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Abstract

Although Vision transformers (ViTs) have recently dominated many vision tasks,
deploying ViT models on resource-limited devices remains a challenging prob-
lem. To address such a challenge, several methods have been proposed to com-
press ViTs. Most of them borrow experience in convolutional neural networks
(CNNs) and mainly focus on the spatial domain. However, the compression only
in the spatial domain suffers from a dramatic performance drop without fine-
tuning and is not robust to noise, as the noise in the spatial domain can easily
confuse the pruning criteria, leading to some parameters/channels being pruned
incorrectly. Inspired by recent findings that self-attention is a low-pass filter and
low-frequency signals/components are more informative to ViTs, this paper pro-
poses compressing ViTs with low-frequency components. Two metrics named
low-frequency sensitivity (LFS) and low-frequency energy (LFE) are proposed
for better channel pruning and token pruning. Additionally, a bottom-up cascade
pruning scheme is applied to compress different dimensions jointly. Extensive
experiments demonstrate that the proposed method could save 40% ∼ 60% of the
FLOPs in ViTs, thus significantly increasing the throughput on practical devices
with less than 1% performance drop on ImageNet-1K. Code will be available at
https://github.com/Daner-Wang/VTC-LFC.git.

1 Introduction

Recently, Vision transformer (ViT) [14] and its variants [50, 32, 62] have outperformed convolutional
neural networks (CNNs) in several vision tasks. However, ViT models still face the challenge of high
computational cost when deployed to resource-limited devices. Following previous experiences in
compressing CNN models, some pruning methods based on sparse learning [68, 61], taylor expansion
[60], or automatic searching [9] have been proposed for ViT models to reduce model redundancy via
channel pruning. In addition to the redundancy in parameters, recent literature [48, 28, 41] further
points out that some noise tokens mainly encoded task-irrelevant information (e.g., background), and
some tokens become similar in deeper layers, showing that great redundancy also exists in tokens.
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The mainstream works [28, 47, 36] filter out the less informative tokens to reduce the FLOPs without
changing the model structure.
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Figure 1: Noise resistance of spatial do-
main pruning and our pruning. ‘S&P’
means salt-and-pepper noise, the pruned
model is DeiT-Small, and the perfor-
mance is evaluated on ImageNet-1k.

Although aforementioned methods have made great
progress in ViT compression in spatial domain, we find
that they generally suffer from the following two prob-
lems: (i) different from CNN pruning which maintains the
performance well without finetuning [34, 13], dramatic
performance drop is observed when the same method is
applied in ViT pruning; (ii) conducting ViT pruning only
in spatial domain is not robust to noise, and as shown
in Figure 1, after adding noise in the images, the accu-
racy of spatial compression dramatically drops. To make
ViT compression more effective and robust, we propose
to conduct ViT compress with the help of frequency do-
main. Recent studies [3, 55, 42, 38, 52] have indicated
that self-attention (SA) behaves like a low-pass filter, and
low-frequency signals/components are more informative
to ViT models. Inspired by such low-frequency character-
istics of ViT, we propose a compression framework named Vision Transformer Compression with
Low-Frequency Components (VTC-LFC) which solves the problem from a new angle and emphasizes
the contributions of low-frequency components during compression. To our best knowledge, this is
the first work that compresses vision transformers in the frequency domain. The main contributions
of this paper are listed as below:

Channel pruning based on low-frequency sensitivity: Channel pruning is a popular structured
pruning strategy that aims to remove redundant parameters in fully connected layers of ViT. The
mainstream works use some evaluation metrics (e.g. Taylor scores [60], weights norm [61], or sparse
factor [68]) to estimate importance scores of parameters. Recent studies [3, 42, 52] find that ViTs are
more reliable to the low-frequency components in images, i.e. the low-frequency information is more
important for ViTs. Therefore, we infer that channels that are less effective in encoding low-frequency
components will contribute less to the feature representation for ViT models. Motivated by such a
property, we propose a better channel pruning criterion named low-frequency sensitivity (LFS) based
on the Taylor scores [60]. Different from the standard Taylor scores which are computed with the
original images, LFS filters out high-frequency components from images and uses only low-frequency
components to estimate the importance of model parameters. In this way, channels that efficiently
encode low-frequency information are more likely to be preserved, and the compressed model tends
to be more robust to noise. Experimental results show that LFS can alleviate the performance drop
after compression without bells and whistles. Token pruning based on low-frequency energy:
Token compression/sampling aims to select the informative tokens that store more useful information.
The popular methods dynamically select those tokens with high correlation to other tokens (e.g. the
CLS token) as the informative tokens. However, it may be sub-optimal because the selected tokens
tend to be similar to each other, and the information included in the token itself has been neglected to
some extent. As pointed out by [55, 38], the self-attention module in ViTs behaves like a low-pass
filter, i.e. the tokens with more low-frequency components can pass more information to the next
layers. Inspired by this, we propose improving the attention-based token selection with an extra item,
token low-frequency energy (LFE), which quantifies the low-frequency information in tokens. By
correcting the attention scores with LFE of tokens, the selector can better distinguish informative
tokens from both the long-term dependency in spatial domain and low-frequency contributions in
frequency domain.

