right\|}+\eta^{\mu}\right) \frac{\boldsymbol{w}_{s} \cdot \boldsymbol{\xi}^{\mu}}{\left\|\boldsymbol{w}_{s}\right\|}-\kappa\right)\right] \delta\left(\left\|\boldsymbol{w}_{s}\right\|^{2}-N\right) \delta\left(\int d k(\hat{q}(k)-q(k))\right)}{\int d \boldsymbol{w}_{s} \delta\left(\left\|\boldsymbol{w}_{s}\right\|^{2}-N\right)} \tag{97}
\end{equation*}
$$

We treat the distribution constraint $q_{s}(w)$ similar to Section A.1.1. The entropic part of the free energy becomes

$$
\begin{align*}
G_{0} & =-\frac{1}{2} \hat{q}_{1}+\frac{1}{2} \hat{q} q-\hat{R} R+\int_{-\infty}^{\infty} d w q_{s}(w) \lambda(w)+\langle\ln Z\rangle_{t, w_{t}} \\
Z & =\int \frac{d w}{\sqrt{2 \pi}} \exp [-f(w)] \tag{98}\\
f(w) & =\frac{1}{2}\left(\hat{q}-\hat{q}_{1}\right) w^{2}-\left(\hat{R} w_{t}+t \sqrt{\hat{q}}\right) w+\lambda(w)
\end{align*}
$$

At the limit $q \rightarrow 1$, we make the following ansatz

$$
\begin{equation*}
\hat{R}=\frac{\tilde{R}}{1-q} ; \quad \hat{q}=\frac{u^{2}}{(1-q)^{2}} ; \quad \hat{q}-\hat{q}_{1}=\frac{\Delta}{1-q} ; \quad \lambda(w)=\frac{r(w)}{1-q} \tag{99}
\end{equation*}
$$

Then

$$
\begin{align*}
G_{0} & =\frac{1}{(1-q)}\left(-\frac{1}{2} u^{2}+\frac{1}{2} \Delta-\tilde{R} R+\int d w q_{s}(w) r(w)\right)+\langle\ln Z\rangle_{t, w_{t}} \tag{100}\\
f(w) & =\frac{1}{1-q}\left(\frac{1}{2} \Delta w^{2}-\left(\tilde{R} w_{t}+u t\right) w+r(w)\right)
\end{align*}
$$

We can absorb $\frac{1}{2} \Delta w^{2}$ into the definition of $r(w), \frac{1}{2} \Delta w^{2}+r(w) \rightarrow r(w)$, and $0=\partial G_{0} / \partial \Delta$ gives the second moment constraint, $1=\int d w q_{s}(w) w^{2}$.
Then,

$$
\begin{align*}
G_{0} & =\frac{1}{(1-q)}\left(-\frac{1}{2} u^{2}-\tilde{R} R+\int d w q(w) r(w)\right)+\langle\ln Z\rangle_{t, w_{t}} \tag{101}\\
f(w) & =\frac{1}{1-q}\left(r(w)-\left(\tilde{R} w_{t}+u t\right) w\right)
\end{align*}
$$

Next, we perform a saddle-point approximation on the log-term in G_{0},

$$
\begin{equation*}
Z=\int \frac{d w}{\sqrt{2 \pi}} \exp [-f(w)] \approx \exp \left[-f\left(w_{s}\right)\right] \tag{102}
\end{equation*}
$$

where w_{s} is the saddle-point value for the weight, and is determined implicitly by

$$
\begin{equation*}
r^{\prime}\left(w_{s}\right)=\tilde{R} w_{t}+u t \tag{103}
\end{equation*}
$$

Note that $r^{\prime}\left(w_{s}\right)$ is now an induced random variable from random variables w_{t} and t. For later convenience, we rescale $r^{\prime}\left(w_{s}\right)$ to define a new random variable z,

$$
\begin{equation*}
z \equiv u^{-1} r^{\prime}\left(w_{s}\right)=t+u^{-1} \tilde{R} w_{t} \equiv t+\varepsilon w_{t} \tag{104}
\end{equation*}
$$

where we have also defined

$$
\begin{equation*}
\varepsilon \equiv u^{-1} \tilde{R} \tag{105}
\end{equation*}
$$

