
A Proofs from Section 2.3

Proof of Lemma 2.4. Consider the optimal fractional assignment X∗ for I; for a machine i, let
the load on this machine be λ. Now using the same assignment for the random sample Iδ gives
an expected load of µ := δλ on machine i, and the probability that this load deviates from the
expectation by γ := max(εµ, k) is at most

2 exp

(
− γ2

2µ+ γ

)
.

Suppose εµ > k where k = O(ε−1 logm), this quantity is at most

2e−ε2µ/3 ≤ 2e−εk/3 ≤ 1/poly(m).

ELse k ≥ εµ, and so the probability is at most

2e−εk ≤ 1/poly(m).

This proves the lemma.

B Proofs from Section 2.5

Proof of Lemma 2.6. By induction on t; for t = 0 the value Dt
v = 0 and the claims are vacuously

true. Hence we consider iteration t ≥ 1 that generates θt from θt−1, and look at two cases.

Case 1: Dt
v = Dt−1

v . Since the algorithm did not update the weight for machine i in iteration t, we
must have had X̂t−1

v ≤ (1 + ε)4 · Ẑ. By the estimation guarantee, X̂t−1
v ≥ (1 + ε)−1Xt−1

v and
Ẑ ≤ (1 + ε)γ, so Xt−1

v ≤ (1 + ε)6γ. Since all weights are non-increasing and change by at most
a (1 + ε) factor, the new load Xt

v ≤ (1 + ε)Xt−1
v —at worst, the weight for machine v may remain

the same whereas weights for other machines may decrease. Thus Xt
v ≤ (1+ ε)7γ. This proves the

second claim.

For the first claim, if Dt
v > 0 then Dt−1

v = Dt
v means we can use the induction hypothesis to infer

Xt−1
v ≥ (1+ε)γ. Moreover, Xt

v ≥ Xt−1
v , since θtv = θt−1

v and all other weights are non-increasing.
So we have Xt

v ≥ (1 + ε)γ.

Case 2: Dt
v = Dt−1

v + 1. Since the algorithm updated the weight, X̂t−1
v > (1 + ε)4 Ẑ. From

the estimation guarantee, we have Ẑ ≥ (1 + ε)−1γ, and in particular, Ẑ ≥ (1 + ε)−1k. This
gives X̂t−1

v ≥ (1 + ε)3k. The estimation guarantee now means that max(Xt−1
v , k) = Xt−1

v , since
otherwise we would have X̂t−1

v ≤ (1 + ε)k. Moreover, the estimation guarantee says Xt−1
v ≥

X̂t−1
v (1 + ε)−1, so combining the above facts we get Xt−1

v ≥ (1 + ε)2γ. Since the weight θtv
decreases by a factor of at most (1 + ε), while other weights are non-increasing, we have Xt

v ≥
(1 + ε)γ, which proves the first claim.

For the second claim, if Dt
v < t, then Dt−1

v < t−1. By the induction hypothesis, Xt−1
v ≤ (1+ε)7γ.

Furthermore, Xt
v ≤ Xt−1

v (since we decreased the weight for machine v by (1 + ε), and at worst
the weights of all the other machines can decrease by the same amount, so Xt

v ≤ (1 + ε)7γ as
desired.

Proof of Lemma 2.7. Since Dt
v ≥ s > 0 for all v ∈ A, we have Xt

v ≥ (1 + ε)γ by Lemma 2.6.
Thus, it follows that ∑

v∈A

Xt
v ≥ (1 + ε)|A| · γ.

Let xt
ev denotes the load that job e puts on machine v using weights θt; that is,

xt
ev =

θtv∑
u∈e θ

t
u

· 1(v∈e).

This implies that the load Xt
v =

∑
e x

t
ev . We can now rewrite the LHS as∑

v∈A

Xt
v =

∑
v∈A

∑
e⊆B

xt
ev +

∑
v∈A

∑
e ̸⊆B

xt
ev. (5)

13



For a fixed job/edge e ∋ v with e ̸⊆ B, it follows that there exists an machine w ∈ e with Dt
w <

s− α. Since Dt
v ≥ s, we have

xt
ev =

θtv∑
u∈e θt(u)

≤ θtv
θtw
≤ (1 + ε)−s

(1 + ε)−(s−α)
= (1 + ε)−α =

ε

2m
.