Bottom-up Cascade Pruning Framework: To jointly compress channels and tokens of vision
transformers, we propose a bottom-up cascade pruning framework. The model accuracy is further
preserved through automatically balancing compression ratios of channel pruning and token pruning
block-by-block.

2 Related work

Vision Transformer. Inspired by the success of transformers [51] in NLP, the Vision Transformer
(ViT) [14] is proposed to encode an image into a sequence of tokens and feed them into the pure
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transformer architecture. Several studies have shown that ViT performs better than convolution
neural networks (CNN) on image classification benchmarks [14, 20] when sufficient training data
is provided. Many follow-up variants of ViT [4, 7, 1, 19, 54, 10, 62, 53, 66] have also been
proposed. For example, DeiT [50] introduces a distillation token structure into ViT, and LV-ViT [24]
proposes the token labeling approach for better training of ViT. In addition to image classification,
ViT has also achieved great performance in many other computer vision applications, such as
semantic segmentation [11, 56, 12], image retrieval [22, 17], object detection [2, 69] and image
reconstruction [8, 59]. However, despite of the outstanding performance in a series of tasks, its high
computational cost restricts the deployment of ViT, which motivates the study of lightweight ViT
models, including pruning [9, 68, 44, 58], block-weights sharing [26, 64], fast distillation [57], and
dynamic prediction architecture [67, 45], among which pruning is a universal approach for almost all
model structures.

ViT Pruning. As an efficient compression approach, pruning [35, 23, 29, 30, 65, 33, 31] has been
widely applied on various convolutional neural networks (CNNs) in computer vision. Pruning
approaches [63, 21, 58, 48] have also been proposed for ViT to reduce its model size and inference
time. These methods can be roughly grouped into two categories: 1) Channel pruning, which
reduces the number of weights, channels, heads or blocks in ViT. SViTE [9] jointly optimizes
parameters and explores connectivity for both unstructured pruning (zeroing weights) and structured
pruning (removing heads and channels). ViT-Slim [6] applies L1 sparsity on channels and produces
compressed ViTs with unstructured heads (the shape of heads is different). UVC [61] drops heads,
channels, and blocks in a unified framework to achieve a high compression ratio. VTP [68] transfers
the sparse-learning scheme in CNN pruning to compress ViT. NViT [60] generates smaller networks
from the DeiT-base with the Taylor-based pruning scheme. 2) Token pruning, which focuses on
dynamically selecting significant tokens for different inputs. Token pruning would significantly reduce
the computational cost while maintaining all parameters. TokenLearner [44] adaptively generates a
small set of token vectors according to the spatial attention. EViT [28] downsamples tokens every
three blocks and selects tokens with high correlation with the CLS token. DynamicViT [41] estimates
the importance of tokens with an MLP [51] based predictor. IA-RED2 [36] introduces a multi-head
interpreter to drop uninformative tokens. SP-ViT [25] softly prunes tokens with token selector
modules and packages the redundant tokens into one. Different from previous methods, this paper
compresses ViTs from a novel prospect, frequency domain, to prune both parameters and tokens in a
unified framework.

