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Abstract

Motivated by the statistical and computational challenges of computing Wasser-
stein distances in high-dimensional contexts, machine learning researchers have
defined modified Wasserstein distances based on computing distances between
one-dimensional projections of the measures. Different choices of how to aggregate
these projected distances (averaging, random sampling, maximizing) give rise to
different distances, requiring different statistical analyses. We define the Sliced
Wasserstein Process, a stochastic process defined by the empirical Wasserstein dis-
tance between projections of empirical probability measures to all one-dimensional
subspaces, and prove a uniform distributional limit theorem for this process. As a
result, we obtain a unified framework in which to prove sample complexity and
distributional limit results for all Wasserstein distances based on one-dimensional
projections. We illustrate these results on a number of examples where no distribu-
tional limits were previously known.

1 Introduction

The Wasserstein distances have become useful tools in machine learning and data science, with
applications in transfer learning [6, 33], generative modeling [4, 19], statistics [8, 20], and various
scientific domains [36, 44]. Despite the popularity of these distances, they suffer from serious
drawbacks in high dimensions. From a statistical standpoint, estimating the Wasserstein distances
from data suffers from the curse of dimensionality, with convergence rates degrading sharply as the
dimension increases [16, 29, 37, 43]. From a computational standpoint, despite recent algorithmic
advances [1, 7], the best algorithms for approximately computing general Wasserstein distances
between distributions supported on n points in Rd for d ≥ 2 have running times scaling quadratically
in n, which is prohibitive on very large data sets. These deficiencies have motivated the development
of modifications of the Wasserstein distances which reduce the high-dimensional case to a series of
one-dimensional problems.

Given two compactly supported probability distributions P and Q in Rd, we write Pu and Qu for
the projections of P and Q onto the one-dimensional subspace spanned by u, for any u ∈ Sd−1.
Explicitly, if X ∼ P , we let Pu denote the law of u>X . The measures Pu and Qu are probability
distributions on R obtained by collapsing P and Q to the one-dimensional “slice” in the direction
of u. Crucially, no matter how large d is, the Wasserstein distance W p

p (Pu, Qu) between the one
dimensional measures is always easy to work with: it can be estimated from data at the rate that is
independent of the dimension, and if Pu and Qu are supported on n points, then W p

p (Pu, Qu) can be
computed in nearly linear time by a simple sorting procedure.

This observation has given rise to a number of different proposals for defining a distance between
P and Q by aggregating the one-dimensional distances, the most prominent of which is the sliced
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Wasserstein distance [3, 32]:

SW p
p (P,Q) :=

∫
W p
p (Pu, Qu) dσ(u) , (1)

where σ denotes the uniform measure on Sd−1. Other options include:
• Discrete Sliced Wasserstein distance: ŜW

p

p(P,Q) := 1
L

∑L
i=1W

p
p (Pui , Qui), {ui} ⊆ Sd−1 [3].

•Max-Sliced Wasserstein distance: MSW p
p (P,Q) := maxu∈Sd−1 W p

p (Pu, Qu) [15, 29, 31].
• Distributional Sliced Wasserstein distance: DSW p

p (P,Q) := supτ∈PC
∫
W p
p (Pu, Qu) dτ(u),

where PC is a subset of probability measures on Sd−1 [28].

Though the details of these techniques differ, they can be put on a common footing: if we
view the function W : u 7→W p

p (Pu, Qu) as a bounded function on Sd−1, then each of these sliced
distances takes the form F (W ) for some function F : `∞(Sd−1)→ R.

Since these distances are all based on one-dimensional projections, it is natural to conjecture that
they enjoy improved statistical performance. This conjecture has been verified in certain special
cases [25, 27, 29] However, the analysis of these distances has largely been conducted separately,
with different arguments tailored to each distance. This raises the following fundamental question: is
there a unified approach to the analysis of these distances, which provides statistical guarantees for
all of them simultaneously?

