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Abstract

In fair rent division, the problem is to assign rooms to roommates and fairly split
the rent based on roommates’ reported valuations for the rooms. Envy-free rent
division is the most popular application on the fair division website Spliddit. The
standard model assumes that agents can correctly report their valuations for each
room. In practice, agents may be unsure about their valuations, for example because
they have had only limited time to inspect the rooms. Our goal is to find a robust
rent division that remains fair even if agent valuations are slightly different from
the reported ones. We introduce the lexislack solution, which selects a rent division
that remains envy-free for valuations within as large a radius as possible of the
reported valuations. We also consider robustness notions for valuations that come
from a probability distribution, and use results from learning theory to show how
we can find rent divisions that (almost) maximize the probability of being envy-free,
or that minimize the expected envy. We show that an almost optimal allocation can
be identified based on polynomially many samples from the valuation distribution.
Finding the best allocation given these samples is NP-hard, but in practice such an
allocation can be found using integer linear programming.

1 Introduction

The literature on fair division of resources has produced allocation mechanisms for many domains,
such as course allocation, indivisible goods, chores, house assignment, and the selection of citizens’
assemblies [Budish, 2011, Caragiannis et al., 2019, Moulin, 2019, Flanigan et al., 2021]. But arguably
the most widely used example is rent division: this is the most popular application on the fair division
website spliddit.org [Goldman and Procaccia, 2014], where it has been used more than 30,000 times
since its launch in 2014.

Rent division deals with the common situation where a group of n future roommates are planning to
move into a house or apartment which has n rooms, one for each roommate. They will split the rent
payments among themselves. The roommates may differ in how much they are willing to pay for
different rooms. Given the room valuations of each roommate, our task is to assign the rooms, and to
decide how to split the rent. We wish to do this fairly, and so we will choose an allocation that is
envy-free: no roommate would strictly prefer to get another room, given the prices we have assigned
to those rooms. Such an allocation is guaranteed to exist [Svensson, 1983].

Let us consider an example with n = 3 roommates, and let the total rent be $1000. Table 1 shows
the valuation that each agent assigns to each room. Given this information, the algorithm in use on
Spliddit will assign Room 1 to Alice, Room 2 to Bob, and Room 3 to Charlie, charging them $100,
$500, and $400 respectively. This allocation is envy-free under the assumption (which we will make

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Room 1 Room 2 Room 3

Alice 300 400 300
Bob 300 700 0
Charlie 300 100 600
Spliddit 100 500 400
Lexislack 200 450 350

Table 1: Example of valuations. In any envy-free allocation, Alice gets room 1, Bob gets room 2, and
Charlie gets room 3. The lower rows display the price vectors selected by Spliddit’s rule (maximin)
and by our lexislack rule.
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Figure 1: Illustration of the example in Table 1. For Spliddit’s rule and for our lexislack rule, we show
the quasilinear utility (value minus price) that each agent gets from each room. The bar corresponding
to the room assigned to the agent is shaded in blue. Both rules are envy-free, and thus the blue bars
are at least high as the gray bars. Subject to envy-freeness, Spliddit’s rule maximizes the height of the
shortest blue bar. Lexislack maximizes the differences in height between the blue and the gray bars.

throughout) that agents have quasilinear utilities: their utility under an allocation is the value of their
room minus its price. For example, Alice has utility 300− 100 = 200. She does not envy the others:
Bob’s room would give her only utility 400− 500 < 200, and Charlie’s room 300− 400 < 200.

On a typical instance, there are infinitely many allocations that are envy-free. Spliddit’s algorithm
chooses the one that maximizes the utility of the worst-off agent, subject to envy-freeness [Gal et al.,
2017]. This is known as the maximin rule. In optimizing this objective, Spliddit might choose an
outcome that is only barely envy-free. In the example, Bob has utility 700−500 = 200, but he would
gain the same utility from having Alice’s room: 300−100. If, upon moving in, Bob discovers a defect
in his room and now only values it at 600, say, then he would envy Alice. Thus, the envy-freeness of
Spliddit’s allocation is not robust.

We study the rent division problem with the goal of finding allocations that are robustly envy-free,
in the sense that they remain envy-free even if valuations change slightly. For this, we introduce
the lexislack rule, which selects an envy-free allocation where the minimum “slack” (the amount by
which agent i prefers her allocation to agent j’s) is maximized lexicographically. This produces an
allocation that remains envy-free for all valuation profiles that are within a maximally large ℓ1-radius
of the reported profile. In the example of Table 1, the lexislack rule assigns the rooms in the same
way as does Spliddit, but charges the roommates $200, $450, and $350. With these prices, each agent
prefers their allocation to any other agent’s by at least 150 (see Figure 1). This means that even after
Bob’s adjustment to 600, he does not envy Alice. We show that the lexislack rule always selects an
essentially unique outcome, which can be found in polynomial time by linear programming.

This notion of robustness may not always be appropriate. Consider two perturbations with equal
ℓ1-distance to the reported valuations: one changes agent i’s valuations for all rooms by a small
amount, the other changes i’s valuation for one room by a large amount. Lexislack places equal
importance on them. But the former perturbation seems more likely: even if a player is uncertain
about the value of a room, that value is more likely to be close to their best estimate than further
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away. Thus, arguably, different valuation profiles should be weighted differently: we do not want to
sacrifice envy-freeness for a likely perturbation in order to obtain it for an unlikely perturbation.

To capture this idea, we propose to add noise — such as Gaussian noise — around the reported
valuations. This way, we impute a probability distribution D over valuations. In this setting, our
interpretation of robustness is to look for allocations that are envy-free with maximum probability.
However, it is not clear how one could efficiently find the most robust allocation given the noisy
valuations. As part of our methodological contribution, we propose an approach based on synthetic
sampling. Specifically, we sample a number of valuation profiles from D, and then find an allocation
that is optimal on this sample using integer linear programming (ILP). By calculating the VC
dimension of the space of rent divisions, we give polynomial sample complexity bounds that show
how many samples are sufficient so that this approach identifies an almost optimal allocation with high
probability. Note that the samples are synthetic, but low sample complexity is crucial nevertheless: a
small number of samples leads to a sufficiently small ILP that, as we show, can be optimally solved
in practice (even though we prove that the problem is NP-complete).

We also show that one can use the sampling approach to find an allocation that minimizes the expected
amount by which one agent envies another. In contrast to maximizing the probability of envy-freeness,
the minimum envy objective places more emphasis on avoiding bad violations of envy-freeness.

An advantage of our sampling-based approach is that it is very general and does not place any
restrictions on the distribution D. Our algorithms could also be used for rent division problems with
uncertainty, where agents might explicitly report distributions over their valuations. For example, a
Spliddit-like user interface could let agents report their valuations as a range rather than a number.

We end with some experiments on data taken from Spliddit. They suggest that our three new rules
significantly outperform the Spliddit maximin rule on robustness metrics. Interestingly, the lexislack
solution does comparably well to the rules based on sampling. Given its conceptual simplicity and
easy computation, this suggests lexislack as a good rule when robustness is desired.1

Related Work

The rent division model is well-studied in the economics literature [Svensson, 1983, Alkan et al.,
1991, Aragones, 1995, Su, 1999, Velez, 2018], often without assuming quasilinear utilities. That
literature includes results on the structure of the envy-free set and about strategic aspects. Computer
scientists have studied the computation of allocation rules [Gal et al., 2017, Procaccia et al., 2018].
Bei et al. [2021] study a generalization of the rent division problem.

