
[Appendix]
Graph Self-supervised Learning

with Accurate Discrepancy Learning

Organization In Section A, we first introduce the baselines and our model and then describe
the experimental details of graph classification and link prediction tasks but also our in-depth
analyses. Then, in Section B, we provide the additional experimental results about analyses on
datasets, ablation study for our proposed objectives, effects of our hyperparameters (λ1, α, λ2,
and the perturbation magnitude), ablation study of attribute masking, and the comparison with
augmentation-free approaches.

A Experimental Details
In this section, we first introduce the computing resources that we use, the baselines, and our model
in Section A.1. After that, we describe the experimental setups of the graph classification and link
prediction tasks in Section A.2 and Section A.3 as well as the analysis in Section A.4.

Computing Resources For all experiments, we use PyTorch and PyTorch Geometric libraries [7, 1],
for easy usage of GPU resources. We use TITAN XP and GeForce RTX 2080 Ti for training and
evaluating all models.

A.1 Baselines and Our Model

1. EdgePred is a predictive learning baseline adopted from the link prediction task of Hamilton et al.
[2], whose goal is to predict the existence of edges between the given two nodes.

2. AttrMasking [3] is a predictive learning baseline that predicts the attributes of masked nodes and
edges from the embeddings of nodes.

3. ContxtPred [3] is a predictive learning baseline that first samples two different subgraphs from
the same centered node, and then trains them to be similar while the subgraphs from the other
graphs are trained to be dissimilar.

4. Infomax [11] is a contrastive learning baseline, whose goal is to learn the representations for the
given graph and the substructure within the same given graph to be similar while learning the
representations for the given graph and the substructures from the negative graphs to be dissimilar.

5. GraphCL [16] is a contrastive learning baseline, whose goal is to learn the similarity between
two perturbed graphs from the same graph contrasting to in-batch negative graphs over the
global graph-level representations. In particular, this method uses the following four perturbation
methods: attribute masking, edge perturbing, node dropping, and subgraph sampling.

6. JOAO [17] is a contrastive learning baseline that, while the learning objective of it is the same as
the GraphCL model described above, learns to automatically select the perturbation schemes.

7. JOAOv2 [17] is a variant of JOAO, which has individual projection heads according to the
perturbation schemes. Specifically, a perturbed graph is fed into the typical projection head
according to the selected perturbation.

8. GraphLoG [15] is a baseline that has two learning objectives: 1) it matches the masked
nodes/graphs to their unmasked counterparts; 2) it clusters a group of globally similar graphs with
learnable cluster prototypes.

9. BGRL [9] is a baseline that maximizes the similarity between two perturbed graphs from the
original graph without considering in-batch negative graphs, aiming to represent large-scale graphs
with efficiency in memory usage.

10. D-SLA is our discrepancy-based graph self-supervised learning framework, which aims to learn the
accurate discrepancy between original, perturbed, and negative graphs, by not only discriminating
the original graph from its perturbations but also preserving the accurate amount of discrepancy
with the graph edit distance between them.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



A.2 Graph Classification
Table S1: Dataset statistics on chemical and bio-
logical domains.

Dataset Tasks Graphs Avg. Nodes Avg. Edges

Chemical Domain
ZINC15 (Pre-training) - 2,000,000 26.62 28.86
QM9 (Rank Coeff.) - 133,149 8.80 9.40
BBBP 1 2,039 24.06 25.95
ClinTox 2 1,478 26.16 27.88
MUV 17 93,087 24.23 26.28
HIV 1 41,127 25.51 27.47
BACE 1 1,513 34.09 36.86
SIDER 27 1,427 33.64 35.36
Tox21 12 7,831 18.57 19.29
ToxCast 617 8,575 18.78 19.26

Biological Domain
PPI (Pre-training) - 306,925 39.83 364.82
PPI (Fine-tune) 40 88,000 49.35 445.39

Datasets We use the available benchmark datasets1

for the graph classification task. Specifically, for
the chemical domain, we use 2M molecules sampled
from the ZINC15 dataset [8] without using any la-
bels on it. The fine-tuning datasets consist of the
molecular graphs from MoleculeNet [12], where the
classes are given by the biophysical and physiolog-
ical properties of the molecules. For the biological
domain, the datasets are constructed by the sampled
ego-networks from the PPI networks [19]. In par-
ticular, the pre-training dataset consists of 306K un-
labeled protein ego-networks of 50 species, and the
fine-tuning dataset consists of 88K protein ego-networks of 8 species with the label given by the
functionality of the ego protein. We report the statistics of graph classification datasets in Table S1.