In this work, we develop such a unified approach. In addition to generalizing prior works, our
techniques allow us to prove new distributional convergence results for the sliced Wasserstein distance
and its many variants. These results make it possible to construct asymptotically valid confidence
intervals for variants of the sliced Wasserstein distances and to guarantee the validity of the bootstrap.
Prior to our work, such results were only known for the standard sliced Wasserstein distance (1) [25]
or for the sliced and max-sliced Wasserstein distances between discrete distributions [30].1

Obtaining distributional limits for empirical Wasserstein distances is an active area of research. In the
one-dimensional case, fundamental contributions were made by [10, 11, 12], and further progress has
been made in the case where one or both of the measures are discrete [14, 38, 40]. Multi-dimensional
limits were recently obtained by [9, 13], but these are not centered at the population-level quantities,
making them of limited utility for inference. However, when the distributions are very smooth,
there exist estimators with distributional limits with good centering [26]. In this work, we draw on
techniques recently proposed in [22] to obtain central limit theorems by exploiting duality.

We consider compactly supported probability measures P and Q in Rd with connected supports, and
the Wasserstein distances W p

p for p > 1. To analyze the empirical behavior of the sliced Wasserstein
distance and its variants, we define a stochastic process

Gn(u) :=
√
n(W p

p (Pnu, Qnu)−W p
p (Pu, Qu)) u ∈ Sd−1 . (2)

where Pn and Qn consist of i.i.d. samples. We may view Gn as a random element of `∞(Sd−1),
which records the deviation of the Wasserstein distance from its population counterpart along every
direction simultaneously. We call Gn the Sliced Wasserstein Process.

Our main result shows that
Gn  G ∈ `∞(Sd−1) , (3)

where G is a tight Gaussian process on Sd−1. That is, the collection of random variables√
n(W p

p (Pnu, Qnu) −W p
p (Pu, Qu)) indexed by elements of Sd−1 enjoys a uniform central limit

theorem. As is well known in the statistics literature [41], uniform central limit theorems of this type
give rise to distributional limits for any sufficiently regular functional on `∞(Sd−1) via the functional
delta method—in particular, we directly obtain distributional limit theorems for the sliced Wasserstein
distance and its many variants as a special case. Our results likewise give techniques for proving the
consistency of the bootstrap for any of the mentioned functionals as a consequence of general results
for uniform central limit theorems.

1Concurrently and independently of our work, [21] proved distributional limits for the sliced and max-sliced
Wasserstein, but not for other variants, as a byproduct of general results for distributional limits for Wasserstein
distances.

2



2 Main Result

Throughout, P and Q denote two probability distributions in Rd with compact supports, contained in
a closed ball B(0, R) around the origin. We fix a p > 1, and consider the Wasserstein distance of
order p:

W p
p (P,Q) = inf

π∈Π(P,Q)

∫
‖x− y‖p dπ(x, y) , (4)

where the infimum is taken over all couplings between P and Q. It is well known (see [42]) that this
problem possesses a dual formulation:

W p
p (P,Q) = sup

f :B(0,R)→R

∫
f dP +

∫
f c dQ , (5)

where f c denotes the c-transform: f c(y) = inf
x∈B(0,R)

‖x− y‖p − f(x). It can be shown (e.g.,[24,
Lemma 1 & 5]) that the supremum in this dual formulation is achieved, and that without loss of
generality we may assume that f satisfies f(0) = 0 and ‖f‖Lip ≤ pRp−1. We denote the class of
such functions by C, and call any maximizer a Kantorovich potential. In order to obtain Gaussian
limits, we adopt the following assumption:

(CC) For all u ∈ Sd−1, the support of Pu or Qu is an interval.

For p > 1, assumption (CC) guarantees that the supremum in (5) is achieved at a unique Kantorovich
potential in C [35, Proposition 7.18]. In the absence of this uniqueness, Gaussian limits fail to hold
for the optimal transport problem, even for discrete measures [38].

We now state our main result.