Robustness has been studied in several areas of computational social choice, such as in voting
[Shiryaev et al., 2013], in committee elections [Bredereck et al., 2021, Gawron and Faliszewski, 2019,
Misra and Sonar, 2019], and in stable matching [Chen et al., 2019, Mai and Vazirani, 2018]. We are
not aware of such work for fair division, though Menon and Larson [2020] study a related problem of
“stability” which requires that the allocation should not change much if valuations change slightly.
For rent division, a blog post by Critch [2015] argues in favor of aiming for robustness in the rent
division problem. Critch [2015] implemented an algorithm for robust rent division that appears in
experiments to maximize the slack, but it differs from the lexislack rule, and no theoretical analysis
of this algorithm is available.

Our sampling-based approach is conceptually related to work on data-driven algorithm design [Balcan,
2020], which typically seeks to optimize the hyperparameters of an algorithm with respect to
an underlying distribution over instances, based on samples. One thing that distinguishes our
distributional setting is that we are using the samples to optimize a single solution to our problem.
Computational hardness results for problems similar to our sample-based optimization problems have
been obtained for stable matching and for Pareto-optimal assignment [Aziz et al., 2019, 2020].

2 Preliminaries: Rent Division

Let n ∈ N and write [n] = {1, . . . , n}. Let N = [n] be a set of n agents, and let R = [n] be a set of
n rooms. Without loss of generality, we let the total rent be 1. A (valuation) profile v = (vir)i∈N,r∈R

is a collection of values vir ∈ Q+, one for each agent i ∈ N and each room r ∈ R.
1A simple online tool to compare the lexislack and maximin rules is available at https://pref.tools/rent.
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A room assignment is a bijection σ : N → R, so that agent i is assigned room σ(i). Given a
valuation profile v, we say that σ is optimal if it maximizes utilitarian social welfare

∑
i∈N viσ(i).

An allocation (σ, p) is a room assignment σ together with a payment vector p = (p1, . . . , pn) ∈ Rn

with
∑

r∈R pr = 1, where pr is the rent of room r. (The value pr is usually non-negative.)

We assume that agents have quasilinear utilities. This means that if v is a valuation profile and (σ, p)
is an allocation, then agent i’s utility in this allocation is viσ(i) − pσ(i), i.e., the valuation of i for her
room σ(i) minus the room’s rent. An allocation (σ, p) is envy-free if viσ(i) − pσ(i) ⩾ vir − pr for all
i ∈ N and r ∈ R, so that each agent i weakly prefers her allocation to receiving any other room.

A solution is a function that given a valuation profile, selects a set of allocations (usually a singleton,
but ties may occur). A solution is essentially single-valued if when it selects more than one allocation,
then all agents are indifferent between them: every agent gets the same utility from all tied allocations.

The following facts are well-known [see, e.g., Velez, 2018]. We include proofs in Appendix D.1.
Theorem 2.1. (a) For every optimal room assignment σ, there are prices p so that (σ, p) is envy-free.
(b) If (σ, p) is envy-free then σ is optimal.
(c) Let σ1, σ2 be optimal room assignments, and let (σ1, p) be an envy-free allocation. Then (σ2, p)
is also an envy-free allocation, with all agents indifferent between the two: viσ1(i) − pσ1(i) =
viσ2(i) − pσ2(i) for all i ∈ N .

Theorem 2.1(a) implies that an envy-free allocation exists for all valuation profiles. We can compute
one in polynomial time: find an optimal room assignment σ using bipartite matching, then use linear
programming to find prices p that make the allocation envy-free [Gal et al., 2017]. Theorem 2.1(c)
implies that when selecting among envy-free allocations, we can restrict attention to any fixed σ
and only vary the price vector p. By Theorem 2.1(c), all utility vectors achievable in an envy-free
allocation are achieved by allocations of this form.

3 The Lexislack Solution

We start by considering a common form of robustness: we look for allocations that remain fair for
all valuations that are within some radius of input valuations, for as large a radius as possible. Thus,
unlike in later sections, we do not assume that valuations come from a probability distribution.

Let v be a valuation profile, fixed throughout. Let (σ, p) be an allocation. For i ∈ N and r ∈ R, let

∆ir(σ, p) = (viσ(i) − pσ(i))− (vir − pr).

Then define the slack of this allocation as

slack(σ, p) = mini∈N minr ̸=σ(i) ∆ir(σ, p).

Thus, an allocation has positive slack if every agent strictly prefers their allocation to all other agents’
allocations. An allocation (σ, p) is envy-free if and only if slack(σ, p) ⩾ 0.

Slack is a measure of how robustly fair an allocation is, which we formalize in the following result.
Proposition 3.1. Let (σ, p) be an envy-free allocation with slack(σ, p) = s ⩾ 0. If v′ is a valuation
profile that is s-close to v in the sense that

∥vi − v′i∥1 =
∑

r∈R |vir − v′ir| ⩽ s

for all i ∈ N , then (σ, p) is also envy-free under v′.

Proof. Let i, j ∈ N . Then
∑

r∈R |vir − v′ir| ⩽ s implies

(viσ(i) − v′iσ(i)) + (v′iσ(j) − viσ(j)) ⩽ s (1)

Adding pσ(j) − pσ(i) to both sides and rearranging, we get

(v′iσ(i) − pσ(i))− (v′iσ(j) − pσ(j)) ⩾ (viσ(i) − pσ(i))− (viσ(j) − pσ(j))− s ⩾ 0

where the last inequality is by definition of slack. Thus, i does not envy j under v′. Since i and j
were arbitrary, it follows that (σ, p) is envy-free under v′.
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One can also prove variants of Proposition 3.1. For example, ∥vi − v′i∥∞ ⩽ s/2 also implies (1).2

If we wish to ensure robustness in a sense like in Proposition 3.1, this suggests the following rule:
maxislack(v) = argmax(σ,p) slack(σ, p).

This rule always selects an envy-free allocation: since envy-free allocations exist for every v, there
exists an allocation with non-negative slack, and hence the maxislack solution also has non-negative
slack. A maxislack solution can be found in polynomial time by computing an optimal assignment σ
and then solving the following LP:

max L subject to (viσ(i) − pσ(i))− (viσ(j) − pσ(j)) ⩾ L ∀i ̸= j and
∑

r∈R pr = 1.

However, there are a few drawbacks to the maxislack rule. First, the rule is not essentially single-
valued: there may be several maxislack allocations which induce different utilities. This is unlike
Spliddit’s maximin rule which is essentially single-valued [Alkan et al., 1991]. Second, there may be
maxislack allocations that do not maximize robustness for all agents. To see this, suppose that two
agents i1 and i2 agree on the valuation of every room. Then in any envy-free allocation, the utility
they assign to the two bundles allocated to them is equal. Hence the maximum slack attainable is
0, and so every envy-free allocation is maxislack. However, there may be allocations for which the
slack between other pairs of agents is larger than 0, and such allocations are more robustly fair.

In this spirit, to obtain robustness for a larger collection of agents (or of agent pairs), we can
refine the maxislack solution using a leximin strategy. We call the resulting solution the lexislack
rule. The lexislack rule selects an allocation (σ, p) that maximizes the smallest of the n2 values
(∆ir(σ, p))i∈N,r∈R, and subject to that maximizes the second-smallest of these values, and so on.

In contrast to maxislack, the lexislack rule is essentially single-valued. The proof is in Appendix D.2.
Theorem 3.2. The lexislack rule is essentially single-valued.