Strategy for Selecting Edges for Perturbations In this paragraph, we describe the detailed edge
selection scheme for our graph perturbation. In our experiments of graph classification, we first select
the node and then sample the 3-hop subgraph of it. After that, we randomly add and remove edges
on the subgraph. The reason behind selecting the target subgraph for perturbation is that we aim
to reduce the potential risk of making unreasonable cycles, which are impractical especially on the
chemical domain. Therefore, to prevent the model to learn such an incorrect bias in the embedding
space, we rather sample the subgraph for perturbing the edges.

Common Implementation Details We follow the conventional design choice of GNNs for evaluat-
ing the graph self-supervised learning methods from Hu et al. [3]: Graph Isomorphism Networks
(GINs) [14] consisting of 5 layers with 300 dimensions along with mean average pooling for obtaining
the entire graph representations. For pre-training of our D-SLA, we sample a subgraph by randomly
selecting a center node and then select 3-hop neighbors of it, and then remove the edges on the
selected subgraph three times with different magnitudes (20%, 40%, 60%) to make three perturbed
graphs, while memorizing the number of deleted and added edges to calculate the graph edit distance.
To prevent the situation where the deleted edges are added again, we add edges that are not present
in the given original graphs. We mask 80% of nodes in the selected subgraph to confuse the model
to distinguish the original graph from its perturbed graphs. Furthermore, we include the strong
perturbation, where 80% of edges are perturbed and 80% of nodes are masked among entire nodes
and edges in the given graph. λ1 and λ2 are set as 0.7 and 0.5, respectively.

Implementation Details on Molecular Property Prediction We follow the conventional molecule
representation setting from Hu et al. [3], where the node attributes contain the atom number along
with the chirality, and the edge attributes contain the bond type (e.g., Single, Double, Triple or
Aromatic) along with the bond direction which is represented if an edge is a double or aromatic bond.
When adding an edge during edge perturbation, we sample its type by following the distribution of
edge attributes in the pre-training dataset. Specifically, we first sample the bond type following the
distribution and then sample also the bond direction depending on the bone type. For pre-training, we
use the batch size of 256, the number of epochs of 100, the learning rate in the range of [0.01, 0.001,
0.0001], and the margin α in the range of [3,4,5,6,7] by grid search. For the splitting of fine-tuning
datasets, we use the scaffold splitting following the conventional setting from Hu et al. [3] and You
et al. [17]. For fine-tuning, we also follow the conventional setting from You et al. [17].

Implementation Details on Protein Function Prediction We use the pre-defined biological
graphs from Hu et al. [3], where a node corresponds to a protein without any attributes, and an edge
corresponds to a relation type between two proteins such as biological interaction or co-expression.
As in molecular property prediction, we add reasonable edges by following the distribution of edge
attributes in the pre-training dataset. For pre-training, the number of epochs is 100, the batch size
is 128, the learning rate is 0.001, and the margin is 10. For data splitting of the fine-tuning dataset,
we use the provided conventional setting from Hu et al. [3]. For fine-tuning, we also follow the
conventional setting from Hu et al. [3]. Note that, as the result of GraphLoG [15] on this protein
function prediction task is not available in the referred paper, we produce the result by following the
experimental setups along with the provided public source code.

1http://snap.stanford.edu/gnn-pretrain/data/

2



A.3 Link Prediction

Table S2: Statistics of social network
datasets used in link prediction experiments.

Dataset Graphs Avg. Nodes Avg. Edges Pert. Strength

COLLAB 4320 76.12 2331.37 0.1%
IMDB-B 2039 20.13 85.48 1%
IMDB-M 1478 16.64 77.90 1%

Datasets The datasets2 we used for the link prediction
task are COLLAB, IMDB-B (IMDB-BINARY), IMDB-M
(IMDB-MULTI) – the social network datasets from TU
dataset benchmark [6]. COLLAB dataset consists of ego-
networks extracted from public scientific collaboration
networks, namely High Energy Physics, Condensed Matter
Physics, and Astro Physics. IMDB-B and IMDB-M are movie collaboration ego-networks where a
node represents an actor/actress. The statistics of social network datasets are provided in Table S2.