The induced distribution on z is then

$$
\begin{equation*}
\tilde{p}(z)=\int D t \int d w_{t} p\left(w_{t}\right) \delta\left(z-t-\varepsilon w_{t}\right) \tag{106}
\end{equation*}
$$

Now the entropic part becomes

$$
\begin{equation*}
G_{0}=\frac{1}{(1-q)}\left(-\frac{1}{2} u^{2}-\tilde{R} R+\int d w q_{s}(w) r(w)+\left\langle\left(\tilde{R} w_{t}+u t\right) w_{s}\right\rangle_{t, w_{t}}-\left\langle r\left(w_{s}\right)\right\rangle_{t, w_{t}}\right) \tag{107}
\end{equation*}
$$

Integrate by parts,

$$
\begin{align*}
\int & d w q(w) r(w)=-\int d w Q(w) r^{\prime}(w), \tag{108}\\
\left\langle r\left(w_{s}\right)\right\rangle_{t, w_{t}} & =\int D t d w_{t} p_{t}\left(w_{t}\right) r\left(w_{s}\right) \\
& =\int d z \delta\left(z-t-\varepsilon w_{t}\right) \int D t d w_{t} p_{t}\left(w_{t}\right) r\left(w_{s}\right) \tag{109}\\
& =\int d z \tilde{p}(z) r\left(w_{s}\right) \\
& =-\int d z \tilde{P}(z) r^{\prime}\left(w_{s}\right)
\end{align*}
$$

Now $0=\partial G / \partial r^{\prime}\left(w_{s}\right)$ gives

$$
\begin{equation*}
Q\left(w_{s}\right)=\tilde{P}(z) \tag{110}
\end{equation*}
$$

which implicitly determines $w_{s}(z)$.
Next,

$$
\begin{align*}
0 & =\frac{\partial G}{\partial u} \Rightarrow u=\left\langle w_{s}(z) t\right\rangle_{t, w_{t}} \tag{111}\\
0 & =\frac{\partial G}{\partial \tilde{R}} \Rightarrow R=\left\langle w_{s}(z) w_{t}\right\rangle_{t, w_{t}} \tag{112}
\end{align*}
$$

The free energy then simplifies to

$$
\begin{equation*}
G=\frac{u^{2}}{2(1-q)}+\alpha G_{1} \tag{113}
\end{equation*}
$$

The energetic part as $q \rightarrow 1$ becomes (same as the unconstrained and sign-constrained case)

$$
\begin{equation*}
G_{1}=-\frac{1}{1-q} \int_{-\infty}^{\kappa} D t H\left(-\frac{\gamma R t}{\sqrt{1-\gamma^{2} R^{2}}}\right)(\kappa-t)^{2} \tag{114}
\end{equation*}
$$

The remaining two saddle point equations are (1) the vanishing log-Gardner volume and (2) $0=$ $\partial G / \partial R$:

$$
\begin{align*}
\frac{1}{2} u^{2} & =\alpha \int_{-\infty}^{\kappa} D t H\left(-\frac{\gamma R t}{\sqrt{1-\gamma^{2} R^{2}}}\right)(\kappa-t)^{2} \tag{115}\\
\varepsilon u & =\alpha \gamma \sqrt{\frac{2}{\pi}} \sqrt{1-\gamma^{2} R^{2}} \int_{-\tilde{\kappa}}^{\infty} D t(\tilde{\kappa}+t) \tag{116}
\end{align*}
$$