In addition, this rule remains efficiently computable.
Theorem 3.3. A lexislack allocation can be found in poly time by solving O(n4) linear programs.

Proof sketch. This can be done using standard techniques [see Kurokawa et al., 2018, Section 5]. We
give an overview of the algorithm. Start by computing an optimal σ. We will decide on the best value
of ∆ir one-by-one. Let F ← ∅ be the set of (i, r) pairs for which we have fixed their value. Use
linear programming to find a price vector such that (σ, p) maximizes the smallest of the non-fixed
values ∆ir, subject to keeping the other ∆ir at their fixed value. Say the optimum is L. Now we need
to find a pair (i, r) ̸∈ F such that necessarily ∆ir = L in any lexislack allocation. This can again be
done by linear programs that check whether it is possible that ∆ir > L. One can show that at least
one such pair (i, r) ̸∈ F must exist; we then add it to F and fix its value to L, and repeat.

4 Maximizing Probability of Envy-Freeness

In the previous section, we defined robustness using a measure of closeness based on the ℓ1-distance.
We now look at a more flexible model where true valuations are assumed to be noisy perturbations
of the reported ones. A distribution D over valuations v, therefore, is obtained by asking agents for
valuations, and then adding noise (e.g., Gaussian or uniform) around those valuations. Our goal will
be to find an allocation (σ, p) that maximizes the probability of being envy-free with respect to D,
i.e., one that maximizes

EFrateD(σ, p) = Prv∼D[(σ, p) is envy-free under v].

Our algorithmic approach for finding an allocation with high probability of envy-freeness is to obtain
a sample S of m valuation profiles sampled from D, and to compute an allocation that is envy-free
on the most profiles in S, i.e., one that maximizes

EFrateS(σ, p) =
1
m · |{v ∈ S : (σ, p) is envy-free under v}|.

If the number m of samples is sufficiently high, we may hope that the best allocation on the sample
S is also approximately the best on the distribution D. In this section, we will give a bound for the
sample size m to be sufficient to ensure this property, and then we will discuss the computational
problem of finding the best allocation for a given sample.

2In future work, it may be interesting to study rules that explicitly maximize robustness defined with respect
to ℓ∞-distance rather than ℓ1.
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4.1 Sample Complexity

In this section, we will give an upper bound on the number of samples required to guarantee that the
allocation that maximizes EFrateS also (almost) maximizes EFrateD, with high probability.

Theorem 4.1. Let ε, δ > 0. There is a value m ∈ N with

m = O

(
n2 log n+ log(1/δ)

ε2

)
such that for every probability distribution D over valuation profiles, if S is a collection of at least
m samples drawn i.i.d. from D, and (σ∗, p∗) is the allocation that maximizes EFrateS , then with
probability at least 1− δ,

EFrateD(σ∗, p∗) ⩾ max(σ,p) EFrateD(σ, p)− ε.

We prove this theorem by adapting standard tools from learning theory. Let X be any set, with an
unknown ground truth labeling τ : X → {0, 1}. A hypothesis is a function h : X → {0, 1}. Given a
sample S = (x1, . . . , xm) of m elements of X (not necessarily distinct), write errS(h) =

1
m |{xi :

h(xi) ̸= τ(xi)}| for the fraction of samples that h labeled incorrectly. For a probability distribution
D over X , write errD(h) = Prx∼D[h(x) ̸= τ(x)] for the probability that h incorrectly labels a point
sampled from D.

A hypothesis class H is a set of hypotheses. Given a random sample S drawn i.i.d. from D, and
knowledge of the true labeling τ of those samples, our goal is to find a hypothesis h ∈ H that
approximately minimizes errD(h), with high probability. Note that the ground truth τ , interpreted
as a hypothesis, need not be a member ofH. In learning theory, this setup corresponds to “agnostic
PAC learning”, where the “realizability assumption” is not required to hold [Shalev-Shwartz and
Ben-David, 2014, Section 3.2].

We say that a set C ⊆ X is shattered by H if for all S ⊆ C, there exists h ∈ H with h(x) = 1 if
x ∈ S and h(x) = 0 if x ∈ C \S. In other words, if we restrict the hypotheses inH to the set C, then
all possible labelings of C are part ofH. The VC dimension VCdim(H) ofH is the cardinality of the
largest subset of X that is shattered byH. We are interested in VC dimension due to the following
standard result, adapted from Shalev-Shwartz and Ben-David [2014, Theorem 6.8], which says that
PAC learning is possible on hypothesis classes of finite VC dimension.

Theorem 4.2. Let ε, δ > 0. Let H be a hypothesis class with VCdim(H) = d. Then there exists a
value m ∈ N with

m = O

(
d+ log(1/δ)

ε2

)
such that for every probability distribution D over X , if S is a collection of at least m samples drawn
i.i.d. from D, and h∗ ∈ H is the hypothesis that minimizes errS , then with probability at least 1− δ,

errD(h∗) ⩽ minh∈H errD(h) + ε.

For our application, we let X be the set of all valuation profiles v. The “correct” labeling is τ(v) = 1
for all v. We identify allocations with hypotheses: For an allocation (σ, p), we define the hypothesis
h(σ,p) so that for each v,

h(σ,p)(v) =

{
1 if (σ, p) is envy-free under v,
0 otherwise.

By these definitions, we have that for all S and D,

EFrateS(σ, p) = 1− errS(h(σ,p)), and

EFrateD(σ, p) = 1− errD(h(σ,p)).

We study the hypothesis classH of all such hypotheses:

H = {h(σ,p) : allocations (σ, p)}.

To bound its VC dimension, the following result is useful:
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Lemma 4.3 (Shalev-Shwartz and Ben-David, 2014, Exercise 6.11). LetH1, . . . ,Ht be hypothesis
classes over X , with VCdim(Hi) ⩽ d for each i = 1, . . . , t. Then

VCdim(H1 ∪ · · · ∪ Ht) ⩽ 4d log(2d) + 2 log(t).

We can now bound the VC dimension ofH.
Lemma 4.4. VCdim(H) = O(n2 log n).

Proof. For each room assignment σ, define the hypothesis classHσ = {h(σ,p) : p ∈ Rn} correspond-
ing to allocations whose room assignment is σ. ThenH =

⋃
σHσ where the union ranges over all

room assignments. We will show that VCdim(Hσ) ⩽ n2 for each σ. Since there are n! different room
assignments and log n! = O(n log n), it follows from Lemma 4.3 that VCdim(H) = O(n2 log n), as
required.

Let σ be a room assignment. Without loss of generality assume that σ(i) = i. Let d ⩾ n2 + 1.
Consider a collection of d distinct valuation profiles v(1), . . . , v(d). We show that this collection
cannot be shattered byHσ .

For i, j ∈ N , say v(k) is uniquely restricting for (i, j) if

v
(k)
ij − v

(k)
ii > v

(ℓ)
ij − v

(ℓ)
ii for all ℓ ̸= k.

Thus, such a profile uniquely maximizes the amount by which agent i prefers j’s room to her own
room, ignoring prices. Clearly, for any pair i, j ∈ N , at most one profile can be uniquely restricting
for it. Since there are n2 many pairs (i, j) and d > n2, there is at least one profile which is not
uniquely restricting for any pair, say v(1).

We now ask if there is an allocation (σ, p) that is envy-free under v(2), . . . , v(d), but not envy-free
under v(1). We show that the answer is no, soHσ fails to shatter this collection.