Strategy for Selecting Edges for Perturbations To capture the fine-grained local semantics, we
suggest that the weaker magnitude of perturbation is the better (See Section B.6 verifying the effect
of edge perturbation strengths). Therefore, we only perturb the tiny amount of edges (e.g., 1 or 2
edges), as shown in Table S2, rightmost column.

Implementation Details We use the Graph Convolutional Network (GCN) [5] consisting of three
layers with 300 hidden dimensions. Following the previous works [16, 17], we let the node attributes
correspond to the degree of the node. For pre-training, we remove the complete graphs – that always
have the edges between any two nodes – as we cannot include additional edges during perturbation.
For node masking used in AttrMaksing and our D-SLA, we replace the node attribute with the masked
token. For hyperparameters, we use the learning rate of 0.001, the batch size of 32, and the λ1 of 0.7.
During pre-training of our D-SLA, we generate three perturbed graphs by increasing the perturbation
magnitudes (e.g., 1%, 2%, 3%). Also, we further mask 20% of nodes in perturbation.

A.4 Analysis

Rank Correlation Coefficient The spearman’s rank correlation coefficient measures the correlation
between two rank series in the range from -1 to 1, where the value is 1 if the two rank series are
perfectly and monotonically the same. We build the following two rank series to compare: 1) the
labeled similarity rank between the original and perturbed graphs using the graph edit distance, and 2)
the predicted similarity rank based on the embedding-level distances between original and perturbed
graphs from pre-trained models. Specifically, we perturb edges of the entire graph by gradually
increasing the magnitude of edge perturbation (i.e., 5%, 10%, 15%, 25%, 35%, 45%, 60%, 75%,
90%), and then label ranks of the perturbed graphs to the original graph according to the graph edit
distance. Then, the original and perturbed graphs are fed into the pre-trained models, and the ranks
are measured by the embedding-level distance between the original and perturbed graphs. Therefore,
if a pre-trained model can capture the exact amount of discrepancy, the rank correlation coefficient
would be 1, by locating the embedding of a similar graph (a weakly perturbed graph) closer to the
original graph than the embedding of a dissimilar graph (a strongly perturbed graph). We measure
the coefficient with randomly sampled 1, 000 different graphs.

For models to calculate the similarity across different graphs, we use the pre-trained model for the
graph classification task in our D-SLA. For EdgePred, AttrMasking, ContextPred, Informax, and
GraphCL baselines, we use the publicly available pre-trained models3. For JOAO and GraphLoG,
we use the public source codes4, to obtain the pre-trained models. The WL algorithm in Figure 5
of the main paper corresponds to a randomly initialized GIN model. In other words, since the GIN
is as powerful as the WL test, we denote it as the WL algorithm. We evaluate the above models
on two different datasets: ZINC15 [8] and QM9 [6], where statistics of each dataset is provided in
Table S1. Note that the QM9 dataset is not used for pre-training, thus we can measure the model’s
generalization ability with it.

Embedding Visualization To visualize the representation space of the original, perturbed, and
negative graphs, we pre-train the models on the subset of the ZINC15 dataset [8] with the perturbation
strategy in Section A.2 for obtaining perturbed graphs. Then, after pre-training, we visualize the graph
representations by PCA [4] and t-SNE [10] for Figure 1 and Figure 3 of the main paper, respectively.

2https://chrsmrrs.github.io/datasets/docs/datasets/
3https://github.com/snap-stanford/pretrain-gnns, https://github.com/Shen-Lab/GraphCL
4https://github.com/Shen-Lab/GraphCL_Automated, https://github.com/DeepGraphLearning/GraphLoG

3



Anchor Molecule

Active Molecules

Inactive Molecules

(a) BBBP

Anchor Molecule

Active Molecules

Inactive Molecules

(b) ClinTox

Anchor Molecule

Active Molecules

Inactive Molecules

(c) Tox21
Figure S2: Structural comparisons on the most similar (i.e., top-5) active/inactive molecules for the certain
anchor active molecule on the left side, for the BBBP, ClinTox, and Tox21 datasets. Green dotted circles indicate
the shared structure across different molecules.