In summary, the order parameters $\{R, \kappa, u, \varepsilon\}$ can be determined from a set of self-consistency equations:

$$
\begin{align*}
u & =\left\langle w_{s}(z) t\right\rangle_{t, w_{t}} \\
R & =\left\langle w_{s}(z) w_{t}\right\rangle_{t, w_{t}} \\
\frac{1}{2} u^{2} & =\alpha \int_{-\infty}^{\kappa} D t H\left(-\frac{\gamma R t}{\sqrt{1-\gamma^{2} R^{2}}}\right)(\kappa-t)^{2} \tag{117}\\
\varepsilon u & =\frac{2 \alpha \gamma}{\sqrt{2 \pi}} \sqrt{1-\gamma^{2} R^{2}} \int_{-\tilde{\kappa}}^{\infty} D t(\tilde{\kappa}+t)
\end{align*}
$$

where we have introduced $\tilde{\kappa}=\kappa / \sqrt{1-\gamma^{2} R^{2}}$, an auxiliary normal variable $t \sim \mathcal{N}(0,1)$, and an induced random variable $z \equiv t+\varepsilon w_{t}$ with induced distribution

$$
\begin{equation*}
\tilde{p}(z)=\int D t \int d w_{t} p_{t}\left(w_{t}\right) \delta\left(z-t-\varepsilon w_{t}\right) \tag{118}
\end{equation*}
$$

Note that $w_{s}(z)$ can be determined implicitly by equating the CDF of the induced variable z and the distribution that the student is constrained to:

$$
\begin{equation*}
Q\left(w_{s}\right)=\tilde{P}(z) \tag{119}
\end{equation*}
$$

Examples

(1) Lognormal distribution

In the following, we solve $w_{s}(z)$ explicitly from the CDF equation $Q\left(w_{s}\right)=\tilde{P}(z)$. For a lognormal teacher,

$$
\begin{equation*}
p_{t}\left(w_{t}\right)=\frac{1}{w_{t}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\left(\ln w_{t}-\mu\right)^{2}}{2 \sigma^{2}}\right\} \tag{120}
\end{equation*}
$$

The second moment constraint implies $\mu=-\sigma^{2}$.

The induced CDF of z is

$$
\begin{equation*}
\tilde{P}(z)=\int_{-\infty}^{z} d z^{\prime} \int_{-\infty}^{\infty} D t \int_{0}^{\infty} d w_{t} p_{t}\left(w_{t}\right) \delta\left(z^{\prime}-t-\varepsilon w_{t}\right) \tag{121}
\end{equation*}
$$

Let $x=(\ln w-\mu) / \sigma$,

$$
\begin{align*}
\tilde{P}(z) & =\int_{-\infty}^{z} d z^{\prime} \int_{-\infty}^{\infty} D t \int_{-\infty}^{\infty} D x \delta\left(z^{\prime}-t-\varepsilon e^{\mu+\sigma x}\right) \tag{122}\\
& =\int_{-\infty}^{\infty} D x H\left(\varepsilon e^{\mu+\sigma x}-z\right)
\end{align*}
$$

Now the CDF of w_{s} is

$$
\begin{equation*}
Q_{s}\left(w_{s}\right)=\int_{-\infty}^{w_{s}} q_{s}(w) d w=H\left(-\frac{\ln w_{s}-\mu}{\sigma}\right) \tag{123}
\end{equation*}
$$

Therefore, equating $\tilde{P}(z)$ and $Q_{s}\left(w_{s}\right)$:

$$
\begin{equation*}
\int_{-\infty}^{\infty} D x H\left(\varepsilon e^{\mu+\sigma x}-z\right)=H\left(-\frac{\ln w_{s}-\mu}{\sigma}\right) \tag{124}
\end{equation*}
$$

We can solve for $w_{s}(z)$ by (recall $\left.z \equiv t+\varepsilon w_{t}\right)$

$$
\begin{equation*}
w_{s}(z)=\exp \left\{\mu+\sigma H^{-1}\left(\int D x H\left(z-\varepsilon e^{\mu+\sigma x}\right)\right)\right\} \tag{125}
\end{equation*}
$$