Theorem 2.1. Suppose that P and Q are two probability distributions in Rd whose supports are
contained in the closed d-ball B(0, R) for some R > 0. Assume that P and Q satisfy (CC). Let Pn
and Qm denote empirical measures consisting of n and m i.i.d. samples from P and Q, respectively.
If n/(n+m)→ λ ∈ (0, 1) as n,m→∞, then√

nm

n+m

(
W p
p (Pn·, Qm·)−W p

p (P·, Q·)
)
 G in `∞(Sd−1) , (6)

where G is a tight zero-mean Gaussian process on Sd−1 with covariance function

EG(u)G(v) =(1− λ)

∫
fu(u>x)fv(v

>x) dP (x) + λ

∫
f cu(u>y)f cv(v>y) dQ(y)

− (1− λ)

∫
fu(u>x) dP (x)

∫
fv(v

>x) dP (x)

− λ
∫
f cu(u>y) dQ(x)

∫
f cv(v>Y ) dQ(x),

(7)

where fu, fv ∈ C are the unique Kantorovich potentials for (Pu, Qu) and (Pv, Qv), respectively.

Theorem 2.1 formally includes the one-sample case as well, by taking λ = 0, 1.

Remark 2.2. The assumption of compact support guarantees that the set of Kantorovich potentials
corresponding to Pu and Qu for any u ∈ Sd−1 is uniformly Lipschitz, and is therefore a subset of a
Donsker class. If the supports of P and Q were unbounded, in order to deduce the Donsker property,
we would need additional assumptions on the 1-dimensional projections of P and Q as well as the
cost function, (see e.g. [22, Theorem 5.2]) that do not hold for p-Wasserstein distances (p > 1) in
general.

Remark 2.3. In the proof, assumption (CC) is only used to guarantee that for each u ∈ Sd−1,
there exists a unique Kantorovich potential achieving the supremum in the dual formulation of
W p
p (Pu, Qu). It is therefore possible to replace (CC) by any weaker assumption know to guarantee

uniqueness [39, 45], but we adopt (CC) because it is the simplest such assumption we are aware of.
In particular, Theorem 2.1 holds for p = 1 under the additional assumption that, for each u ∈ Sd−1,
the Kantorovich potential for W1(Pu, Qu) is unique.
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As alluded to above, Theorem 2.1 gives rise to a wealth of statistical theorems as easy corollaries.
To describe these implications, we return to the abstract setting described above: denote by W :
Sd−1 → R the function W (u) = W p

p (Pu, Qu), and consider any functional F : `∞(Sd−1) → R.
Then the distances we consider take the form F (W ). By different choices of F , we obtain the
sliced Wasserstein distance, the max-sliced Wasserstein distance, and the other variants described
above. Theorem 2.1 will allow us to compare F (W ) to its empirical counterpart F (Wnm), where
Wnm(u) = W p

p (Pnu, Qmu).

We recall the definition of directional Hadamard differentiability [34]: we say that F is directionally
Hadamard differentiable at Φ if for all sequences hn ↘ 0 and Ψn → Ψ ∈ `∞(Sd−1), the limit

lim
n→∞

F (Φ + hnΨn)− F (Φ)

hn
=: F ′Φ(Ψ)

exists. We verify in Section 3 the directional Hadamard differentiability of several examples. Under
this assumption, we have the following.
Corollary 2.4. Assume F is directionally Hadamard differentiable. Under the assumptions of
Theorem 2.1, √

nm

n+m
(F (Wnm)− F (W )) F ′W (G) .

Proof. See [34].

We also obtain a consistency result for the bootstrap, which we state for simplicity in the n = m case.
Corollary 2.5. Assume that F is directionally Hadamard differentiable, and adopt the assumptions
of Theorem 2.1. Let Pn = 1

n

∑n
i=1 δXi and Qn = 1

n

∑n
i=1 δYi , and for k � n denote by P ∗ and

Q∗ bootstrap empirical measures consisting of k i.i.d. draws from Pn and Qm, respectively, and set
W ∗ = W p

p (P ∗u , Q
∗
u). If k →∞ and k/n→ 0, then

sup
h∈BL(1)

E[h(
√
k(F (W ∗))− F (Wn))|X1, . . . , Xn, Y1, . . . , Yn]

− E[h(
√
n(F (Wn)− F (W )))]

p→ 0 ,

where BL(1) is the set of functions with bounded Lipschitz norm 1.