Assume for a contradiction that (σ, p) is such an allocation. Since it is not envy-free under v(1), there
is a pair i, j ∈ N with v

(1)
ij − pj > v

(1)
ii − pi or equivalently

v
(1)
ij − v

(1)
ii > pj − pi. (2)

As v(1) is not uniquely restricting for (i, j), for some ℓ ̸= 1,

v
(ℓ)
ij − v

(ℓ)
ii ⩾ v

(1)
ij − v

(1)
ii . (3)

Combining (2) and (3), it follows that v(ℓ)ij − v
(ℓ)
ii > pj − pi. Thus, (σ, p) is not envy-free under v(ℓ),

a contradiction.

Our main result in this section, Theorem 4.1, now follows immediately from Theorem 4.2.

4.2 Computational Complexity

To make use of Theorem 4.1, we need an algorithm that, given a collection S = (v(1), . . . , v(m)) of
valuation profiles sampled from D, finds an allocation that maximizes EFrateS(σ, p). This problem
can be encoded as an integer linear program via standard encoding techniques, using binary variables
xir encoding that agent i receives room r, continuous variables pr encoding the prices, and a binary
variable yℓ for each sample ℓ ∈ [m], indicating whether the produced allocation will be envy-free
under v(ℓ). The full encoding appears in Appendix B.

Instead of an ILP approach, can we hope for a polynomial time algorithm finding the best allocation?
Let us formulate our optimization problem as a decision problem as follows.

EF-RATE MAXIMIZATION
Input: Set N of agents, set R of rooms, a list of m valuation profiles v(1), . . . , v(m), number B.
Question: Does there exist an allocation that is envy-free for at least B of the m valuation profiles?

Unfortunately, this problem is computationally hard. We prove this by a reduction from CLIQUE,
given in Appendix D.3.
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Theorem 4.5. EF-RATE MAXIMIZATION is NP-complete.

There are two sources of computational difficulty for solving EF-RATE MAXIMIZATION: we have
to decide on one of the n! possible room assignments, and we have to decide on which subset of
valuation profiles we are aiming to be envy-free on. But in practice, there is a way to avoid the first
source of hardness. Suppose the m valuation profiles are sampled from a continuous distribution D.
Then with probability 1, for each sampled profile v(ℓ) there is a unique optimal room assignment
σ(ℓ). Any solution to the EF-rate maximization problem must use a room assignment that is optimal
for at least one of the given valuation profiles. Thus, at most m different room assignments are
candidates, and we can find an optimal solution using m calls to the following problem (one call for
each candidate assignment σ(ℓ)):

EF-RATE MAXIMIZATION WITH FIXED ASSIGNMENT
Input: A list of m valuation profiles v(1), . . . , v(m), number B, room assignment σ.
Question: Is there a price vector p such that (σ, p) is envy-free for at least B of the m valuation
profiles?

Unfortunately, this version of the problem is also hard, and so this trick for continuous distributions
does not help. We prove this by reduction from the feedback arc set problem in Appendix D.4.
Theorem 4.6. EF-RATE MAXIMIZATION WITH FIXED ASSIGNMENT is NP-complete.

Nevertheless, as we show in Section 6, we can solve this problem in practice using integer linear
programming (ILP). The reason this is possible is that the sample complexity is relatively low, leading
to an ILP of practical size.

5 Minimizing Expected Envy

In Section 4, we defined robust envy-freeness as allocations that have a high probability of being
envy-free when valuations come from a given distribution D. In this section, we consider a different
objective function that is more fine-grained. In measuring the probability of envy-freeness, we
implicitly treat all failures of envy-freeness equally. We will now minimize expected envy, which
treats cases where one agent envies another by a lot as more severe.

Given a valuation profile v and an allocation (σ, p), we define the allocation’s (maximum) envy,
envyv(σ, p), to be

max

{
0, max

i,j∈N

[
(viσ(j) − pσ(j))− (viσ(i) − pσ(i))

]}
.

This quantity, which is related to slack as considered in Section 3, measures the biggest amount by
which one agent prefers another’s bundle. In principle one could allow negative values of envyv(σ, p)
for allocations that have positive slack, but we chose to force these values to be non-negative, since
our focus is on avoiding envy. Note that an allocation is envy-free if and only if envyv(σ, p) = 0.

Our goal in this section is to find an allocation minimizing the expected envy with respect to D,
defined as

envyD(σ, p) = Ev∼D[envyv(σ, p)].

Our approach will be similar to before: we obtain a sufficiently large sample S of m profiles from D
and select the allocation that does best on the sample, i.e. it minimizes

envyS(σ, p) =
1
m

∑
v∈S envyv(σ, p).

5.1 Sample Complexity

For stating our sample complexity bound, we assume that valuations v are normalized: let vir ⩾ 0 for
all i ∈ N and r ∈ R, and

∑
r∈R vir = 1 for all i ∈ N . We are going to prove the following result:

Theorem 5.1. Let ε, δ > 0, and let D be a distribution. If we draw m = O( n
ε2 log

n
εδ ) samples i.i.d.

from D and if (σ∗, p∗) minimizes envyS , then with probability at least 1− δ, we have

envyD(σ
∗, p∗) < min(σ,p) envyD(σ, p) + ε.
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Thus, if we draw sufficiently many samples, then with high probability the allocation minimizing
expected envy on the sample will, up to ε, be minimizing with respect to D.

We prove this result by discretizing the space of allocations. We then use a concentration inequality
to show that w.h.p. the expected envy with respect to D is close to the expected envy with respect to
the sample S. The proof of Theorem 5.1 appears in Appendix D.5.

Note that for this result we employed a direct approach. This technique and its discretization step
would not have worked for the envy-free rate, because two very close rent divisions can in principle
have very different EF rates. On the other hand, we expect that similar bounds for the minimum
envy objective could be obtained by using extensions of VC dimension to real-valued functions (e.g.,
pseudo-dimension).

5.2 Computational Complexity

Again, our sample complexity result needs an algorithm that finds the best allocation for a given
sample S. Like for EFrate, we can solve this problem using integer linear programming (see
Appendix B). For the formal complexity analysis, consider the following decision problem:

EXPECTED ENVY MINIMIZATION
Input: List S = (v(1), . . . , v(m)), number B.
Question: Is there (σ, p) with envyS(σ, p) ⩽ B?

This problem is again NP-complete. The proof is in Appendix D.6, by reduction from CLIQUE.

Theorem 5.2. EXPECTED ENVY MINIMIZATION is NP-complete, even for binary valuation profiles.

Interestingly, this problem becomes easy once we fix a room assignment σ, because the best price
vector can then be computed by linear programming (because the values of the integer variables in
the ILP shown in Appendix B are decided by the fixed room assignment σ). Thus, the problem can
be solved in time n! · poly(n,m), and hence is fixed-parameter tractable with respect to the number
of agents n. This is good news: instances will often have a small number of agents, but we will
want to consider as large a sample as feasible to ensure low maximum envy. In fact, as we will see
momentarily, the NP-completeness of the problem is not an obstacle in real-world instances.