B Additional Experimental Results

In this section, we provide additional results with their corresponding discussions. To be specific, in
Section B.1, we analyze the correlation between the characteristics of the dataset and self-supervised
learning methods. Then, we provide an in-depth discussion about our observations in the ablation
study in Section B.2. Additionally, we provide some guidelines for choosing our hyperparameters (λ1,
α, λ2, and the perturbation magnitude) in Section B.3, B.4, B.5, and B.6, respectively. Futhermore,
we provide an ablation study of attribute masking in Section B.7. Finally, we compare our D-SLA
with augmentation-free approaches in Section B.8.

B.1 Dataset Analysis

In this subsection, we further discuss the characteristics of graph self-supervised learning methods
with respect to the characteristics of datasets. As shown in Section 4.1, we find that contrastive learn-
ing methods outperform predictive learning methods on BBBP and ClinTox. Contrarily, predictive
learning methods outperform contrastive learning methods on Tox21. Therefore, we further analyze
BBBP, ClinTox, and Tox21 datasets to answer why such methods have counterfactual effects on
different datasets.

In Figure S2, we visualize the structures of active/inactive molecules from the anchor molecule.
We observe that in BBBP and ClinTox datasets, the activities are highly correlated to the structural
similarity, i.e., the structurally similar molecules show the same activities. Therefore, as contrastive
learning aims to maximize the similarity between perturbed graphs from the original graph, it fits
into the BBBP and ClinTox datasets, showing better performance than predictive learning methods.
However, in the Tox21 dataset, we cannot observe any clues that the activities are correlated to the
structural similarity. Therefore, capturing the structural similarity with contrastive learning seems to
be useless in this dataset, resulting in the better performance of predictive learning methods. However,
our D-SLA can learn the discrete embedding space by learning the discrepancy even between similar
graphs, thus obtaining a discriminative space that can further be utilized to distinguish between them
for downstream tasks and outperforming all other baselines as shown in Section 4.1.

4



0.5 0.6 0.7 0.8 0.9 1.0
Average Rank Coefficient of QM9

0.07

0.7

7.0

la
m

bd
a_

1
0.83

0.84

0.84

Figure S3: Rank corre-
lation coefficient of QM9
with varying λ1 values.

Original
Perturbed
Negative

(a) λ1 = 0.07 (b) λ1 = 0.7 (c) λ1 = 7.0

Figure S4: Visualization of the learned latent representation space for different λ1

values. Note that each model is trained on the subset of the ZINC15 dataset and the
embedding spaces are visualized by t-SNE [10].

B.2 Additional Interpretation of Ablation Study

We conduct an ablation study on link prediction and graph classification tasks in Table 5 of the
main paper. For link prediction, we observe that both two components, LGD and Ledit, consistently
improve the performance, thus verifying that our discrepancy-based learning allows the model to
capture the local semantics of graphs. Also, for graph classification, we choose the most different two
datasets in their properties – ClinTox and BACE datasets – to obviously see the contribution of each
component in our D-SLA. In particular, for the ClinTox dataset in which the biochemical activities of
molecules are highly correlated to their structures, we observe that it is important to discriminate the
negative graphs from the perturbed graphs with the triplet margin loss Lmargin, as the performance
improvements on using it is significant compared to the other dataset: BACE. However, in the case of
the BACE dataset, since the molecules are highly similar regardless of their biochemical activities,
the graph edit distance loss Ledit largely contributes to the performance gain, allowing the model to
learn the exact discrepancy across similar graphs.

B.3 Effect of Ledit Coefficient (λ1)

We demonstrate the effect of the coefficient λ1 for Ledit (Equation 8). Specifically, we show its
efficacy by measuring the rank correlation coefficient, and by visualizing the graph representation
space. Firstly, as shown in Figure S3, the differences in rank correlation with varying scaling
coefficient λ1 are marginal. Also, as shown in Figure S4, for all models, the perturbed graphs are well
embedded along their perturbation magnitudes regardless of λ1 values. Therefore, we suggest that,
fortunately, learning the accurate amount of discrepancy between graphs does not heavily depend
on the scaling hyperparameter for Ledit, namely λ1. On the other hand, we observe that, if λ1 is
relatively small, some negative graphs are embedded closer to the perturbed ones (Figure S4 (a)).
This result indicates that, the regularization effects of our objective Ledit for learning the discrepancy
between the original and perturbed graphs can also affect the boundary between perturbed and
negative graphs, as shown in Figure S4 (b), (c).