Frequency domain analysis for ViT and CNN. The recent explorations [3, 55, 42, 38, 52] of ViTs
have indicated that ViTs behave in an opposite way to CNNs in frequency domain. [3] finds out that
ViTs perform better than CNNs when only low-frequency components of images are fed into the
models, and proposes the HAT method to enhance the capability of ViTs in capturing high-frequency
information. [55] analyzes ViT features from the Fourier spectrum domain and shows that the self-
attention module amounts to a low-pass filter. [38] also demonstrates that multi-head self-attentions
exhibit opposite behaviors to convolutions, and take advantage of both mechanisms to design a novel
AlterNet. To summarize, all these studies point out that the low-frequency components play an
important role in information extraction of ViT.

3 Methodology

3.1 Preliminary

The necessary notations are defined as below. As shown in Figure 2, a transformer block contains a
multi-head self-attention (MHSA) module with multiple heads and a feed-forward network (FFN)
module with two fully-connection layers. The input images in a mini-batch are denoted as X ∈
RB×3×H×W , where B, W and H are the batch size, width and height of images, respectively. The
inputs of MHSA and FFN in the l-th block are denoted as X l,1 ∈ RB×N l×D and X l,2 ∈ RB×N l×D,
respectively. N l is the number of tokens, and D is the dimension of a token. In the l-th block, the
linear projection matrices W l,h

q , W l,h
k , and W l,h

v are used to calculate Ql,h (query), Kl,h (key), and
Vl,h (value) for the h-th attention head. The parameters of the linear projection module in MHSA
are denoted as W l

proj , and two linear projection matrices in FFN are W l
fc1 and W l

fc2. Our goal is to
reduce the channel number of linear projection matrices and the token number N l.
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Figure 2: Pruning of channels and tokens in one block. ‘LFE’ is the low-frequency energy extracted
from tokens according to Equation 6. ‘LFS’ denotes the low-frequency sensitivity used to evaluate
the importance of channels.

3.2 Channel Pruning based on Low-Frequency Sensitivity

As previously introduced, low-frequency components in images are more valuable for the feature
representation in ViT models, i.e. channels less effective in encoding low-frequency components will
contribute less to the feature representation. Therefore, the key goal is to estimate the sensitivity of a
channel to low-frequency components in images. To achieve this, we propose an evaluation policy
named low-frequency sensitivity (LFS) that estimates the importance scores of model parameters by
taking more low-frequency components in images into account.

Assume redundant channels have less influence on model outputs, removing redundant channels
should hardly change the value of loss when feeding a set of training images into the model for loss
computation. Thus, the importance of a channel can be quantified by the difference in loss induced
by removing this channel. Given a number of images X ∈ RB×3×H×W randomly sampled from the
training dataset D, the importance score Ij of a weight wj is formulated as:

Ij = (L (M (X,W) , Y | wj = 0)− L (M (X,W) , Y ))
2
, (1)

where Y ∈ RB×1 is the label set of data X , L (·) denotes the loss function (cross-entropy loss in this
paper),M (X,W) is the model output, and W indicates all model weights.

However, the score in Equation 1 can only reflect the importance on the original whole images.
To separate low-frequency components from images, low-pass filtering is applied on images in the
Fourier spectrum domain before feeding them into ViTs. The low-frequency components in images
X̃ are formulated as:

X̃ = F−1 (G (σc)�F (X)) , (2)

where F (·) and F−1 (·) denote the fast Fourier transformation (FFT) [40] and the inverse fast Fourier
transform (IFFT), respectively, � is the Hadamard product, G (·) is the low-pass filter, and σc ∈ (0, 1)
determines the cutoff frequency of the low-pass filter which is similar to the radial averaging of the
2D Fourier spectrum as in [16, 15, 5, 46]. Considering that a binary filter will cause the Ringing
effect when the image is transformed back to the spatial domain, Gaussian filter is chosen for G (·).
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In addition to the task-specific loss, the pruned model shall also provide robust feature representation
as the original model. In other words, the feature representation of the low-frequency images
X̃ shall be as close to that of the original images X as possible. Hence, apart from the cross-
entropy loss L for the classification task, a knowledge-distillation loss is also taken into account.
Kullback–Leibler (KL) divergence loss KL(·) is used to measure the error between the CLS tokens
corresponding to the low-frequency image and nature image, respectively. Denote the two CLS
tokens as T̃ (from low-frequency images) and T (from nature images), and simplify the cross-
entropy loss L (M (X,W) , Y ) to L (X). Then, the final importance score sj of weight wj , named
Low-Frequency Sensitivity (LFS), is formulated as:

sj = λ ·
(
L(X̃ | wj = 0)− L(X̃)

)2
+ (1− λ) ·

(
KL(T̃ , T | wj = 0)−KL(T̃ , T )

)2
, (3)

where λ is the hyper-parameter for the balance of two loss functions.