Or in terms of error functions

$$
\begin{equation*}
w_{s}(z)=\exp \left\{\mu+\sqrt{2} \sigma \operatorname{erf}^{-1}\left(\int D x \operatorname{erf}\left(\frac{\varepsilon e^{\mu+\sigma x}-z}{\sqrt{2}}\right)\right)\right\} \tag{126}
\end{equation*}
$$

We can also calculate the initial overlap (before any learning):

$$
\begin{equation*}
R_{0}=\left\langle\boldsymbol{w}_{t} \cdot \boldsymbol{w}_{s}\right\rangle_{p_{t} q_{s}}=e^{2 \mu+\sigma^{2}}=e^{-\sigma^{2}} \tag{127}
\end{equation*}
$$

(2) Uniform distribution

Assuming that both the teacher and the student have a uniform distribution in range $[0, \sigma]$.
The second moment constraint fixes $\sigma=\sqrt{3}$.
We can solve (as in the lognormal example above),

$$
\begin{equation*}
w_{s}(z)=\frac{1}{\varepsilon} \int_{-\infty}^{z} d z^{\prime}\left(H\left(z^{\prime}-\varepsilon \sigma\right)-H\left(z^{\prime}\right)\right) \tag{128}
\end{equation*}
$$

(3) Half-normal distribution

Assuming that both the teacher and the student has a half-normal distribution $\frac{2}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{w^{2}}{2 \sigma^{2}}\right\}$.
The second moment constraint fixes $\sigma=1$, and

$$
\begin{equation*}
w_{s}(z)=\sigma H^{-1}\left\{\frac{1}{2}-\int_{-\infty}^{\frac{z}{\sqrt{1+\sigma^{2} \varepsilon^{2}}}} D t H(-\sigma \varepsilon t)\right\} \tag{129}
\end{equation*}
$$

Arbitrary number of synaptic subpopulations

Just like in the case of Section A.1.2, we can generalize our theory above to incorporate distribution constraints with an arbitrary number of synaptic subpopulations. Let's consider a student perceptron with M synaptic populations indexed by m, \boldsymbol{w}^{m}, such that each w_{i}^{m} satisfies its own distributions constraints $w_{i}^{m} \sim Q_{m}\left(w^{m}\right)$. We denote the overall weight vector as $\boldsymbol{w} \equiv\left\{\boldsymbol{w}^{m}\right\}_{m=1}^{M} \in \mathbb{R}^{N \times 1}$. The total number of weights is $N=\sum_{m=1}^{M} N_{m}$, and we denote the fractions as $g_{m}=N_{m} / N$. Since the derivation is similar to that of Section A.1.2 and Section A.3.2 we will only present the results here.
As before, the order parameters $\{R, \kappa, u, \varepsilon\}$ can be determined from a set of self-consistency equations:

$$
\begin{align*}
u & =\sum_{m} g_{m}\left\langle w^{m}(z) t\right\rangle_{t, w_{t}} \\
R & =\sum_{m} g_{m}\left\langle w^{m}(z) w_{t}\right\rangle_{t, w_{t}} \\
\frac{1}{2} u^{2} & =\alpha \int_{-\infty}^{\kappa} D t H\left(-\frac{\gamma R t}{\sqrt{1-\gamma^{2} R^{2}}}\right)(\kappa-t)^{2} \tag{130}\\
\varepsilon u & =\frac{2 \alpha \gamma}{\sqrt{2 \pi}} \sqrt{1-\gamma^{2} R^{2}} \int_{-\tilde{\kappa}}^{\infty} D t(\tilde{\kappa}+t)
\end{align*}
$$

where $\tilde{\kappa}=\kappa / \sqrt{1-\gamma^{2} R^{2}}, t \sim \mathcal{N}(0,1)$. and an induced random variable $z \equiv t+\varepsilon w_{t}$ with induced distribution the same as Eqn 118 .
Note that every $w^{m}(z)$ can be determined by equating the CDF of the induced variable z and the m-th distribution that $w^{m}(z)$ is constrained to:

$$
\begin{equation*}
Q_{m}\left(w^{m}\right)=\tilde{P}(z) . \tag{131}
\end{equation*}
$$