B.4 Effect of Margin (α) in Lmargin

Table S3: Effect of α
on BACE dataset.

α ROC-AUC

1.0 83.75 ± 0.96
5.0 83.81 ± 1.01
10.0 78.34 ± 1.07

To demonstrate the effect of the margin α in Lmargin (Equation 7), we pre-
train the model with varying α values and fine-tune it on BACE dataset for
graph classification. As shown in Table S3, large value of α degenerates
our discrepancy learning among similar graphs. As described in Section
3.4, if the distance between the original and its negative graph (d′j) is larger
than the distance between the original and perturbed graph (di) plus α (i.e.,
α + di < d′j), the distance between the original and perturbed graph (di) is
preserved not losing the discrepancy learned by Ledit (Equation 6). However, large α makes it hard
to satisfy the condition (i.e., α+ di < d′j) forcing the model to lose the discrepancy learned by Ledit.

B.5 Effect of Lmargin Coefficient (λ2)

Table S4: Effect of
λ2 on BACE dataset.

λ2 ROC-AUC

0.1 83.68 ± 0.78
0.5 83.81 ± 1.01
0.9 80.72 ± 0.71

We demonstrate the effect of the coefficient λ2 for Lmargin (Equation 8) by
pre-training with various λ2 values and fine-tuning on BACE dataset for graph
classification. As shown in Table S4, when λ2 is large, the performance on
BACE downstream dataset is generated, indicating that the model cannot learn
the discrepancy among similar graphs. We suggest that this is because λ2

controls the intensity of attracting the similar graphs of Lmargin and a large
value of λ2 which would strongly attract the similar graphs forces the model
to lose the discrepancy among similar graphs learned by Ledit (Equation 6).

5



Table S7: Fine-tuning results on graph classification tasks. Best performances are highlighted in bold.
SSL methods BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg.

SimGCL [18] 67.37 ± 1.23 55.66 ± 4.72 71.24 ± 1.79 75.04 ± 0.86 74.11 ± 2.74 57.44 ± 1.74 74.39 ± 0.45 62.27 ± 0.38 67.19
SimGRACE [13] 71.25 ± 0.86 64.16 ± 4.50 71.18 ± 3.40 74.52 ± 1.12 73.81 ± 1.37 60.59 ± 0.96 74.20 ± 0.64 63.36 ± 0.52 69.13

D-SLA (Ours) 72.60 ± 0.79 80.17 ± 1.50 76.64 ± 0.91 78.59 ± 0.44 83.81 ± 1.01 60.22 ± 1.13 76.81 ± 0.52 64.24 ± 0.50 74.51

Original
Perturbed
Negative

(a) SimGCL (b) SimGRACE (c) D-SLA (Ours)
Figure S5: Embedding space visualization on similar
and dissimilar graphs with Graph Edit Distance.

Original
Similar
Dissimilar

(a) SimGCL (b) SimGRACE (c) D-SLA (Ours)
Figure S6: Embedding space visualization on similar
and dissimilar graphs with Tanimoto Similarity.

B.6 Effect of Perturbation Magnitude on Link Prediction

Table S5: Effect of magni-
tude of perturbation on the
link prediction task.

Magnitude Accuracy

10% 70.67 ± 0.63
1% 74.55 ± 0.76
0.1% 76.19 ± 0.50

We validate the effect of the perturbation magnitude on the COLLAB
dataset for link prediction. As shown in Table S5, we observe that the
performance of link prediction is enhanced when only a small amount of
edges are perturbed, demonstrating that weaker perturbation magnitude
is better for capturing local semantics. If the perturbation magnitude
is weak, the perturbed graphs are slightly different from the original
graph, thus the model could capture a subtle difference across original
and perturbed graphs.