Proof. See [17].

Finally, when the functional F : `∞(Sd−1) → R has a linear Hadamard derivative, the resulting
statistic will again be asymptotically Gaussian. The following uniform convergence result shows that
we can consistently estimate the covariance function of G from data, which can be used to obtain
asymptotic confidence intervals in this setting.

Theorem 2.6. Under the same assumptions as Theorem 2.1, there exists an estimator {Σ̂u,v}u,v∈Sd−1

for the covariance functions {Σu,v}u,v∈Sd−1 of the limiting process G in the sense that

EP,Q sup
u,v∈Sd−1

‖Σ̂u,v − Σu,v‖∞ → 0 as n→ 0. (8)

Remark 2.7. Theorem 2.6 can be used to obtain asymptotic confidence intervals via Slutsky’s
theorem. For instance, if the functional F has a linear derivative F ′W which is of the form F ′W (Φ) =∫

Φ(u) dτ(u) for a Borel measure τ , then Theorem 2.6 implies that σ̂2 :=
∫ ∫

Σ̂u,v dτ(u) dτ(v)

converges in probability to var(F ′W (G)), and therefore that F (Wnm)±σ̂zδ/2
√

n+m
nm is an asymptotic

(1− δ) confidence interval for F (W ).

3 Applications

In this section, we focus on three of the variants we discussed—the sliced, max-sliced, and distribu-
tional sliced Wasserstein distances—and show how our main results obtained in the previous section
can be used to obtain accurate asymptotic inference for these quantities. For notational simplicity, we
focus on the case where n = m, and rescale the resulting Gaussian process by a factor of

√
2.
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3.1 Sliced Wasserstein Distance

Asymptotic and finite-sample inference for the sliced Wasserstein distance (SW) has already been
thoroughly studied by [25]. We show that we can recover some of their results from our techniques.
Their main focus was on a robustification of the SW distance, the “trimmed” SW distance, defined as

SWp,δ(P,Q) :=

(∫
Sd−1

∫ 1−δ

δ

|F−1
u (t)−G−1

u (t)|p dtdσ(u)

) 1
p

,

where σ denotes the uniform probability measure on Sd−1 and F−1
u , G−1

u are the (pseudo-)inverses
of the CDFs of Pu, Qu respectively. When δ = 0, SWp,δ reduces to the original sliced Wasserstein
distance SWp. The trimmed SW distance SWp,δ discards the mass of Pθ and Qθ above and below
the 1 − δ and δ quantiles (hence the term “trimmed”), and is therefore more robust in the face of
outliers. This robustification is necessary when P and Q are no longer assumed to have compact
supports. [25] derive Gaussian limits and bootstrap consistency for this functional.

To see how their results for the standard sliced Wasserstein distance (i.e., δ = 0) can be derived
under our stricter assumptions from Theorem 2.1, we denote by F : `∞(Sd−1)→ R the integration
functional:

F (Φ) =

∫
Φ(u) dσ(u) .

The dominated convergence theorem immediately implies that F is Hadamard differentiable, with
derivative

F ′Φ(Ψ) =

∫
Ψ(u) dσ(u) .

We obtain the following.

Theorem 3.1. Suppose that two compactly supported probability distributions P and Q in Rd satisfy
(CC). Then

√
n(SW p

p (Pn, Qn)− SW p
p (P,Q))

d→ S :=

∫
Sd−1

G(θ) dσd(θ). (9)

The random variable S is Gaussian, and by integrating (7) it can be shown that its limiting variance
agrees with the expression in [25].