Calculating the LFS for each parameter with Equation 3 is infeasible for models with millions of
parameters. Fortunately, the score can be approximated with the first-order Taylor expansion [34, 60].
Therefore, the approximated version of LFS is represented as below:

ŝj = λ ·

(
∂L(X̃)

∂wj
· wj

)2

+ (1− λ) ·

(
∂KL(T̃ , T )

∂wj
· wj

)2

, (4)

where the gradient terms can be easily obtained in the backward procedure of the model. The channel
importance score can then be approximated by summing over LFS scores of all parameters in the
channel, i.e. the LFS of a channel is computed by the sum of ŝj :

ŜJ =
∑
j∈J

ŝj , (5)

where J means the index set of weights in a channel.

3.3 Token Pruning based on Low-Frequency Energy

Token redundancy is another major issue in the ViT compression, and several methods [47, 28, 25]
sample informative tokens via analyzing the relationship or attention scores between tokens. Such a
solution is sub-optimal because the selected tokens tend to be similar, and the information included
in the token itself has been neglected to some extent. To address this problem, the Low-Frequency
Energy (LFE) is proposed to make use of the low-frequency preference of ViT for token pruning.
Following other works [47, 28, 25], as shown in Figure 2, the selector is located between the multi-
head self-attention module and the feed-forward network module. Inspired by [55], we evaluate
the low-frequency ratio of the token after transforming tokens X l,2 into the frequency domain by
applying FFT on each channel of tokens, denoted as X l,2

b,:,j = F
(
X l,2

b,:,j

)
. We then quantify the

low-frequency information contained in a token by calculating the ratio of its remaining energy to the
total energy after low-pass filtering. Given filter G with cutoff factor σt, the LFE is formulated as:

ηl,i =

∥∥LC [X l,2
]∥∥

2

‖DC [X l,2]‖2
=

∥∥∥F−1(G (σt)�X l,2
b,i,:)

∥∥∥
2∥∥∥F−1 (X l,2

b,:,:

)∥∥∥
2

=

∥∥∥X̃ l,2
b,i,:

∥∥∥
2∥∥∥X l,2

b,:,:

∥∥∥
2

, (6)

where DC [·] and LC [·] denote the direct-current component and the low-frequency component,
respectively. Intuitively, a token with more low-frequency components will achieve a larger ηl,i.

Similar to EViT [28], the attention scores in the spatial domain is also included to evaluate the final
importance scores of tokens. For the h-th head in ViT, the attention value is calculated as:

Al,h = softmax

(
Ql,hK

T
l,h√

dl,h

)
, (7)

where Al,h is the attention score matrix and dl,h is the output dimension. The CLS token plays a
more significant role than other tokens because it is the final output feature which collects information
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from all tokens. Moreover, the head with denser and larger attention values is more important, i.e.,
with a larger proportion. Thus, our proposed modified attention score is formulated as:

T̂l,i =
1

H

H−1∑
h=0

θh,0 · Al,h
i,0 + θh,1 ·

1

N l

N l−1∑
j=1

Al,h
i,j

 , (8)

where θh,0 =
∑N−1

j=1 A
l,h
0,j and θh,1 = Al,h

0,0 are the head-weights of the CLS attention value Al,h
i,0 and

the other attention value Al,h
i,j , respectively.

To estimate the importance score of tokens from multiple and diverse aspects, we consider to combine
the LFE ηl,i and attention score T̂l,i to get the final importance score of a token as:

T̃l,i = T̂l,i · ηl,i, (9)

Note: the CLS token is the final output of the ViT model, and is not involved in the token pruning.

3.4 Bottom-up Cascade Pruning
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Figure 3: Pipeline of Bottom-up Cascade Pruning. The pruning starts from the first block to the last
one. In each block, the token is pruned first according to the information in the frequency domain
(LFE criterion). Once token pruning is done, channels will be compressed based on the LFS criterion.