A.3.3 Sparsification of weights in sign-constraint learning

For unconstrained weights, max-margin solutions are considered beneficial for generalization particularly for small size training sets. As a first step toward biological plausibility, one can try to constraint the sign of individual weights during learning (e.g., excitatory or inhibitory). In the generalization error setup, we can impose a constraint that the teacher and student have the same set of weight signs. Surprisingly, we find both analytically and numerically that if the teacher weights are not too sparse, the max-margin solution generalizes poorly: after a single step of learning (with random input vectors), the overlap, R, drops substantially from its initial value R_{0} (by a factor of $\sqrt{2}$ for a half-Gaussian teacher, see the blue curves in Fig 9 (a).

We can verify this by calculating R_{0} in two different ways. As an example, in the following we consider the case where both the teacher and student have half-normal distributions.
(1) By definition, the overlap is $R=\frac{\boldsymbol{w}_{s} \cdot \boldsymbol{w}_{t}}{\left\|\boldsymbol{w}_{s}\right\|\left\|\boldsymbol{w}_{t}\right\|}$. Since \boldsymbol{w}_{s} and \boldsymbol{w}_{t} are uncorrelated before learning $(\alpha=0)$, the initial overlap is then $R_{0}=\frac{\left\langle\boldsymbol{w}_{s}\right\rangle\left\langle w_{t}\right\rangle}{\left\|\boldsymbol{w}_{s}\right\| \boldsymbol{w}_{t} \|}=\frac{2}{\pi}$;
(2) Take the $\alpha \rightarrow 0$ limit in Eqn 90 and Eqn 91 and calculate $R_{0+}=\lim _{\alpha \rightarrow 0+} R(\alpha)=\frac{\sqrt{2}}{\pi}$.

Therefore, in this example $R_{0+}=R_{0} / \sqrt{2}$.
The source of the problem is that due to the sign constraint, max-margin training with few examples yields a significant mismatch between the student and teacher weight distributions. After only a few steps of learning, half of the student's weights are set to zero, and the student's distribution, $p\left(w_{s}\right)=\frac{1}{2} \delta(0)+\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{w_{s}^{2}}{4}\right\}$, deviates significantly from the teacher's half-normal distribution (Fig 9 b)).

Figure 9: Sparsification of weights in sign-constraint learning. (a) An illustration of weight sparsification. In this schematic, the perceptron lives on this 1-dimensional circle and $N=2$. Red line denotes the hyperplane orthogonal to the perceptron weight before sign-constraint, crosses and circles indicate examples in different classes. Sign-constraint pushes the weights to the first quadrant, which zeros half of the weights on average. Blue line indicates the hyperplane obtained after the sign-constraint. (b) Sparsification of weights due to max-margin training. After only a few iterations, nearly half of the student weights are set to zero, and the distribution deviates significantly from the teacher's distribution. (c) Teacher-student overlap as a function of load α for different learning paradigms. Dashed lines are from theory, and dots are from simulation. Note the horizontal dashed lines show the initial drop in overlap from zero example and to just a single example. In this case teacher has nonzero noise, $\gamma=0.85$.

Figure 10: Generalization (measured by overlap) performance for different distributions and different noise levels in fixed prior learning. From left to right: uniform, half-normal, and lognormal distribution. In all cases the student is constrained to have the same distribution as that of the teacher's. Dashed lines are from theory and dots are from DisCo-SGD simulation.

A.3.4 Noisy teacher

We generate examples $\left\{\boldsymbol{\xi}^{\mu}, \zeta^{\mu}\right\}_{\mu=1}^{P}$ from a teacher perceptron, $\boldsymbol{w}_{t} \in \mathbb{R}^{N}: \zeta^{\mu}=\operatorname{sgn}\left(\boldsymbol{w}_{t} \cdot \boldsymbol{\xi}^{\mu} /\left\|\boldsymbol{w}_{t}\right\|+\right.$ η^{μ}), where η^{μ} is input noise and $\eta^{\mu} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. In this subsection we present additional numerical results for the case when $\sigma \neq 0$. As in previous sections, we define the noise level parameter $\gamma=1 / \sqrt{1+\sigma^{2}}$.

