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Abstract

Identifying the relevant variables for a classification model with correct confidence
levels is a central but difficult task in high-dimension. Despite the core role
of sparse logistic regression in statistics and machine learning, it still lacks a
good solution for accurate inference in the regime where the number of features
p is as large as or larger than the number of samples n. Here we tackle this
problem by improving the Conditional Randomization Test (CRT). The original
CRT algorithm shows promise as a way to output p-values while making few
assumptions on the distribution of the test statistics. As it comes with a prohibitive
computational cost even in mildly high-dimensional problems, faster solutions
based on distillation have been proposed. Yet, they rely on unrealistic hypotheses
and result in low-power solutions. To improve this, we propose CRT-logit, an
algorithm that combines a variable-distillation step and a decorrelation step that
takes into account the geometry of the ℓ1-penalized logistic regression problem. We
provide a theoretical analysis of this procedure, and demonstrate its effectiveness
on simulations, along with experiments on large-scale brain-imaging and genomics
datasets.

1 Introduction

Logistic regression is one of the most popular tools in modern applications of statistics and machine
learning, partly due to its relative algorithmic simplicity. The method belongs to the class of
generalized linear models that handle discrete outcomes, i.e. classification problems. Here, we focus
on the binary classification problem, where one observation of the responses y ∈ {0, 1} and the data
vectors x ∈ Rp follows the relationship:

P(y = 1 | x) = g(xTβ0) =
1

1 + exp(−xTβ0)
, (1)

where g(x) = 1/(1 + exp(−x)) is the sigmoid function, and β0 the vector of true regression
coefficients. In the classical setting, in which the number of samples n is greater than the number of
features p, an estimate β̂ of the true signals β0 can be obtained using maximum likelihood estimation
(MLE). The asymptotic behaviour and derivation of the test statistic, confidence intervals and p-values
of the MLE have been well studied, e.g. in [13]. The availability of p-values for the test statistics
makes it possible to rely on multiple hypothesis testing, where one wants to test which variables
have a non-zero effect on the outcome, conditioned on the remaining variables. Unfortunately, this
line of analysis cannot be applied to the high-dimensional regime, where p is larger than n, as
argued in [25, 32, 34]. These works show that in the regime limn,p→∞ n/p = κ, the MLE estimator
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exists only when κ > 2. However, we note that this type of analysis is done without the addition
of ℓ1-regularization to the likelihood function, i.e. without using a penalized estimator to enforce
sparsity.

Motivation Our focus in this paper is to do inference with statistical guarantees on high-dimensional
sparse logistic regression, where p is larger or much larger than n. This setting is typical in
modern applications of pattern recognition, e.g. in brain-imaging or genomics [3], with p as
large as hundreds of thousands –compressible to thousands– but n stays at most few thousand.
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Figure 1: QQ-Plot for 1000 samples of test-statistic
of a null index for logistic regression, with simulated
data, n = 200, p = 400. Left: Statistics obtained from
running Distilled-CRT, and Right: from our proposed
algorithm. The empirical distribution of the dCRT null-
statistic strays far from theoretical distribution, which
is standard normal, while empirical distribution of CRT-
logit’s null test score is much closer.

The family of methods we consider is the Con-
ditional Randomization Test (CRT) [10]. CRT
relies on generating multiple noisy copies of
original variables to output empirical p-values in
high-dimensional inference problems. However,
prohibitive computational cost makes CRT im-
practical, as discussed at length in [10, 26, 7, 19].
There have been several lines of research at-
tempting to fix this problem, most notably
the distilled Conditional Randomization Test
(dCRT) [19]. This work introduced a distilla-
tion step as a replacement for the randomized
sampling step to compute the importance statis-
tics (see Section 2 for more details). It provides
a way to output p-values for multiple types of re-
gression and classification problems, assuming
convergence to Gaussian distribution of the test
statistic in large-sample regime. Yet, as shown
in the left panel of Figure 1, the originally pro-
posed dCRT test-statistic for logistic regression
does not behave as well as intended. In particular, its null distribution deviates markedly from
standard normal in high-dimension whenever n/p ≤ 1.