In our method, the value of LFS and LFE in each block is related to the outputs from previous blocks.
Hence, the compression in one block will influence the LFS and LFE in its subsequent blocks. It is
sub-optimal to independently determine the pruning ratios and indices of channels and tokens for
all blocks at once and ignore their inter-relationship. Therefore, we design a Bottom-up Cascade
Pruning (BCP) process (Figure 3), which promotes pruning from the first block to the last block. A
hyper-parameter, named global allowable drop ε, is set to control the final performance drop after
pruning. During compression of each block, the number of tokens is gradually reduced until the
performance drop reaches εt = ρ · ε/L, where ρ is a hyper-parameter to control the accuracy drop
caused by token pruning. Once token pruning is done, channels will be compressed with a similar
procedure. When the performance drop caused by pruning reaches ε/L, the compression for a block
is considered as completed. More details are described in Algorithm 1 in Appendix A.1.

4 Experiments

In this section, the proposed method is evaluated on the benchmark ImageNet (ILSVRC2012) [43],
which is a large dataset containing 1.2M training images and 50k validation images of 1000 classes.
All the experiments are deployed with Pytorch [39] on NVIDIA V100 GPUs. The code is modified
based on the previous study DeiT2. The float operations (FLOPs) of models are evaluated by fvcore3.

2https://github.com/facebookresearch/deit
3https://github.com/facebookresearch/fvcore
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4.1 Experiments on ImageNet

Implementation details. The proposed method is applied to popular ViT models of three different
sizes, DeiT-Tiny, DeiT-Small, and DeiT-Base. The latest state-of-the-art (SOTA) methods are
compared, including SCOP [49], CP-ViT [47], PoWER [18], HVT [37], IA-RED2 [36], S2ViTE
[9], EViT [28], and SPViT [21]. In the pruning procedure, the number of training samples used for
evaluating the performance drop in BCP is 5000 (randomly sampling 5 training samples from each
category), the number of training samples for calculating LFS is 2000, and the cutoff factors σc and
σt are 0.1 and 0.85. For three models, DeiT-Tiny, DeiT-Small, and DeiT-Base, the global allowable
drop ε are 9.5, 14, and 14, and the ratio ρ for the allowable drop is 0.56, 0.35, and 0.3 respectively.
The removed channels involve the columns (output channels) of W l,h

q , W l,h
q , W l,h

q , and W l
fc1 and

rows (input channels) of W l
proj , and W l

fc2. After pruning, the compressed models are fine-tuned
with hard distillation [50] of their corresponding original models. The base learning rate is set to
0.0001, and most of the other hyper-parameters follow the settings in [9]. We fine-tune the pruned
DeiT-Tiny/DeiT-Small/DeiT-Base models for 300/150/150 epochs. More detailed settings and results
of different epochs are listed in Appendix A.3.

Results and analysis. The comparison with state-of-the-art methods is shown in Table 1, in which
the top-1 accuracy and the reduction ratios of FLOPs are reported. In all three models, the proposed
method achieves the highest reduction ratio in FLOPs than previous methods with less than 1%
performance drop. Compared to the pure token pruning methods like SCOP [49], CP-ViT [47],
PoWER [18], HVT [37], and IA-RED2 [36], our method achieves not only better performance
and more reduction in FLOPs, but also less parameters, which demonstrates the superiority of
pruning with frequency domain. Although EViT [28], SPViT [21], and S2ViTE [9] achieves better
accuracy on DeiT-Base, their reduction in FLOPs (EViT 34.1%, SPViT 33.1%, S2ViTE 33.1%
vs Our 57.6%) is much lower than ours. To evaluate the acceleration on inference speed of our
pruning technique, the throughput is assessed on a single V100 GPU with batch size 256 in Table 2.
The DeiT-Tiny/Small/Base model achieves 69.7%/97.0%/107.1% speed up after pruning, which
demonstrates the practicability of the proposed compression approach.

Table 1: Comparison with state-of-the-art methods on ImageNet-1k. ‘FLOPs ↓’ denotes the reduction
ratio of FLOPs. We report two versions with different parameter sizes for our method.

