A Proofs from Section 2.3

Proof of Lemma 2.4. Consider the optimal fractional assignment \mathbf{X}^{*} for \mathcal{I}; for a machine i, let the load on this machine be λ. Now using the same assignment for the random sample \mathcal{I}_{δ} gives an expected load of $\mu:=\delta \lambda$ on machine i, and the probability that this load deviates from the expectation by $\gamma:=\max (\varepsilon \mu, k)$ is at most

$$
2 \exp \left(-\frac{\gamma^{2}}{2 \mu+\gamma}\right)
$$

Suppose $\varepsilon \mu>k$ where $k=O\left(\varepsilon^{-1} \log m\right)$, this quantity is at most

$$
2 e^{-\varepsilon^{2} \mu / 3} \leq 2 e^{-\varepsilon^{k} / 3} \leq 1 / \operatorname{poly}(m)
$$

ELse $k \geq \varepsilon \mu$, and so the probability is at most

$$
2 e^{-\varepsilon k} \leq 1 / \operatorname{poly}(m)
$$

This proves the lemma.

B Proofs from Section 2.5

Proof of Lemma 2.6. By induction on t; for $t=0$ the value $D_{v}^{t}=0$ and the claims are vacuously true. Hence we consider iteration $t \geq 1$ that generates θ_{t} from θ_{t-1}, and look at two cases.
Case 1: $D_{v}^{t}=D_{v}^{t-1}$. Since the algorithm did not update the weight for machine i in iteration t, we must have had $\widehat{X}_{v}^{t-1} \leq(1+\varepsilon)^{4} \cdot \widehat{Z}$. By the estimation guarantee, $\widehat{X}_{v}^{t-1} \geq(1+\varepsilon)^{-1} X_{v}^{t-1}$ and $\widehat{Z} \leq(1+\varepsilon) \gamma$, so $X_{v}^{t-1} \leq(1+\varepsilon)^{6} \gamma$. Since all weights are non-increasing and change by at most a $(1+\varepsilon)$ factor, the new load $X_{v}^{t} \leq(1+\varepsilon) X_{v}^{t-1}$-at worst, the weight for machine v may remain the same whereas weights for other machines may decrease. Thus $X_{v}^{t} \leq(1+\varepsilon)^{7} \gamma$. This proves the second claim.
For the first claim, if $D_{v}^{t}>0$ then $D_{v}^{t-1}=D_{v}^{t}$ means we can use the induction hypothesis to infer $X_{v}^{t-1} \geq(1+\varepsilon) \gamma$. Moreover, $X_{v}^{t} \geq X_{v}^{t-1}$, since $\theta_{v}^{t}=\theta_{v}^{t-1}$ and all other weights are non-increasing. So we have $X_{v}^{t} \geq(1+\varepsilon) \gamma$.
Case 2: $D_{v}^{t}=D_{v}^{t-1}+1$. Since the algorithm updated the weight, $\widehat{X}_{v}^{t-1}>(1+\varepsilon)^{4} \widehat{Z}$. From the estimation guarantee, we have $\widehat{Z} \geq(1+\varepsilon)^{-1} \gamma$, and in particular, $\widehat{Z} \geq(1+\varepsilon)^{-1} k$. This gives $\widehat{X}_{v}^{t-1} \geq(1+\varepsilon)^{3} k$. The estimation guarantee now means that $\max \left(X_{v}^{t-1}, k\right)=X_{v}^{t-1}$, since otherwise we would have $\widehat{X}_{v}^{t-1} \leq(1+\varepsilon) k$. Moreover, the estimation guarantee says $X_{v}^{t-1} \geq$ $\widehat{X}_{v}^{t-1}(1+\varepsilon)^{-1}$, so combining the above facts we get $X_{v}^{t-1} \geq(1+\varepsilon)^{2} \gamma$. Since the weight θ_{v}^{t} decreases by a factor of at most $(1+\varepsilon)$, while other weights are non-increasing, we have $X_{v}^{t} \geq$ $(1+\varepsilon) \gamma$, which proves the first claim.
For the second claim, if $D_{v}^{t}<t$, then $D_{v}^{t-1}<t-1$. By the induction hypothesis, $X_{v}^{t-1} \leq(1+\varepsilon)^{7} \gamma$. Furthermore, $X_{v}^{t} \leq X_{v}^{t-1}$ (since we decreased the weight for machine v by $(1+\varepsilon)$, and at worst the weights of all the other machines can decrease by the same amount, so $X_{v}^{t} \leq(1+\varepsilon)^{7} \gamma$ as desired.