6 Experiments

We evaluated our rules on user data taken from Spliddit.3 We studied distributions obtained by adding
noise to valuations. We started by selecting 1,000 instances v at random, to speed up computations.
The same selection is used for each experiment. For each instance, we normalize the rent to 1, and
normalize valuations to sum to 1. We considered three noise models, each parameterized by a choice
of noise level ε ∈ {0, 0.01, . . . , 0.09}.

v
(ℓ)
ir ∼ vir · (1 + Uniform[−ε,+ε]) (Uniform)

v
(ℓ)
ir ∼ vir · (1 + N[0, ε]) (Normal)

v
(ℓ)
ir ∼ vir · (1 + r · N[0, ε]) (Biased Normal)

In each of these noise models, valuations are increased or decreased by a random fraction. Here,
N [µ, σ] is a normal distribution with mean µ and standard deviation σ. For the biased normal noise
model, we put rooms in an arbitrary fixed order and label them with integers 0, 1, . . . , n− 1. Rooms
with a higher index have more noise.

For each noise model and choice of ε, we produced a sample S of size m = 100. We then computed
allocations maximizing EFrateS and minimizing envyS . We also computed the maximin and lexislack
rules based on the input profile v. For each of the four allocations, we calculated their value of
EFrateS , and of envyS . We then average over all 1,000 instances. The results are shown in Figure 2
for the Uniform noise model. Results for the other noise models and more details are given in
Appendix A. As expected, on each of the two metrics, the rule optimizing it does best, but all three

3This dataset was kindly provided to us in anonymized form by the maintainer of Spliddit, Nisarg Shah.
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Figure 2: Results of experiments for the Uniform noise model.

rules aiming for robustness do similarly well. Spliddit’s maximin rule does significantly worse on
our metrics. Before the experiments, we expected that lexislack would do worse for the biased noise
model, but this does not appear to be the case.

In the appendix, we also evaluate the sampling-based rules on a freshly drawn sample different
from the sample used to optimize the rules (Appendix A.2) as well as on a sample drawn from a
different probability distribution (Appendix A.3), to evaluate how sensitive these methods are to
being optimized on a small sample and to knowing the ‘right’ noise distribution. In both cases, we
find that the performance of the sampling-based methods worsens, while lexislack is still robust.
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25 0.17160645755318300 1.0435256255511200

50 0.3338383601823200 2.234362467836280

75 0.5478602743024630 3.786158517583580

100 0.7373258953432860 5.112192253226720

125 0.9362843555770820 7.976426841660090
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Figure 3: Computation time depending on sample size

Figure 3 shows average computation
time to compute allocations optimiz-
ing EFrateS and envyS , using Gurobi
9.1.2 on four threads of an AMD Ryzen
2990WX (128 GB RAM) with the ILP
formulations from Appendix B. The re-
sults were obtained for a random se-
lection of 300 Spliddit instances with
n = 4, with the Uniform noise model
for ε = 0.05, and sample sizes m vary-
ing from 1 to 125. Minimizing envy is much faster due to fewer integral variables. In Appendix A.4,
we report some additional computation times as a function of the noise parameter ε.

7 Future Directions

Our approach should be applicable to many settings beyond rent division, such as homogeneous
divisible goods, cake cutting, or even indivisible goods. For example, the lexislack rule can be adapted
to these settings, and similar results as in our distribution-based approach might be achievable.

We have shown that the lexislack rule shares some key properties with the maximin rule, such as es-
sential single-valuedness and polynomial-time computability. It would be interesting to axiomatically
contrast the two solutions, for example with respect to strategic properties like manipulability.

For our distribution-based approach, we assumed that we have access to D only via sampling. Often
we may know D more explicitly, for example if we are just adding noise to reported valuations. For
such well-behaved D, can we design direct algorithms for finding optimal allocations with respect to
our two objectives, without needing samples?
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A Experimental Results

In this section, we will present more detailed results of the experiments described in Section 6 of the
main body of the paper. We describe the results in four subsections:

• In Appendix A.1, we evaluate the rules by calculating their performance in terms of envy-
rate and expected envy on the same sample (m = 100) that we used to optimize the two
probabilistic rules (the optimization sample).

• In Appendix A.2, we evaluate the rules by calculating their performance on a fresh sample
(m = 1000) that is different from the one used to compute the rules.

• In Appendix A.3, we evaluate our probabilistic rules trained on one specific noise model
(normal noise with ε = 0.05) on the other noise models.

• In Appendix A.4 we briefly discuss computation times.

A.1 Evaluation on the Optimization Sample

When evaluating the rules based on the optimization sample (or in other terminology, if we take the
test set to be the same as the training set), then our optimizing rules are optimal by definition. Indeed,
in each of the charts, we can see that the maxprob rule (maximizing the probability of envy-freeness)
has the best performance out of all the rules with respect to the probability of envy-freeness; and
analogously for the minenvy rule and the envy objective. When evaluating on the optimization sample,
we see that the respective optimizing rule outperforms lexislack, but only by a modest amount.

In all the charts, error bars show standard errors, which are small due to the large number of instances.

A.1.1 Uniform Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
minenvy

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
minenvy

A.1.2 Normal Noise
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A.1.3 Biased Normal Noise
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A.2 Evaluation on a Fresh Sample

For these charts, we drew a fresh sample of size m = 1000, and calculated the values EFrateS and
envyS with respect to this fresh sample. (Since evaluation is much cheaper than optimization, it is no
problem to use a large sample size.) We see that the advantage of the optimizing rules over lexislack
shrinks or disappears. The minenvy rule performs the same as lexislack for the uniform and normal
noise models with respect to the envy objective, though it outperforms lexislack by an extremely small
amount for the biased normal noise model. On the other hand, surprisingly, the maxprob rule does
strictly worse than both the minenvy and lexislack rules, on the probability objective. This suggests
that the sample size of m = 100 was too small to allow the maxprop rule to properly generalize to
the underlying noise distribution.
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A.2.2 Normal Noise
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A.2.3 Biased Normal Noise
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A.3 Evaluation of Rules Trained on a Different Distribution

Like in the previous subsection, the following charts are with respect to a fresh sample of size
m = 1000. However, in each chart, we now add two ‘new’ rules, namely the allocations selected by
the maxprob and minenvy rules when optimized on samples drawn from the normal noise model with
ε = 0.05. Thus, these charts allow us to gauge the performance of the distribution-based methods
when they are optimized using the ‘wrong’ distribution.

For the probability objective and the uniform and normal noise models, not much performance is
lost. However, the rules optimized for the normal noise models perform poorly for the biased noise
models (compared to the rules optimized for that model, and also compared to lexislack). For the
envy objective, we see notably bad performance for uniform noise.
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A.3.2 Normal Noise
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A.3.3 Biased Normal Noise
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A.4 Computation Time

In Figure 4, we show that the computation time of the two probabilistic rules when we vary the
noise parameter ε of the underlying distribution. The chart is based on computations involving 1000
instances from spliddit all with n = 4, and a sample size of m = 100. We can see that with zero
noise (ε = 0), computation is extremely fast. This is because all the 100 samples are identical, so the
ILP solver can eliminate most constraints as redundant. For positive noise (ε ⩾ 0.1), there is a very
slight increase of computation time with increased noise.
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Figure 4: Computation time as a function of the noise parameter
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B ILP Formulations

B.1 Envy-Free Rate

Write vmax = maxi,ℓ,r v
(ℓ)
ir (if we use normalized valuations, this value is at most 1). Note that an

allocation (σ, p) where pr < −vmax for some r ∈ R cannot be envy-free for any of the valuation
profiles: If r′ is a room with pr′ > 0, then the person receiving r′ values r′ at most vmax more than
room r, and hence by the price difference will envy the agent receiving room r. So in solving our
maximization problem, we can restrict attention to price vectors with pr ⩾ −vmax for all r ∈ R.
Similarly we can assume pr ⩽ vmax.