Method DeiT-Tiny DeiT-Small DeiT-Base
Top1/Top5(%) FLOPs ↓ Params Top1/Top5(%) FLOPs ↓ Params Top1/Top5(%) FLOPs ↓ Params

Baseline 72.2/91.1 − 5.7M 79.8/95.0 − 22.1M 81.8/95.6 − 86.4M
SCOP [49] 68.9/− 38.4% 5.7M 77.5/− 43.6% 22.1M 79.7/− 42.0% 86.4M

PoWER [18] 69.4/− 38.4% 5.7M 78.3/− 41.3% 22.1M 80.1/− 39.2% 86.4M
CP-ViT [47] 71.2/− 43.3% 5.7M 79.1/− 42.2% 22.1M 81.1/− 41.6% 86.4M
EViT [28] −/− − − 78.5/94.2 50.0% 22.1M 81.3/95.3 34.1% 86.4M
HVT [37] 69.7/89.4 46.2% 5.7M 78.0/93.8 47.8% 22.1M −/− − −

IA-RED2 [36] −/− − − 79.1/94.5 31.5% 22.1M 80.3/95.0 33.0% 86.4M
S2ViTE [9] 70.1/− 23.7% 4.2M 79.2/− 31.6% 14.6M 82.2/− 33.1% 56.8M
SPViT [21] 70.7/90.3 23.1% 4.9M 78.3/94.3 28.3% 16.4M 81.6/95.5 33.1% 62.3M
VTC-LFC 71.6/90.7 46.7% 5.1M 79.4/94.6 54.4% 17.7M 81.3/95.3 57.6% 63.5M
VTC-LFC 71.0/90.4 41.7% 4.2M 79.6/94.8 47.1% 15.3M 81.6/95.6 54.4% 56.8M

Table 2: Throughput of baselines and compressed models. ‘Speed up’ means the improvement in
throughput. ‘base’ denotes the baseline model, and ‘pruned’ is the compressed model.

Model Top1 Top5 Throughput Speed up(base/pruned) (base/pruned) (base/pruned)
DeiT-Tiny 72.2%/71.6% 91.1%/90.7% 2648.7/4496.2 69.7%
DeiT-Small 79.8%/79.4% 95.0%/94.6% 987.9/1946.3 97.0%
DeiT-Base 81.8%/81.3% 95.6%/95.3% 314.7/651.9 107.1%
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Table 3: Results of channel pruning and token pruning with different criteria on DeiT-Small. In the
column of ‘Acc1 (%)’, ‘FT’ means fine-tuning. ‘FLOPs ↓’ denotes the reduction ratio of FLOPs. It
is noted that the original NViT compresses a large-scale model to the target size (e.g. ViT-Small)
and uses extra CNN teacher models, so we implement NViT∗ to compress ViT-Small to the pruned
ViT-Small under the standard pruning setting for fair comparison here. For a clear comparison, BCP
is not applied in any experiments here.

Channel Pruning Token Pruning Acc1 (%) FLOPs ↓NViT*[60] LFS EViT[28] LFE
(baseline) (ours) (baseline) (ours) before FT after FT

× × × × 79.8 − 0.0%

X × × × 47.5 78.9 32.8%
× X × × 61.2 79.4 32.8%

× × X × 76.8 79.6 43.3%
× × × X 77.6 80.1 43.3%

X × X × 40.5 78.0 55.0%
× X × X 57.9 78.7 55.0%
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Figure 4: (a) results of channel pruning with two different criteria ‘NViT∗’ and ‘LFS’. (b) results after
token pruning with criteria ‘EViT’ and ‘LFE’. (c) results with different cutoff factors to determine the
cutoff frequency of low-pass filters.

4.2 Ablation Study

Effectiveness of LFS and LFE. For fair comparison to analyze the effectiveness of the proposed
LFS (for channel pruning) and LFE (for token pruning), we conduct experiments without using
BCP framework in Table 3. Two state-of-the-art methods NViT [60] and EViT [28] are selected
as baselines for channel pruning and token pruning, respectively. NViT identifies channels based
on the Taylor score and EViT selects tokens according to the attention score. The channels are
pruned globally using the manual pruning rate as NViT, and the number of tokens is determined
following the same ratio as EViT. The main difference between other methods and ours is whether to
leverage the characteristics of ViT on low-frequency components. Table 3 shows the results of only
compressing channels, tokens, and both. For channel pruning, it can be found that LFS outperforms
NViT∗ with the same FLOPs reduction. For token pruning, LFE achieves an even higher accuracy
than the original DeiT-Small. Both comparison results demonstrate the superiority of pruning based
on information in the frequency domain over using only information in the space domain. The results
of different pruning ratios for channels and tokens are displayed in Figure 4(a) and 4(b), in which the
proposed method consistently outperform the other methods under all ratios. The distributions of
importance scores for models are displayed in Appendix A.10 Fig. 5.