Proof of Lemma 2.7. Since $D_{v}^{t} \geq s>0$ for all $v \in A$, we have $X_{v}^{t} \geq(1+\varepsilon) \gamma$ by Lemma 2.6. Thus, it follows that

$$
\sum_{v \in A} X_{v}^{t} \geq(1+\varepsilon)|A| \cdot \gamma
$$

Let $x_{e v}^{t}$ denotes the load that job e puts on machine v using weights θ^{t}; that is,

$$
x_{e v}^{t}=\frac{\theta_{v}^{t}}{\sum_{u \in e} \theta_{u}^{t}} \cdot \mathbf{1}_{(v \in e)} .
$$

This implies that the load $X_{v}^{t}=\sum_{e} x_{e v}^{t}$. We can now rewrite the LHS as

$$
\begin{equation*}
\sum_{v \in A} X_{v}^{t}=\sum_{v \in A} \sum_{e \subseteq B} x_{e v}^{t}+\sum_{v \in A} \sum_{e \nsubseteq B} x_{e v}^{t} \tag{5}
\end{equation*}
$$

For a fixed job/edge $e \ni v$ with $e \nsubseteq B$, it follows that there exists an machine $w \in e$ with $D_{w}^{t}<$ $s-\alpha$. Since $D_{v}^{t} \geq s$, we have

$$
x_{e v}^{t}=\frac{\theta_{v}^{t}}{\sum_{u \in e} \theta_{t}(u)} \leq \frac{\theta_{v}^{t}}{\theta_{w}^{t}} \leq \frac{(1+\varepsilon)^{-s}}{(1+\varepsilon)^{-(s-\alpha)}}=(1+\varepsilon)^{-\alpha}=\frac{\varepsilon}{2 m}
$$

Each of m machines has load at most $\operatorname{FOpt}(\mathcal{I})$, so there are at most $m \operatorname{FOpt}(\mathcal{I})$ edges. In particular, $\operatorname{deg}(v) \leq m \operatorname{FOpt}(\mathcal{I})$ for all machines v, and so it follows that

$$
\begin{equation*}
\sum_{v \in A} \sum_{e \not \subset B} x_{e v}^{t} \leq \sum_{v \in A} \frac{\varepsilon}{2} \cdot \operatorname{FOpt}(\mathcal{I})=\frac{\varepsilon}{2} \cdot|A| \cdot \operatorname{FOpt}(\mathcal{I}) \tag{6}
\end{equation*}
$$

Subtracting (6) from (5),

$$
\begin{equation*}
\sum_{v \in A} \sum_{e \subseteq B} x_{e v}^{t} \geq\left(1+\frac{\varepsilon}{2}\right)|A| \cdot \operatorname{FOpt}(\mathcal{I}) \tag{7}
\end{equation*}
$$

Finally, we have

$$
\sum_{v \in B} \sum_{e \subseteq B} x_{e v}^{t}=|\{e \in E \mid e \subseteq B\}| \leq|B| \cdot \operatorname{FOpt}(\mathcal{I})
$$

where the second inequality uses that the optimal value is the density of the densest sub-hypergraph. Combining this with (7), we get

$$
|B| \cdot \operatorname{FOpt}(\mathcal{I}) \geq \sum_{v \in B} \sum_{e \subseteq B} x_{e v}^{t} \geq \sum_{v \in A} \sum_{e \subseteq B} x_{e v}^{t} \geq\left(1+\frac{\varepsilon}{2}\right)|A| \cdot \operatorname{FOpt}(\mathcal{I})
$$

which yields our desired claim when divided by $\operatorname{FOpt}(\mathcal{I})$.

If d is an upper bound on the degree of any machine, i.e., the maximum number of jobs that go to any machine, then the same argument shows that it suffices to set $\alpha=\frac{\ln 2 d /(\varepsilon \operatorname{FOpt}(\mathcal{I}))}{\ln (1+\varepsilon)}$, or the weaker bound of $\alpha=\frac{\ln 2 d / \varepsilon}{\ln (1+\varepsilon)}$.