Using such price vectors, note that the envy between any pair of players is at most 3vmax. Write
M = 3vmax.

max
∑

ℓ∈[m] yℓ

s.t.
∑

r∈R xir = 1 for all i ∈ N∑
i∈N xir = 1 for all r ∈ R

v
(ℓ)
ir − pr ⩾ v

(ℓ)
ir′ − pr′ −M(1− yℓ)−M(1− xir) for all i ∈ N , r, r′ ∈ R, ℓ ∈ [m]∑

r∈R pr = 1

− vmax ⩽ pr ⩽ vmax for all r ∈ R

xir ∈ {0, 1} for all i ∈ N , r ∈ R

yℓ ∈ {0, 1} for all ℓ ∈ [m]

B.2 Minimize Expected Envy

As in the text, assume that valuations are normalized, and hence restrict attention to reasonable
allocations with −2 ⩽ pr ⩽ 2 for all r. Then envy is at most 5. Let M = 5.

min
∑

ℓ∈[m] Bℓ

s.t.
∑

r∈R xir = 1 for all i ∈ N∑
i∈N xir = 1 for all r ∈ R

(v
(ℓ)
ir′ − pr′)− (v

(ℓ)
ir − pr) ⩽ Bℓ +M(1− xir) for all i ∈ N , r, r′ ∈ R, ℓ ∈ [m]∑

r∈R pr = 1

− 2 ⩽ pr ⩽ 2 for all r ∈ R

xir ∈ {0, 1} for all i ∈ N , r ∈ R

Bℓ ⩾ 0 for all ℓ ∈ [m]

C Code

A brief overview of the code files included in the supplementary material.

rentdivisionmethods.py An implementation of the rent division methods discussed in the paper:
maximin (used on spliddit), lexislack, and the rules from the probabilistic context for
maximizing probability of envy-freeness and for minimizing expected envy. Uses Gurobi as
the underlying LP/ILP solver.

The other files are used for performing the experiments. Note that this depends on the data file from
spliddit, which we do not have permission to share.
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rentdivisionmetrics.py An implementation of metrics (envy rate, average envy, slack, social
welfare): how good is a given allocation with respect to a valuation profile, or a sample/list
of valuation profiles.

neurips-experiments-step0-select-instances.py Randomly orders the spliddit instances.
We will compute the rules for the instances in that order.

neurips-experiments-step1-compute-rules.py Computes the outcome of the various rules
on the spliddit instances. For the probabilistic rules, it goes through each model-noise
combination, draws a sample, and computes the rule on those samples. The samples used
and the rule outcomes are written to a pickle file.

neurips-experiments-step2-analyze.py The pickled results are read, and the various metrics
are computed (with respect to the previously used sample or with respect to a fresh sample)
and written to another pickle file.

neurips-experiments-step3-plot.py Plots are drawn using matplotlib.

We have included the outputs of the step2-analyze file, so that the step3-plot can be executed
using a standard python3 installation with matplotlib and numpy installed.

D Omitted Proofs

D.1 Proof of Theorem 2.1

Theorem. (a) For every optimal room assignment σ, there are prices p so that (σ, p) is envy-free.
(b) If (σ, p) is envy-free then σ is optimal.
(c) Let σ1, σ2 be optimal room assignments, and let (σ1, p) be an envy-free allocation. Then (σ2, p)
is also an envy-free allocation, with all agents indifferent between the two: viσ1(i) − pσ1(i) =
viσ2(i) − pσ2(i) for all i ∈ N .

Proof. (a) An optimal room assignment σ forms a solution to the standard assignment problem [see,
e.g., Wolsey, 1998, Section 4.3]. The dual of the assignment problem LP is

min
∑
i∈N

qi +
∑
r∈R

pr s.t. qi + pr ⩾ vir for i ∈ N , r ∈ R.

Since σ is an optimal room assignment, by complementary slackness there exists a solution (qi), (pr)
to the dual program where qi + pσ(i) = viσ(i) for each i ∈ N . Thus

viσ(i) − pσ(i) = qi ⩾ vir − pr for all i ∈ N , r ∈ R,

using dual feasibility. Thus (pr) is an envy-free price vector, but we must ensure that
∑

r∈R pr = 1,
which we can do by adding a constant to each pr. This preserves envy-freeness.

(b) Suppose (σ, p) is envy-free and σ′ is any room assignment. Then
∑

i∈N viσ(i) ⩾
∑

i∈N (viσ′(i)−
pσ′(i) + pσ(i)) = (

∑
i∈N viσ′(i))− 1 + 1 =

∑
i∈N viσ′(i), where the inequality follows from envy-

freeness. Thus σ has at least the welfare of σ′. Since σ′ was arbitrary, σ is an optimal assignment.

(c) We show viσ1(i)−pσ1(i) = viσ2(i)−pσ2(i) for i ∈ N . From this, envy-freeness of (σ2, p) follows
immediately. We have viσ1(i) − pσ1(i) ⩾ viσ2(i) − pσ2(i) for all i ∈ N since (σ1, p) is envy-free.
Sum these inequalities to get

(
∑

i∈N viσ1(i))− 1 ⩾ (
∑

i∈N viσ2(i))− 1.

But the two sides of this inequality are equal, since both σ1 and σ2 are optimal. Hence each inequality
is satisfied with equality, as required.

D.2 Proof of Theorem 3.2

Theorem. The lexislack rule is essentially single-valued.

Proof. For now, fix an optimal room assignment σ. We show that there is a unique price vector p
such that (σ, p) is a lexislack solution. Because the leximin relation over vectors is strictly convex,
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there is a unique vector ∆ = (∆ir(σ, p))i∈N,r∈R maximizing the leximin objective, since if there
were two different ones, a convex combination of the two would be strictly better. But ∆ uniquely
specifies a price vector: ∆ specifies the differences pr − pr′ between any pair of prices, and with∑

r pr = 1 this gives a unique price vector.

Next, we show that if σ1 and σ2 are optimal room assignments, and (σ1, p) is an envy-free allocation,
then ∆(σ1, p) = ∆(σ2, p). By Theorem 2.1(c), (σ2, p) is an allocation where every agent obtains
the same utility as under (σ1, p). Let i ∈ N . If σ1(i) = σ2(i), then clearly the values ∆ir are the
same in both allocations. If r1 = σ1(i) ̸= σ2(i) = r2, then equal utility under both allocations
implies vir1 − pr1 = vir2 − pr2 , and hence ∆ir2(σ1, p) = 0 and ∆ir1(σ2, p) = 0. By definition,
also ∆ir1(σ1, p) = ∆ir2(σ2, p) = 0, so the values of ∆ir1 and ∆ir2 agree on both allocations. For
r ∈ R\{r1, r2}, we have that the value of ∆ir agrees on both allocations by the equal utility property.
Hence ∆(σ1, p) = ∆(σ2, p).

Thus, any vector ∆ ⩾ 0 achievable on one optimal room assignment can be achieved on any other
optimal room assignment, with the same utility vector. This holds in particular for the lexislack vector
∆. We have seen that for any fixed room assignment, there is a unique lexislack utility vector. Hence
the lexislack utility vector is unique.

D.3 Proof of Theorem 4.5

Theorem. EF-RATE MAXIMIZATION is NP-complete, even for binary valuation profiles (where
vir ∈ {0, 1} for all i andr).