The influence of the cutoff factor, which determines the ratio of saved low-frequency components to
all frequency, is also analyzed. As shown in Figure 4(c), σc = 0.1 is the sweet spot, which further
proves the preference of ViT on low-frequency information. For σt, 0.85 is the best choice.
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Table 4: Automatically searching pruning ratios with BCP.‘ε’ is the hyper-parameter that controls the
performance drop caused by pruning, and ‘ρ’ is a hyper-parameter that balances channel pruning and
token pruning. All results are achieved by DeiT-Small.

ε/ρ 10/0.35 13/0.35 14/0.15 14/0.35 14/0.55 15/0.35 18/0.35

FLOPs ↓ 48.6% 54.0% 46.0% 54.4% 59.2% 55.2% 58.5%
Params 18.7M 17.8M 17.3M 17.7M 17.9M 17.4M 16.8M

Acc1 w/o FT 71.6% 69.2% 68.8% 68.3% 69.0% 66.9% 64.6%
Acc1 w/ FT 79.8% 79.3% 79.9% 79.4% 78.7% 79.1% 78.9%

Factor analysis for BCP. The pruning ratios for channels and tokens are determined by two hyper-
parameters ε and ρ. As shown in Table 4, when maintaining ρ = 0.35 and increasing ε from 10 to
18, the model parameter size will be reduced from 18.7M to 16.8M, and the performance ranges
from 79.8% to 78.9%. Similarly, when maintaining ε = 14 and increasing ρ from 0.15 to 0.55, both
the model size and the FLOPS reduction ratio are increased, while the performance is reduced from
79.9% to 78.7%. Compared with the result (78.7% accuracy and 55.0% Flops reduction ratio) without
BCP in the last row of Table 3, we can observe that BCP improves the accuracy or compression ratio
of the model, which verifies the effectiveness of the proposed BCP strategy. After comprehensively
considering the model parameters size, the FLOPS reduction ratio and model accuracy, we set the
ε = 14 and ρ = 0.35 in this paper. These two parameters can be adjusted according to specific
requirements in real-world applications.

Influence of each module. To further study how each component affects the proposed method, LFS,
LFE, and BCP are respectively removed from our scheme. The modified versions are then applied on
the same model. Since BCP will automatically adjust pruning ratios of each block, it is necessary to
introduce additional variables for controlled experiments. For a fair comparison, we keep the same
pruning ratios (determined by our VTC-LFC) of each block in all experiments. As shown in Table 5,
the proposed LFS/LFE/BCP improves the performance by 1.3%/0.6%/0.9% before fine-tuning and
0.1%/0.5%/0.2% after fine-tuning, respectively. The experimental results show the effectiveness of
the proposed modules.

Table 5: Effects of LFS, LFE, and BCP on the proposed compression method. ‘Original’ is the
original model without pruning. ‘Ours’ is the result including LFS, LFE, and BCP. ‘NvEv-P’ means
pruning globally as strategies in NViT and EViT rather than the proposed block-by-block scheme.

Model Method Acc1 (before FT) Acc1 (after FT) FLOPs ↓

DeiT-Small

Original 79.8% − 0.0%
VTC-LFC (Ours) 68.3% 79.4% 54.4%

w/o LFS (LFS→NViT∗) 67.0% 79.3% 54.4%
w/o LFE (LFE→EViT) 67.7% 78.9% 54.4%

w/o BCP (BCP→NvEv-P) 67.4% 79.2% 54.4%

Influence of pruning sequence. The main reason for pruning from the first block to the last one is
that the pruning in previous blocks will change the inputs of their subsequent blocks, which may
influence the value of our proposed LFS and LFE. If the last block is pruned first, the selected
channels and tokens in this block will need to be re-adjusted when former blocks are compressed.
Instead, if the former blocks are pruned firstly, the inputs for the subsequent blocks are fixed. Both
pipelines are executed and compared on DeiT-Small, and the results shown in Table 6 demonstrate
the advantage of the proposed buttom-up (from first to last) pipeline.