3.2 Max-sliced Wasserstein distance

Unlike integration, the supremum functional is not smooth and does not possess a linear Hadamard
derivative. Write MSW p

p (P,Q) = supu∈Sd−1 W p
p (Pu, Qu), and note that MSW p

p (P,Q) = ω(W ),
where ω : `∞(Sd−1)→ R is the supremum functional. It is shown in Theorem 2.1 of [5] that ω is
Hadamard directionally differentiable with the derivative

ω′f (g) = lim
ε↓0

sup
x∈Aε(f)

g(x),

where Aε(f) := {x : f(x) ≥ sup f − ε}. Moreover, if f and g are continuous on Sd−1 with respect
to the standard Euclidean distance, then lim

ε↓0
supAε(f) g(x) = sup

x∈A0(f)

g(x) where A0(f) = {x :

f(x) = sup f}. (See Corollary 2.3 of [5])

Applying the functional delta method to ω and the uniform weak convergence (6), we note that the
limiting process G has continuous samples paths a.s., so the limiting distribution of MSW can be
written as

ω′Wp
p (W )(G) = sup

u∈A0(Wp
p (W ))

G(u). (10)

In the spiked transport model (STM), this expression can be further simplified. The STM was
introduced by [29] to formalize the situation where two distributions differ only in a low dimensional
subspace of Rd. We describe the special case of one-dimensional spike here. Fix some v ∈ Sd−1

and let X, Y ∈ L := span(v) be two random variables with different laws. Let Z be another
random variable independent of (X,Y ) and supported on the orthogonal complement L⊥ of L.
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Then we define two distributions in Rd by P := law(X + Z), Q := law(Y + Z). It is shown
there that MSW p

p (P,Q) = Wp(law(X), law(Y )) = W2(P,Q). In addition, in this model the set
Aε(W

p
p (P·, Q·)) shrinks to the singleton set {v} as ε goes down to 0. In fact, the Hadamard derivative

can be reduced to the random variable G(u), i.e. the marginal of the limiting Gaussian process G
along v. We summarize the result in the following theorem.
Theorem 3.2. Suppose that two compactly supported probability distributions P and Q in Rd fit the
spiked transport model with spike v ∈ Sd−1. Assume furthermore P and Q also satisfy (CC). Then,

√
n
(
MSW p

p,1(Pn, Qn)−MSW p
p,1(P,Q)

) d→ G(v). (11)

Remark 3.3. Note that it is not necessary for P and Q to satisfy the spiked transport model in order
to deduce the CLT of max-sliced Wasserstein. Namely, even if the set {u ∈ Sd−1 : W p

p (Pu, Qu) =
MSW (P,Q)} is not a singleton, the same proof still works but the limiting distribution is the
supremum of the Gaussian process G over the set {u ∈ Sd−1 : W p

p (Pu, Qu) = MSW (P,Q)}
which is not necessarily Gaussian. This example shows that certain functionals give rise to non-
Gaussian limits, even though the limit in (6) is Gaussian. We given an example of this behavior in the
supplementary material.

3.3 Distributional Sliced Wasserstein Distance

Proposed in [28], the distributional sliced Wasserstein distance is a generalization of sliced Wasser-
stein distance. Formally, given two probability measures P and Q on Rd with finite p-th moments
where p > 1 and a subset of probability distributions PC on Sd−1 such that Eθ,θ′∼τ |θ>θ′| ≤ C for
all τ ∈ PC for some constant C > 0, the distributional sliced p-sliced Wasserstein distance between
P and Q is defined by

DSWp(P,Q;C) := sup
τ∈PC

(∫
Sd−1

W p
p (Pθ, Qθ) dτ(θ)

)1/p

.

We may therefore write DSW p
p (P,Q;C) = ωC(FC(W )), where ωC : `∞(PC) → R is the

supremum functional and FC : `∞(Sd−1 → PC) is defined by FC(Φ)(·) :=
∫
Sd−1 Φ(u) d · (u).

The function FC is trivially Hadamard differentiable following the same argument for the standard
sliced Wasserstein distance given above. The supremum functional on `∞(PC) is also Hadamard
directionally differentiable by Theorem 2.1 of [5]. Since the composition of Hadamard differentiable
functions are still Hadamard directionally differentiable (see e.g. [2, Proposition 2.47]), under the
assumption (CC), may conclude that ωC ◦ FC is Hadamard directionally differentiable, i.e.