C A Concentration Bound

Theorem C. 1 (Concentration Bound). Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables taking values in $[0,1]$. Let $X:=\sum_{i=1}^{n} X_{i}, \mu=\mathbb{E}[X]$ and $U \geq \mu$. For every $\delta>0$, we have

$$
\operatorname{Pr}[X>(1+\delta) U] \leq \operatorname{Pr}[X>\mu+\delta U]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-\left(\delta^{2} U\right) /(2+\delta)}
$$

and

$$
\operatorname{Pr}[X<\mu-\delta U]<e^{-\delta^{2} U / 2}
$$

D Proofs for Related Machines

In the related machines setting, recall that each machine v has a speed $s_{v} \geq 1$, and the load of a machine is the total volume $\sum_{e} x_{e v}$ assigned to it, divided by the speed. So the goal is to minimize $\max _{v}\left(\sum_{e} x_{e v} / s_{v}\right)$. Again, each job can only be assigned to a subset of machines. Keeping the same notation, the machines form a set V of vertices, and the jobs are hyperedges denoting which machines they can be assigned to.
Lemma D. 1 (Proportional Assignment for Related Machines). There exist weights $\theta \in \mathbb{R}^{m}$ such that the scaled proportional allocation

$$
x_{e v}:=s_{v} \cdot \frac{\theta_{v}}{\sum_{u \in e} \theta_{u}} \cdot \mathbf{1}_{(v \in e)}
$$

gives a near-optimal fractional load.

Proof. Consider the convex program

$$
\begin{array}{cl}
\max \sum_{e v}\left(x_{e v} \log \left(x_{e v} / s_{v}\right)-x_{e v}\right) & \\
\sum_{v \in E} x_{e v}=1 & \forall e \in E \\
\sum_{e: v \in e} x_{e v} \leq L s_{i} & \forall v \in V \\
x_{e v} \geq 0 &
\end{array}
$$

Now the KKT condition for this implies that

$$
\log \left(x_{e v} / s_{v}\right)=-\lambda_{v}+\mu_{e}+\nu_{e v}
$$

Now using complementary slackness gives us for each $v \in e$,

$$
x_{e v}=s_{v} \cdot \frac{e^{-\lambda_{v}}}{\sum_{u \in e} e^{-\lambda_{u}}}
$$

Setting $\theta_{v}=\exp \left(-\lambda_{v}\right)$ completes the proof.
Another intuitive way of seeing is to imagine splitting each machine of speed s_{v} into $s_{v} \cdot M$ unitspeed copies for some very large M. (This factor of M is handle divisibility issues, where s_{v} values are not integers.) The optimal fractional assignment for this old related machines instance and this new unit-speed instance correspond to each other, up to scaling by a factor of M (and the small additional loss due to divisibility issues, which we put aside for now). Given an optimal weight vector for this unit-speed setting, all the copies of the same original machine can be assumed to have the same weight (by symmetry), and hence the total amount of job e going on copies of machine v becomes the expression above.

Bounding Width. Given any related machines instance \mathcal{I}, for each job e define a new job

$$
e^{\prime}:=\left\{v^{\prime} \in e \mid s_{v^{\prime}} \geq(\varepsilon / m) \cdot \max _{v \in e} s_{v}\right\}
$$

Let \mathcal{I}^{\prime} be the instance with just these new jobs; by definition $\frac{\max _{v \in e^{\prime}} s_{v}}{\min _{v \in e^{\prime}} s_{v}} \leq(m / \varepsilon)$ for all $e^{\prime} \in \mathcal{I}^{\prime}$.
Lemma D.2. $\operatorname{FOpt}(\mathcal{I}) \leq \operatorname{FOpt}\left(\mathcal{I}^{\prime}\right) \leq(1+\varepsilon) \operatorname{FOpt}(\mathcal{I})$.
Proof. Since we constrain each job to go on a subset of its original set of machines, the optimal load can only increase. But by how much? Fix any fractional assignment \mathbf{X} for \mathcal{I}. Consider any machine v and consider any job e for which this is the fastest machine in e. (Break ties arbitrarily.) Let e^{\prime} be the new version of e as above: let $\delta_{e}=\sum_{u \in e \backslash e^{\prime}} x_{e u}$ be the volume of e going to machines that are not allowed any more in e^{\prime} : move all this volume to v. I.e., set $x_{e^{\prime} v}^{\prime}=x_{e v}+\delta_{e}$ for this fastest machine, $x_{e^{\prime} u}^{\prime}=x_{e u}$ for all $u \in e^{\prime}, u \neq v$. Now the total load for v increases by at most

$$
\left(1 / s_{v}\right) \cdot \sum_{e: v=\arg \max _{u \in e}\left\{s_{u}\right\}} \delta_{e}
$$

This sum is at most the total volume of jobs assigned to machines that are slower than v by a factor m / ε. There are m such machines, and each has load at most $\operatorname{FOpt}(\mathcal{I})$, so the total increase in the load for v is at most $(\varepsilon / m) \cdot m \cdot \operatorname{FOpt}(\mathcal{I})$, as claimed.