Table 6: Pruning with different sequences. ‘Bottom-up’ means pruning from the first block to the last
one while‘Top-down’ denotes pruning from the last block to the first one.

Pipeline Top1/Top5 w/o FT Top1/Top5 w/ FT FLOPs Params
Bottom-up (Ours) 68.3/89.1 79.4/94.6 2.1G 17.7M

Top-down 68.2/89.0 78.9/94.5 2.1G 17.6M
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Influence of hyper-parameter λ. The hyper-parameter λ used to balance different terms in LFS
during compression is analyzed here. As listed in Table 7, the models pruned with different λ values
are evaluated after pruning. It can be found that the model achieves the best accuracy when λ is 0.1.
In addition, the proposed method is not very sensitive to the value of λ (λ > 0).

Table 7: Pruning 20% channels with different λ.

Hyper-parameter λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Top1 accuracy after pruning 65.90 69.76 69.70 69.73 69.73 69.70 69.67 69.67

Compression on other ViT models. In addition to DeiT models, the proposed method is also
evaluated on LV-ViT [24] and window-based attention model Swin [32], in which the pruned
models are fine-tuned for 150 epochs, respectively. Specifically, due to the token downsampling
and the window shifting, token pruning is not adapted to Swin yet so that only channel pruning
is adopted on Swin. To simplify, the token labels in the original LV-ViT are not used during fine-
tuning. For LV-ViT, our method obtains 0.3% higher (81.8% vs 81.5%) performance and 0.1G lower
FLOPs (3.2G vs 3.3G) than the combination of existing channel pruning (NViT) and token pruning
(EViT) approaches. On Swin, the proposed VTC-LFC achieves 0.2/3.1% higher accuracy than the
previous SPViT [21]/STEP [27] with fewer FLOPs (3.3G vs 3.4G/3.5G) and parameters (17.1M vs
25.8M/23.6M). The results shown in Table 8 demonstrate that proposed method can still achieve
better performance as well as lower FLOPs than previous approaches on other ViT architectures.

Table 8: Results for LV-ViT and Swin Transformer backbones on the ImageNet-1k.

Model Method Top1(%) Top5 (%) FLOPs (G) Params (M)

LV-ViT-S
Original 83.2 96.3 6.5 25.8

NViT*+EViT 81.5 95.3 3.3 20.2
VTC-LFC (Ours) 81.8 95.6 3.2 20.2

Swin-Tiny
Original 81.1 95.5 4.5 28.3

STEP [27] 77.2 93.6 3.5 23.6
SPViT [21] 80.1 95.0 3.4 25.8

VTC-LFC (Ours) 80.3 95.0 3.3 17.1

5 Conclusion and Discussion

This paper reveals the disadvantages of pruning ViTs only in the spatial domain and takes advantage
of the preference of ViTs for low-frequency information to conduct compression. Two metrics, low-
frequency sensitivity and low-frequency energy are proposed to leverage knowledge in the frequency
domain for better channel pruning and token pruning. The comparison with the spatial domain
pruning approaches proves that the proposed method can identify the informative channels and tokens
more precisely, thus better maintaining the model accuracy. Additionally, with the proposed bottom-
up cascade pruning strategy, both channels and tokens are automatically compressed in a unified
framework. Extensive experiments of different models on ImageNet demonstrate that more than half
of computational costs are saved from ViTs, with significant improvements in inference efficiency.
The comparison with the latest compression methods shows the superiority (better performance and
more FLOPs reduction) of the proposed approach. As a preliminary study about pruning ViTs with
the frequency domain, more efficient ways and deeper studies are expected to be explored based on it.
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type of GPUs, internal cluster, or cloud provider)? [Yes] We describe the details of
computation resources in Section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We used publicly

available data, i.e., ImageNet, in our experiments. We cited the corresponding papers
published by the creators in Section 4.

(b) Did you mention the license of the assets? [N/A] The license of ImageNet is included
in the paper that we have cited.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
The ImageNet we used are publicly available.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We did not collect/curate new data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] All ImageNet datasets are already publicly
available and broadly adopted. We do not think there are any issues of personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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