√
n
(
DSW p

p (Pn, Qn;C)−DSW p
p (P,Q;C)

) d→ lim
ε↓0

sup
τ∈Aε(DSWp

p (P,Q;C))

∫
Sd−1

G(θ) dτ(θ) .

(12)

4 Simulation Studies

We illustrate our distributional limit results in Monte Carlo simulations. Specifically, we investigate
the speed of convergence of the sliced Wasserstein distance and the max-sliced Wasserstein distance.
We also investigate the convergence speed of the amplitude, which provides an example of a functional
not covered in prior work.

We also illustrate the accuracy of the approximation using the re-scaled bootstrap. All simulations
were performed using Python. The Wasserstein distances as well as the sliced Wasserstein distances
were calculated using the Python package POT [18] and the max-sliced Wasserstein distances were
approximated by the Riemannian optimization method proposed in [23].

4.1 Sliced Wasserstein Distance

We present an example that concerns two different distributions with connected projections along
all directions. Consider a simple model of transport where source and target distributions P, Q are
uniform on unit sphere S2 and the unit sphere S2

(1,1,1) centered at (1, 1, 1) respectively.
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We first give an explicit representation of the theoretical limit of the example given in section 3.1. Fix
any point θ ∈ S2, the projections of P and Q along θ are uniform over (−1, 1) and (−1 + aθ, 1 + aθ)
respectively where aθ := θ1 + θ2 + θ3. Then the unique Kantorovich potential that achieves
2-Wasserstein distance between Pθ and Qθ is φθ0(x) = −2aθx. Hence, we have

√
n
(
W 2

2 (Pn·, Qn· −W 2
2 (P·, Q·)

)
 G,

where G is the mean-zero Gaussian process indexed by S2 with covariance functions

EG(u)G(v) =
8

3
auav〈u, v〉.

It follows from Theorem 3.1 that the limiting distribution of the empirical 2-Wasserstein distance is
the centered Gaussian S with variance

Var(S) =
8

3

∫
S2

∫
S2
auav〈u, v〉 dσ(u)dσ(v) ≈ 0.832.

We sample i.i.d. observations X1, . . . , Xn ∼ P and Y1, . . . , Yn ∼ Q with size n = 50, 100, 500.
This process is repeated 500 times. We then compare the finite distributions of 1-Wasserstein
distance with the theoretical limit given in section 3.1. We demonstrate the results using kernel
density estimators in Figure 1 along with the corresponding Q-Q plots. We see that the finite-sample
empirical distribution gets closer to the limiting Gaussian distribution in (9) as the sample size n
increases. In addition, we simulate the re-scaled plug-in bootstrap approximations by sampling
n = 1000 observations of P and Q. Fix some empirical SW

√
nSW 2

2 (Pn, Qn), we generate
B = 500 replications of

√
l(SW 2

2 (P̂ ∗n , Q̂
∗
n)− SW 2

2 (Pn, Qn)). The distributions of the replications
with various replacement numbers l, compared with the finite-sample empirical distribution and
the theoretical limit, are shown in Figure 2. We observe that the naive bootstrap (l = n) better
approximates the finite sample distribution compared to fewer replacements (l = n1/2, n3/4). This is
consistent with the observation of inference on finite spaces. [30]

Figure 1: Top: Comparison of the finite sample density (pale turquoise) and the limit distribution of
the empirical sliced distance (pink).
Bottom: The corresponding Q-Q plots where the red solid line indicates perfect fit.

4.2 Max-sliced Wasserstein Distance

We present an example that simulates the behavior of the max-sliced Wasserstein distance when
p = 2. We take P to be the uniform distribution on the unit sphere S2 and Q to be uniform on the
surface of ellipsoid x2/a2 + y2 + z2 = 1 where a = 8.5. We sample i.i.d. observations with size
n = 50, 100, 500 and this process is repeated 2000 times. The estimation plotted in the top part of

7



Figure 2: Bootstrap for the empirical sliced distance. Illustration of the re-scaled plug-in bootstrap
approximation (n = 1000) with replacement l ∈ {n, , n3/4, n1/2}. Finite bootstrap densities
(pale green) are compared to the corresponding finite sample density (pale turquoise) and the limit
distribution (pink).