Contribution We propose a correction for the dCRT, inspired by the decorrelation method presented
in [21]. The decorrelation step makes the null-distribution of the test statistics much closer to standard
normal, as shown on the right panel of Figure 1, and thus increases the statistical power of the method.
We provide asymptotic analysis of this method, which shows that CRT-logit produces standard
normal test-statistics in the large-sample regime. In addition, we validate the high performance of
CRT-logit on large-scale brain-imaging and genetics datasets, thus showing its usefulness in practical
applications.

Related works The closest cousin of the Conditional Randomization Test is Knockoff Filter [4, 10],
a recent breakthrough in the False Discovery Rate (FDR) control literature. It relies on the creation
of additional noisy features, called knockoffs, to calculate variable-importance statistics. Another
extension of vanilla CRT is the Holdout Randomization Test (HRT) [26]. While still requiring
multiple samplings of noisy variables, HRT solves the computational issue of original CRT by
doing heavy model fitting only once on one part of the dataset, and test statistics calculation on
the other part, without refitting the model. However, this method relies on sample-splitting, and
hence inherently suffers from a loss of statistical power. A parallel line of work has introduced
the Conditional Permutation Test (CPT) [7], a non-parametric alternative to CRT that relies on
a random shuffling mechanism applied to original variables, instead of multiple sampling of new
variables. This potentially makes CPT more robust to model mis-specification. [32] recently proposed
a method called SLOE, which adapts the analysis of [34], but in a regime different from what we are
considering, where limn,p→∞ n/p → κ ∈ (1, 2), and more importantly without sparsity-inducing
penalty. On a separate note, we notice the similarity of dCRT [19] with debiased Lasso [16, 28, 33].
This line of work proposed a debiasing formula for the estimator, which makes the asymptotic
distribution of (β̂LASSO − β0) standard normal, so that one can compute the test statistic and p-value
associated with each variable.
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2 Background

Notation We denote matrices, vectors, scalars and sets by bold uppercase, bold lowercase, script
lowercase , and calligraphic letters, respectively, e.g. X, x, x, and X . The i-th row of a matrix
X will be denoted Xi,∗ , the j-th column X∗,j and the (i, j)-th element Xi,j . For any natural

number p, we denote the set [p] def.
= {1, . . . , p}. For each x ∈ Rp and j ∈ [p], we denote x−j

def.
=

{x1, x2, . . . , xj−1, xj+1, . . . , xp} a p− 1 dimensional observation after removing the j-th variable.
Correspondingly, X−j is the data matrix X ∈ Rn×p with column X∗,j removed. The cumulative
distribution function (CDF) of the standard Gaussian distribution will be denoted Φ(·). The indicator
function of a random event A will be denoted 1A. For any two positive sequences xn and yn, we
write xn ≍ yn if cyn ≤ xn ≤ Cyn for all n, for some positive constants c and C. For a vector
x, ∥x∥p denotes its ℓp norm. For a function f : Rp → R, ∇jf denotes its gradient w.r.t. the j-th
variable, for j ∈ [p].

Problem setting We consider exclusively binary classification, where the response vector is denoted
y ∈ {0, 1}n and the data matrix X ∈ Rn×p consists of n p-dimensional samples. Throughout the
paper, we assume the data {Xi,∗}ni=1 are i.i.d. and follow a distribution with zero mean and population
covariance matrix Σ. Moreover, we assume that Xi,∗ and yi follow the logistic relationship in Eq. (1).

We denote the support set S def.
= {j ∈ [p] : β0

j ̸= 0} and assume that it is sparse, i.e. card(S) =

s∗ ≪ p, where card denotes the cardinality of a set. Furthermore, Ŝ def.
= {j ∈ [p] : β̂j ̸= 0} indicates

an estimation of S, where β̂j is an estimate of the true signal β0
j . We try to obtain it through a

ℓ1-penalized logistic estimator:

β̂λ = argmin
β∈Rp

ℓ(β) + λ∥β∥1 , with ℓ(β) = − 1

n

n∑
i=1

{(Xi,∗β)yi − log [1 + exp(Xi,∗β)]} . (2)

We denote I
def.
= Eβ0 [∇2ℓ(β0)] the Fisher information matrix, and Ij|−j the partial Fisher in-

formation, defined by Ij|−j
def.
= E[∇2

jjℓ(β
0) − [∇2

j,−jℓ(β
0)]⊤[∇2

−j,−jℓ(β
0)]−1∇2

−j,jℓ(β
0)] =

Ijj − Ij,−jI
−1
−j,−jI−j,j , where Ij,−j is the row-vector made with the jth-row and the columns

corresponding to β−j , I−j,−j the sub-matrix of I made with the rows and columns corresponding to
β−j . This quantity, defined following [13, pp. 323], plays an important role in our proposed method,
detailed in Section 3.