B.7 Ablation Study of Attribute Masking

Table S6: Ablation study of
attribute masking on the link
prediction task.

Accuracy

w/ Masking 76.19 ± 0.50
w/o Masking 70.42 ± 0.95

We conduct an additional ablation study for the attribute masking in
our perturbation strategy on the COLLAB dataset for link prediction.
As shown in Table S6, the performance without attribute masking is
significantly lower than the performance with attribute masking. We
suggest that, in the pre-training stage, attribute masking limits the
information given to the model and forces the model to learn more
transferable and fruitful representations, demonstrating that attribute
masking in our perturbation is a key factor to learn the local semantics.

B.8 Comparison with Augmentation-Free Contrastive Learning Approaches

Table S8: Fine-tuning results on link prediction
tasks. Best performances are highlighted in bold.

COLLAB IMDB-B IMDB-M Avg.

SimGCL 77.46 ± 0.86 64.91 ± 2.60 63.78 ± 2.28 68.72
SimGRACE 74.51 ± 1.54 64.49 ± 2.79 62.81 ± 2.32 67.27

D-SLA (Ours) 86.21 ± 0.38 78.54 ± 2.79 69.45 ± 2.29 78.07

Recently, augmentation-free contrastive learning
methods have been proposed. We validate the ef-
fectiveness of our discrepancy learning framework
by comparing with augmentation-free approaches on
graph classification and link prediction tasks. We
compare our D-SLA with SimGCL [18] and Sim-
GRACE [13] that augment views of graphs by adding noise to graph embeddings or model parameters
while preserving the graph structures. As shown in Table S7 and Table S8, our discrepancy learning
outperforms the augmentation-free contrastive learning approaches, demonstrating the effectiveness
of our discrepancy learning framework in capturing both local and global semantics. We further
visualize the embedding space of similar and dissimilar graphs with different distance metrics such as
Graph Edit Distance (Figure S5) and Tanimoto similarity (Figure S6). We observe that, in SimGCL
and SimGRACE, the similar and dissimilar graphs are not distinguished and the augmentation-free
approaches cannot capture the exact amount of discrepancy, since they cannot learn the difference
between similar graphs. Contrarily, by our discrepancy learning, the model can distinguish similar
and dissimilar graphs and learn the exact amount of discrepancy both on Graph Edit Distance and
Tanimoto Similarity.

6



References
[1] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[2] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[3] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations (ICLR), 2020.

[4] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent devel-
opments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374(2065):20150202, 2016.

[5] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[6] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint, arXiv:2007.08663, 2020.

[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[8] Teague Sterling and John Irwin. Zinc 15 - ligand discovery for everyone. Journal of chemical
information and modeling, 55, 10 2015. doi: 10.1021/acs.jcim.5b00559.

[9] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,
Remi Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs
via bootstrapping. In International Conference on Learning Representations (ICLR), 2022.

[10] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[11] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations (ICLR),
2019.

[12] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018.

[13] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. Simgrace: A simple framework
for graph contrastive learning without data augmentation. In ACM Web Conference (WWW),
2022.

[14] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

[15] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-
level representation learning with local and global structure. In Proceedings of the International
Conference on Machine Learning (ICML), 2021.

[16] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[17] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In Proceedings of the International Conference on Machine Learning (ICML), 2021.

7



[18] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen.
Are graph augmentations necessary?: Simple graph contrastive learning for recommendation.
In International Conference on Research and Development in Information Retrieval (SIGIR),
2022.

[19] Marinka Zitnik, Rok Sosič, Marcus W. Feldman, and Jure Leskovec. Evolution of resilience in
protein interactomes across the tree of life. Proceedings of the National Academy of Sciences,
116(10):4426–4433, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1818013116.

8


	Experimental Details
	Baselines and Our Model
	Graph Classification
	Link Prediction
	Analysis

	Additional Experimental Results
	Dataset Analysis
	Additional Interpretation of Ablation Study
	Effect of Ledit Coefficient (1)
	Effect of Margin () in Lmargin
	Effect of Lmargin Coefficient (2)
	Effect of Perturbation Magnitude on Link Prediction
	Ablation Study of Attribute Masking
	Comparison with Augmentation-Free Contrastive Learning Approaches