Our theory's prediction is confirmed by numerical simulation for a wide range of teacher noise level γ and teacher weight distributions $P_{t}\left(w_{t}\right)$. We find that distribution-constrained learning performs consistently better all the way up to capacity (capacity in this framework is due to teacher noise). For illustration, in Fig 10 we show theory and simulation for fixed prior learning of three different teacher distributions: uniform, half-normal, and lognormal.

A. 4 DisCo-SGD simulations

Avoid vanishing gradients

Note that we often observe a vanishing gradient in DisCo-SGD when we choose a constant learning rate η_{1}, and in such cases the algorithm tends to find poor margin κ which deviates from the max-
margin value predicted from the theory. We find that scaling η_{1} with the standard deviation of the gradient solves this problem:

$$
\begin{equation*}
\eta_{1}=\eta_{1}^{0} / \operatorname{std}\left(\sum_{\mu} \xi_{i}^{\mu}\left(\hat{\zeta}^{\mu}-\zeta^{\mu}\right)\right) \tag{132}
\end{equation*}
$$

where the standard deviation is computed across the synaptic index i and η_{1}^{0} is a constant.

Mini-batches

For the capacity simulations, we always use full-batch in the SGD update, so it is in fact simply gradient descent. However, in the case of generalization, we find that training with mini-batches improves the generalization performance, since it acts as an source of stochasticity during training. In main text Fig. 5 we use mini-batch size $B=0.8 P$ (80% of examples are used for each SGD update).
When we vary teacher's noise level, we find that scaling B with γ improves the quality of the solutions, as measured by the generalization performance (or equivalently, the teacher-student overlap). Generally, the more noisy the teacher is, the smaller the mini-batches should be. This is because smaller mini-batch size corresponds to higher stochasticity, which helps overcoming higher teacher noise.

Parameters

All the capacity simulations are performed with the following parameters $N=1000, \eta_{1}^{0}=0.01, \eta_{2}=$ $0.6, t_{\max }=10000$, where $t_{\max }$ is the maximum number of iterations of the DisCo-SGD algorithm.

All results are averaged over 300 realizations.
In main text Fig.4, the experimental [38] parameters are $g_{E}=45.8 \%, \sigma_{E}=0.833, \sigma_{I}=0.899$.
In main text Fig.5(a): We show the teacher-student overlap as a function of α. Dots are simulations performed with series of student distribution from $\sigma_{s}=0.1$ to $\sigma_{s}=1.4$, where the teacher distribution sits in the middle of this range, $\sigma_{t}=0.7$. Each such simulation is performed with fixed σ_{s} and varying load $\alpha \in[0.05,2.5]$. In main text Fig.5(b): we show the empirical weight distributions found by unconstrained perceptron learning for $\alpha \in[0.05,10]$. In main text Fig.5(c) we show optimal student distribution for $\alpha \in[0.05,2.5]$. Note that optimal prior learning approaches the teacher distribution much faster than unconstrained learning.
All the generalization DisCo-SGD simulations are performed with the same parameter as in the capacity DisCo-SGD simulations, but with two additional parameter: teacher's noise level γ and SGD mini-batch size B.
For the simulations in Fig 10 we use
$\gamma=0.4, B=0.2 P ; \gamma=0.55, B=0.4 P ; \gamma=0.7, B=0.6 P ; \gamma=0.85, B=0.8 P ; \gamma=1.0, B=$ P (noiseless case).