Each of m machines has load at most FOpt(I), so there are at most mFOpt(I) edges. In particular,
deg(v) ≤ mFOpt(I) for all machines v, and so it follows that∑

v∈A

∑
e ̸⊆B

xt
ev ≤

∑
v∈A

ε

2
· FOpt(I) = ε

2
· |A| · FOpt(I). (6)

Subtracting (6) from (5), ∑
v∈A

∑
e⊆B

xt
ev ≥

(
1 +

ε

2

)
|A| · FOpt(I). (7)

Finally, we have ∑
v∈B

∑
e⊆B

xt
ev = |{e ∈ E | e ⊆ B}| ≤ |B| · FOpt(I),

where the second inequality uses that the optimal value is the density of the densest sub-hypergraph.
Combining this with (7), we get

|B| · FOpt(I) ≥
∑
v∈B

∑
e⊆B

xt
ev ≥

∑
v∈A

∑
e⊆B

xt
ev ≥

(
1 +

ε

2

)
|A| · FOpt(I),

which yields our desired claim when divided by FOpt(I).

If d is an upper bound on the degree of any machine, i.e., the maximum number of jobs that go
to any machine, then the same argument shows that it suffices to set α = ln 2d/(εFOpt(I))

ln(1+ε) , or the

weaker bound of α = ln 2d/ε
ln(1+ε) .

C A Concentration Bound

Theorem C.1 (Concentration Bound). Let X1, X2, . . . , Xn be independent random variables taking
values in [0, 1]. Let X :=

∑n
i=1 Xi, µ = E[X] and U ≥ µ. For every δ > 0, we have

Pr[X > (1 + δ)U ] ≤ Pr[X > µ+ δU ] <

(
eδ

(1 + δ)1+δ

)U

≤ e−(δ2U)/(2+δ),

and
Pr[X < µ− δU ] < e−δ2U/2.

D Proofs for Related Machines

In the related machines setting, recall that each machine v has a speed sv ≥ 1, and the load of a
machine is the total volume

∑
e xev assigned to it, divided by the speed. So the goal is to minimize

maxv(
∑

e xev/sv). Again, each job can only be assigned to a subset of machines. Keeping the
same notation, the machines form a set V of vertices, and the jobs are hyperedges denoting which
machines they can be assigned to.

Lemma D.1 (Proportional Assignment for Related Machines). There exist weights θ ∈ Rm such
that the scaled proportional allocation

xev := sv ·
θv∑
u∈e θu

· 1(v∈e)

gives a near-optimal fractional load.

14



Proof. Consider the convex program

max
∑

ev(xev log(xev/sv)− xev)∑
v∈E xev = 1 ∀e ∈ E∑

e:v∈e xev ≤ Lsi ∀v ∈ V

xev ≥ 0 .

Now the KKT condition for this implies that

log(xev/sv) = −λv + µe + νev.

Now using complementary slackness gives us for each v ∈ e,

xev = sv ·
e−λv∑
u∈e e

−λu
.

Setting θv = exp(−λv) completes the proof.

Another intuitive way of seeing is to imagine splitting each machine of speed sv into sv ·M unit-
speed copies for some very large M . (This factor of M is handle divisibility issues, where sv values
are not integers.) The optimal fractional assignment for this old related machines instance and this
new unit-speed instance correspond to each other, up to scaling by a factor of M (and the small
additional loss due to divisibility issues, which we put aside for now). Given an optimal weight
vector for this unit-speed setting, all the copies of the same original machine can be assumed to have
the same weight (by symmetry), and hence the total amount of job e going on copies of machine v
becomes the expression above.

Bounding Width. Given any related machines instance I, for each job e define a new job

e′ := {v′ ∈ e | sv′ ≥ (ε/m) ·max
v∈e

sv}.

Let I ′ be the instance with just these new jobs; by definition maxv∈e′ sv
minv∈e′ sv

≤ (m/ε) for all e′ ∈ I ′.

Lemma D.2. FOpt(I) ≤ FOpt(I ′) ≤ (1 + ε) FOpt(I).

Proof. Since we constrain each job to go on a subset of its original set of machines, the optimal load
can only increase. But by how much? Fix any fractional assignment X for I. Consider any machine
v and consider any job e for which this is the fastest machine in e. (Break ties arbitrarily.) Let e′
be the new version of e as above: let δe =

∑
u∈e\e′ xeu be the volume of e going to machines that

are not allowed any more in e′: move all this volume to v. I.e., set x′
e′v = xev + δe for this fastest

machine, x′
e′u = xeu for all u ∈ e′, u ̸= v. Now the total load for v increases by at most

(1/sv) ·
∑

e:v=argmaxu∈e{su}

δe.

This sum is at most the total volume of jobs assigned to machines that are slower than v by a factor
m/ε. There are m such machines, and each has load at most FOpt(I), so the total increase in the
load for v is at most (ε/m) ·m · FOpt(I), as claimed.

15