Proof. Membership in NP is clear. We give a reduction from CLIQUE. Let G = (V,E) be a graph
with n vertices and m edges and let k be the target clique size.

We make each vertex an agent, N = V . The set of rooms is R = {r1, . . . , rk, d1, . . . , dn−k}
consisting of k slot rooms and of n− k dummy rooms. Writing E = {e1, . . . , em}, we construct m
valuation profiles, one per edge. For ℓ ∈ [m], write eℓ = {u, v}; the valuation profile v(ℓ) is defined
by

v
(ℓ)
i,r =

{
1 if i ∈ {u, v} and r ∈ {r1, . . . , rk},
0 otherwise.

Thus, in the ℓth valuation profile, the two agents corresponding to the endpoints of the ℓth edge want
to be in a slot room. All other agents do not care. Finally, set B =

(
k
2

)
.

We prove that G has a k-clique iff there is an allocation that is envy-free in at least B of the valuation
profiles.

(⇐): Suppose (σ, p) is envy-free for B profiles. Let C ⊆ V be the set of k agents/vertices that are
assigned to slot rooms under σ; write C = {i1, . . . , ik}. Let ℓ1, . . . , ℓB be the collection of indices
corresponding to valuation profiles under which the allocation is envy-free. We claim that C is a
clique, by showing that eℓt ⊆ C for each t ∈ [B]. This suffices since a set of k vertices with

(
k
2

)
edges is a clique.

Let t ∈ [B]. Since (σ, p) is envy-free under v(ℓt), by Theorem 2.1(b), σ is optimal under v(ℓt). This
implies that σ has welfare 2, which happens only if both endpoints of edge eℓt get a slot room. So by
definition of C, eℓt ⊆ C, as desired.

(⇒): Suppose there is a clique C ⊆ V of size k in G; write C = {i1, . . . , ik}. Make a room
assignment σ in which we assign agent is to slot room rs, for each s ∈ [k]. The remaining agents
can be assigned arbitrarily to dummy rooms. We set pr = 1

n for each r ∈ R.

Write eℓ1 , . . . , eℓB for the set of edges within C; there are exactly B of them since C is a clique. Let
t ∈ [B], and write eℓt = {ia, ib}. We show that (σ, p) is envy-free under v(ℓt). All agents except
ia and ib are indifferent between all rooms, and since all rents are the same, they are not envious.
Agents ia and ib both receive a room that they most prefer, and since all rents are the same, they are
not envious.

D.4 Proof of Theorem 4.6

Theorem. EF-RATE MAXIMIZATION WITH FIXED ASSIGNMENT is NP-complete.
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Proof. Membership in NP is clear. We give a reduction from FEEDBACK ARC SET, which can be
stated as follows.

Input: Digraph D = (V,E), number B.
Question: Is there an ordering (x1, . . . , xn) of V such that at least B arcs from E point from left
to right? (An arc (xk → xs) ∈ E points from left to right if k < s.)

Consider an instance of this problem: Let D = (V,E) be a digraph and let B be a number. We
construct a rent division instance where V is both the set of agents and of rooms. Let σ(x) = x be
the identity room assignment.

Let ε = 2/(n(n+ 1)), chosen so that ε+ 2ε+ · · ·+ nε = 1.

Label the arc set E = {a1, . . . , am}. We define one valuation profile for each arc aℓ = (x → y),
with

v(ℓ)xy = 1 + ε, v(ℓ)zz = 1 for all z ∈ V ,

and valuation 0 for all unspecified combinations.

We now prove that there is an ordering (x1, . . . , xn) of V with at least B arcs pointing from left to
right if and only if there exists a price vector p that makes the identity room assignment σ envy-free
in at least B of the valuation profiles.

(⇒): Let (x1, . . . , xn) of V be an ordering such that (wlog) the arcs a1, . . . , aB point from left to
right.

Consider the price vector p = (ε, 2ε, . . . , nε), so room xi has rent i · ε. This is a valid price vector
because it sums up to 1 by choice of ε. We claim that this price vector is envy-free for valuation
profiles v(1), . . . , v(B). Let ℓ ∈ [B]. Since aℓ points from left to right, we have aℓ = (xk → xs) for
some k < s. First, note that any agent xi ̸= xk does not envy another agent because xi values her
assigned room xi at utility 1 higher than other rooms, which avoids envy because room prices differ
by less than 1. By the same argument, agent xk never envies any agent except perhaps xs. Finally,
we check that agent xk does not envy agent xs: Note that the rent of room xs is s · ε, which is at least
ε higher than the rent k · ε of room xk. Since xk values room xs only ε more than her assigned room
xk, she does not envy agent xs. Thus p is envy-free for valuation profile v(ℓ), as required.

(⇐): Suppose there is a price vector p that is envy-free for valuation profiles v(1), . . . , v(B) (relabeled
for convenience). Label the vertices x1, . . . , xn in order of increasing price, i.e., such that px1 ⩽
px2 ⩽ · · · ⩽ pxn with ties broken arbitrarily. Let ℓ ∈ [B] and consider arc aℓ = (xk → xs). We
show that aℓ points from left to right, i.e., k < s. As p is envy-free for agent xk under v(ℓ), we have

v(ℓ)xk,xs
− pxs

⩽ v(ℓ)xk,xk
− pxk

⇐⇒ 1 + ε− ps ⩽ 1− pk

⇐⇒ pxs ⩾ pxk
+ ε.

In particular pxk
< pxs

. By our choice of ordering, it follows that k < s, as required.

D.5 Proof of Theorem 5.1

Theorem. Let ε, δ > 0, and let D be a distribution. If we draw m = O( n
ε2 log

n
εδ ) samples i.i.d.

from D and if (σ∗, p∗) minimizes envyS , then with probability at least 1− δ, we have

envyD(σ
∗, p∗) < min(σ,p) envyD(σ, p) + ε.

We start by proving a few technical lemmas. First, define Λ to be the set all allocations (σ, p) with
−2 ⩽ pr ⩽ 2 for all r ∈ R. We call such allocations reasonable. Our first lemma shows that we may
restrict attention to reasonable allocations only: in particular, if an allocation minimizes envyD then
it must be reasonable.
Lemma D.1. Let σ be a room assignment and v a profile.

(a) If p is a price vector with |pr − p′r| > 2 for some r, r′ ∈ R, then envyv(σ, p) > 1.

(b) If p = ( 1n , . . . ,
1
n ), then envyv(σ, p) ⩽ 1.

(c) If (σ, p) is reasonable, then envyv(σ, p) ⩽ 5.
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Proof. Note that since valuations are assumed to sum to 1, we have vir − vir′ ⩽ 1 for all r, r′ ∈ R.

(a) Say pr > pr′+2 and σ(i) = r. Since vir ⩽ vir′+1 as just noted, we have vir−pr < vir′−pr′−1.

(b) If prices for all rooms are equal, then envyv(σ, p) = max{0,maxi,j(viσ(j) − viσ(i))} ⩽
max{0, 1} = 1.

(c) |viσ(j) − viσ(i)|+ |pσ(j) − pσ(i)| ⩽ 1 + 4 = 5.

From now on, we assume all allocations to be reasonable.

Our second lemma says that if two allocations have similar price vectors, then they have similar
expected envy.

Lemma D.2. Let p, p′ ∈ Rn be such that |pr − p′r| ⩽ t for all r ∈ R. Then for any sample S and
distribution D,

|envyD(σ, p)− envyD(σ, p
′)| ⩽ 2t,

|envyS(σ, p)− envyS(σ, p
′)| ⩽ 2t.