Figure 3: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical max-sliced Wasserstein distance (pink).

Figure 3 indicates that the finite sample distributions approximate the limiting Gaussian distribution
derived in Theorem 3.2 very well even when the sample size is small.

In terms of the re-scaled bootstrap, the accuracy of the bootstrap approximation seems to be good for
all replacement numbers in this case, which is again consistent with the observation of the case when
the underlying distributions are supported in finite sets. [30] See Figure 4 for the simulation.

4.3 Amplitude

In this section, we give an example of a new functional, the amplitude, to which our theory applies.
For f ∈ `∞(Sd−1), we write amp(f) := sup f− inf f . WhenQ is chosen to be a radially symmetric
reference distribution, e.g., uniform on the sphere, the quantity

amp(W 2
2 (P·, Q·)) = sup

u∈Sd−1

W 2
2 (Pu, Qu)− inf

u∈Sd−1
W 2

2 (Pu, Qu)

is the natural measure of the radial homogeneity of P—if amp(W 2
2 (P·, Q·)) is small, then P differs

from Q by similar amounts in each direction. The amplitude functional defined on `∞(S2) is

Figure 4: Bootstrap for the empirical max-sliced Wasserstein distance. Illustration of the re-scaled
plug-in bootstrap approximation (n = 1000) with replacement l ∈ {n, n3/4, n1/2}. Finite bootstrap
densities (pale green) are compared to the corresponding finite sample density (pale turquoise) and
the limit distribution (pink).
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Figure 5: Comparison of the finite sample density (pale turquoise) and the limit distribution of the
empirical PRW (pink).
Left: P ∼ U({x

2

4 + 4y2 + z2 = 1}), Right: P ∼ U({x
2

4 + y2

4 + z2

16 = 1}). Q ∼ U(S2).

Hadamard directionally differentiable. [5]

Consider P being uniform over the surface of the ellipsoid {x2/4 + 4y2 + z2 = 1} and Q uniform
on S2. Applying Corollary 2.4 to P,Q and amp, we obtain

√
n
(
amp(W 2

2 (Pn·, Qn·))− 5/4
) d→ G((1, 0, 0)).

We simulate the density of the amplitude of empirical Wasserstein distances of 1d projections. The
finite sample density generated by n = 600 samples and theoretical limit are given in Figure 5.

Let P be uniform on {x2/4 + y2/4 + z2/16 = 1} and keep Q unchanged. Then
√
n
(
amp(W 2

2 (Pn·, Qn·))− 8/3
) d→ G((0, 0, 1))−G((0, 1, 0)).

We generate n = 600 samples according to P and Q and the result is also shown in Figure 5.

Both finite sample densities indeed converge to the theoretical Gaussian limits as the sample size
increases.

5 Conclusion

This paper defines the Sliced Wasserstein Process, a stochastic process indexed by elements of the unit
sphere Sd−1 in Rd, and shows that under regularity assumptions on P and Q, this process converges
to a tight Gaussian process on `∞(Sd−1). This convergence result, which can be viewed as a uniform
central limit theorem for the empirical Wasserstein distance along all directions simultaneously,
immediately implies distributional convergence and bootstrap consistency results for the sliced
Wasserstein distance and its variants, thereby unifying and streamlining existing proofs in the
literature and providing distributional limits for variants of the sliced Wasserstein distance for which
no such results were previously known.

An important question left open by our work is whether a similar result holds under weaker assump-
tions on P and Q. We conjecture that the compact support assumption can be lifted, though doing so
would likely require making relatively stringent tail conditions. Avoiding assumption (CC) is more
subtle, as some assumption of uniqueness of potentials is required to obtain Gaussian limits.

Finally, we anticipate that our techniques can also be applied to entropically regularized variants of
the Wasserstein distance, where empirical process theory arguments have also been central in proving
both sample complexity and distributional limit results. We leave this extension to future work.
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