A. 5 Replica symmetry breaking

A.5.1 Bimodal distributions

In deriving the capacity formula, we have assumed replica-symmetry (RS). It is well-known that replica-symmetry breaking occurs in the Ising perceptron [52, 13], so it is natural to ask to what extent our theory holds when approaching the Ising limit. Let's consider a bimodal distribution with a mixture of two normal distributions with non-zero mean centered around zero,

$$
p(w)=\frac{1}{2} \mathcal{N}(-\mu, \sigma)+\frac{1}{2} \mathcal{N}(\mu, \sigma)
$$

The second moment constraint requires $\mu^{2}+\sigma^{2}=1$.

Figure 11: Left: Capacity as a function of separation for different size perceptrons. Dots are from DisCo-SGD simulations and the 'RS theory' line is from our theory. Exact values for Ising perceptron and state-of-the-art numerical values are included as well. Right: Deviation from the RS theory as a function of separation. This is the same as subtracting the simulation values from the theoretical predictions in the left figure.

Figure 12: Finite size effects. Left/Right: we extrapolate simulation values in Fig 11 Left/Right to infinite N.

We can gradually decrease the Gaussian width σ, or equivalently $\mu=\sqrt{1-\sigma^{2}}$ (which we call 'separation' in the following) and compare the capacity theoretically predicted by the RS theory and numerically found by the DisCo-SGD algorithm.
In Fig 11 we can see that the simulation agrees well with the RS theory until one gets very close to the Ising limit $(\mu=1)$. To understand finite size effects, we extrapolate to the infinite size limit $(N \rightarrow \infty)$ in Fig 12, and found that the deviation from RS theory has a sharp transition near $\mu=1$, marking the breakdown of the RS theory.

Ising perceptron

It is also interesting to compare our distribution-constrained RS theory to the unconstrained RS theory. In this Ising limit,

$$
\begin{equation*}
q(w)=\frac{1}{2} \delta(w-1)+\frac{1}{2} \delta(w+1) \tag{133}
\end{equation*}
$$

and CDF

$$
\begin{equation*}
Q(w)=\frac{1}{2} \Theta(w-1)+\frac{1}{2} \Theta(w+1) \tag{134}
\end{equation*}
$$

Equating $Q(w)$ with the normal CDF $P(x)$ and solve for $w(x)$, we find $w(x)=\operatorname{sgn}(x)$. Then $d w / d x=2 \delta(x)$ and $\left\langle\frac{d w}{d x}\right\rangle_{x}=\frac{2}{\sqrt{2 \pi}}$. Therefore,

$$
\begin{equation*}
\lim _{I s i n g} \alpha_{c}(\kappa=0)=\frac{4}{\pi} \tag{135}
\end{equation*}
$$

Figure 13: Optimal student prior distribution as a function of α. (a) Gray curves correspond to a series of optimal student distributions as a function of α, with the darker color representing larger α. Red is teacher distribution. (b) Overlap as a function of α for different student priors. Red dashed line is the optimal overlap calculated from our replica-symmetric theory. Dots are from DisCo-SGD simulations. For the same α, different color dots represent different overlaps obtained from simulations with different σ_{s}.
which is exactly the same as the prediction from the unconstrained RS theory [52, 13]. In contrast, the exact capacity of Ising perceptron with replica-symmetry breaking is $\alpha_{c} \approx 0.83$. For comparison, we have included these values in Fig 12 (a), as well as the capacity found by the state-of-the-art supervised learning algorithm (Stochastic Belief Propagation, SBPI [10]) for Ising perceptron.

A.5.2 Sparse distributions

For a teacher with sparse distribution, $p\left(w_{t}\right)=(1-\rho) \delta\left(w_{t}\right)+\frac{\rho}{\sqrt{2 \pi} \sigma_{t} w_{t}} \exp \left\{-\frac{\left(\ln w_{t}-\mu_{t}\right)^{2}}{2 \sigma_{t}^{2}}\right\}$. We found that the simulations start to deviate from the theory, and the reason might be due to replica symmetry breaking. In Fig 13, we use the optimal prior learning paradigm similar to main text Fig. 5. We see that our RS theory no longer gives accurate prediction of overlap in this case.