Proof. First, we claim that for any valuation profile v,

|envyv(σ, p)− envyv(σ, p
′)| ⩽ 2t.

This holds since the value of (viσ(j) − pσ(j))− (viσ(i) − pσ(i)) changes by at most ±2t if we move
from p to p′, and thus the same holds after taking the maximum.

Now let D be a distribution. By linearity of expectation, and since |E[X]| ⩽ E[|X|] by Jensen’s
inequality,

|envyD(σ, p)− envyD(σ, p
′)|

= |Ev∼D[envyv(σ, p)− envyv(σ, p
′)]|

⩽ Ev∼D [|envyv(σ, p)− envyv(σ, p
′)|] ⩽ 2t,

where the last inequality follows by our claim. This proves the first statement. The second statement
follows from the first by taking D to be the uniform distribution over S.

We also need a standard concentration inequality.

Lemma D.3 (Hoeffding’s inequality). Let X1, . . . , Xm be i.i.d. random variables with 0 ⩽ Xk ⩽ c
and E[Xk] = µ for all k ∈ [m]. Then for all ε > 0,

Pr
[
|µ− 1

m

∑m
k=1 Xi| ⩾ ε

]
⩽ 2 exp(−2mε2/c2).

We are now ready to prove our main result of this section.

Proof of Theorem 5.1. Let t = 1/⌈12/ε⌉. Let Λt ⊆ Λ be the set of all discretized allocations (σ, p)
where pr is an integer multiple of t. Note that for any (σ, p) ∈ Λ, there is a discretized allocation
(σ, p′) ∈ Λt with |pr − p′r| ⩽ t for all r (call such allocations t-close), obtained by rounding the
values pr up or down to ensure that

∑
r p

′
r = 1.

Let S be a random sample from D of size m, where

m = 200
ε2 ln

[(
60
ε

)n 2n!
δ

]
= O

(
n
ε2 ln

(
n
εδ

))
.

Now write:

• OPTD for an allocation (σ, p) minimizing envyD,

• OPTS for an allocation minimizing envyS (which depends on the random choice of S),

• OPTD ∈ Λt for a discretized allocation t-close to OPTD,

• OPTS ∈ Λt for a discretized allocation t-close to OPTS .
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Let (σ, p) ∈ Λ. For k ∈ [m], let Xk be the random variable taking the value envyv(σ, p), where v is
the kth sample in S. By reasonableness and Lemma D.1, 0 ⩽ Xk ⩽ 5. Then Hoeffding’s inequality
implies that

Pr
[
|envyS(σ, p)− envyD(σ, p)| ⩾ ε

4

]
⩽ 2 exp(− 2

25m( ε4 )
2).

Let E be the event that |envyS(σ, p) − envyD(σ, p)| < ε/4 holds for all discretized allocations
(σ, p) ∈ Λt simultaneously. By Hoeffding’s inequality and a union bound over all |Λt| ⩽ ( 4t )

nn!
discretized allocations, we get

Pr[E] ⩾ 1− ( 4t )
nn! 2 exp(− 2

25m( ε4 )
2) ⩾ 1− δ.

where the second inequality holds by choice of m.

Suppose that the event E attains. In this case we have:

envyD(OPTS)− envyD(OPTD)

= (envyD(OPTS)− envyD(OPTS)) (Lemma D.2)
+ (envyD(OPTS)− envyS(OPTS)) (E attains)
+ (envyS(OPTS)− envyS(OPTS)) (Lemma D.2)
+ (envyS(OPTS)− envyS(OPTD)) (optimality)
+ (envyS(OPTD)− envyD(OPTD)) (E attains)
+ (envyD(OPTD)− envyD(OPTD)) (Lemma D.2)

< 2t+ ε/4 + 2t+ 0 + ε/4 + 2t

= 6/⌈12/ε⌉+ ε/2 ⩽ ε.

The references on the right indicate what we have used to bound the respective term to obtain the
strict inequality. “Optimality” refers to the fact that OPTS minimizes envyS . Because event E implies
the above inequality, we see that

Pr[envyD(OPTS)− envyD(OPTD) < ε] ⩾ Pr[E] ⩾ 1− δ.

This proves the result.

D.6 Proof of Theorem 5.2

Theorem. EXPECTED ENVY MINIMIZATION is NP-complete, even for binary valuation profiles.

Proof. Membership in NP is clear. Reduction from CLIQUE.

Let G = (V,E) be a graph with n vertices and m edges and target clique size k. Set the target envy
amount to be B = m−

(
k
2

)
. Let M be a large integer, M > (B + 1)2. Write ε = (B + 1)/M . Our

choices of these numbers imply the following estimates which we will need later:

• Mε > B, since Mε = B + 1 > B.

• ε(B + 1) < 1, since ε(B + 1) = (B + 1)2/M < 1.

The set of agents is V . The set of rooms is R = {o1, . . . , ok, d1, . . . , dn−k} consisting of k slot
rooms and n − k dummy rooms. Write E = {e1, . . . , em}. We construct a sample S of m + M
valuation profiles. For j ∈ [m], write ej = {u, v}; then valuation profile v(j) is defined by

v
(j)
i,r =

{
1 if i ∈ {u, v} and r ∈ {o1, . . . , ok},
0 otherwise.

For j = m+ 1, . . . ,m+M , let v(j) be a uniform profile:

v
(j)
i,r = 0 for all i ∈ V and r ∈ R.

(⇒): Suppose there is a clique C ⊆ V of size k in G; write C = {i1, . . . , ik}. We construct an
allocation (σ, p) that will be envy-free for B profiles. In the room assignment, we will assign agent
ir to slot room or, for r ∈ [k]. The remaining agents can be assigned arbitrarily to dummy rooms.
We’ll say that each room costs the same rent so pr = 1

n for all r ∈ R.
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• For each of the M uniform profiles, envyv(σ, p) = 0.

• For a profile v corresponding to an edge ej = {ia, ib} with ia, ib ∈ C (i.e. contained in the
clique), envyv = 0.

• For one of the m−
(
k
2

)
profiles v corresponding to edges not contained in a clique, we have

envyv = 1.

Summing these up, we have envyS(σ, p) = m−
(
k
2

)
= B.

(⇐): Suppose there is an allocation (σ, p) with envyS(σ, p) ⩽ B. Let C ⊆ V be the set of k
agents/vertices assigned to slot rooms under σ; write C = {i1, . . . , ik}.
First we show that the rents p = (p1, . . . , pn) of the rooms are close to uniform, in the sense that
|pr − pr′ | ⩽ ε for all r, r′ ∈ R. Assume for a contradiction that there are r, r′ ∈ R with pr > pr′ + ε.
Then in each uniform profile, the agent assigned to room r envies the agent assigned to room r′ by
at least ε, and hence the max envy in a uniform profile is at least ε. Since we have introduced M
uniform profiles, it follows that envyS(σ, p) ⩾ Mε > B, a contradiction.

Now we show that C is a clique. Suppose not. Then there are at least m−
(
k
2

)
+ 1 = B + 1 edges

that are not completely contained in C. For each profile corresponding to such an edge, the agent
corresponding to the endpoint not in C envies other agents who are assigned a slot room by at least
1− ε. Hence envyS(σ, p) ⩾ (B+1)(1− ε) = B+1− ε(B+1) > B, because ε(B+1) < 1. This
is a contradiction.
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