Statistical control with False Discovery Rate To quantify statistical errors, we consider the False
Discovery Rate, introduced in [5]. Given an estimate of the support Ŝ , the false discovery proportion
(FDP) is the ratio of the number of selected features that do not belong to the true support S , divided
by the total number of selected features. The False Discovery Rate is the expectation of the FDP:

FDP(Ŝ) = card({j : j ∈ Ŝ, j /∈ S})
card(Ŝ) ∨ 1

and FDR(Ŝ) = E[FDP(Ŝ)].

Conditional Randomization Test (CRT) and Distillation CRT (dCRT) The concept of Condi-
tional Randomization Test was originally proposed in the model-X knockoff paper [10] as a way
to output valid empirical p-values using knockoff variables. The principle of the knockoff filter
is first to sample noisy copies X̃∗,j of variable X∗,j , given a known sampling mechanism Pj |−j .
One advantage of the knockoff filter is that no specific assumption is placed on the distribution of
the inferred test statistic. However, this means that, in general, there is no mechanism to derive
p-values from the knockoff statistic. This motivates the introduction of CRT, which requires running
high-dimensional inference for each variable j B times. However, the computation cost of CRT is
prohibitive when p grows large: assuming that we use the Lasso program with coordinate descent to
compute TCRT

j , its runtime would be O(Bp4) [15, pp. 93]. Moreover, CRT requires decently large
B to make the empirical distribution of the p-values smooth enough. Reducing the computational
cost of CRT is the main motivation of several works [7, 19, 26]. One of them is the introduction
of distillation-CRT (dCRT) [19]. The main appeal of this method is that it can output p-values
analytically, therefore bypassing the multiple knockoffs sampling steps used to infer on each variable,
and leads to a reasonable reduction of the computation cost.
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Distillation operation The key addition of dCRT is the distillation operation: for each variable j,
we want to distill all the conditional information of the remaining variables X−j to xj and to y via
least-squares minimization with ℓ1-regularization to enforce sparsity. For each variable j, we first
solve the lasso problem by regressing X∗,j on X−j ,

β̂dX∗,j = argmin
β∈Rp−1

1

2
∥X∗,j −X−jβ∥22 + λdx∥β∥1. (3)

For distillation of variable j and the binary response y with logistic relationship, [19] briefly suggested
to solve a penalized estimation problem, similar to Eq. (2):

β̂dy,j = argmin
β∈Rp−1

− 1

n

n∑
i=1

{
(X⊤

i,−jβ)yi − log
[
1 + exp(XT

i,−jβ)
]}

+ λ∥β∥1. (4)

Then, a test statistic is calculated for each j = 1, . . . , p:

Tj =
√
n

⟨y −X−jβ̂
dy,j ,X∗,j −X−jβ̂

dX∗,j ⟩
∥y −X−jβ̂dy,j∥2∥xj −X−jβ̂

dX∗,j ∥2
. (5)

Intuitively, Eq. (5) is the correlation of the regression residuals, calculated from Eq. (3) and (4), scaled
by a factor of

√
n. Under the null hypothesis, and more importantly, assuming linear relationship

between Xi,∗ and y, this quantity follows standard normal distribution asymptotically, conditional
to y and X−j . It then follows that we can output a p-value for each variable j by taking p̂j =
2 [1− Φ (Tj)].
However, the formulation of test statistics in Eq. (5) is not truly satisfactory in the setting of sparse
logistic regression. More specifically, both the calculation of regression residuals y − X−jβ̂

dy,j

and test statistics Tj do not take into account the non-linear relationship between X and the binary
response y. The first row of Figure 6 plots the qq-plot of the test statistics Tj for logistic regression,
which shows that even in the classical regime where n > p, its distribution is far from standard
normal.

3 Decorrelating Test-Statistics for High-Dimensional Logistic Regression

As we have elaborated, the formulation of dCRT is not well-suited for problems other than penalized
least-squares regression. We therefore propose an adaptation of dCRT in the case of logistic regression,
inspired by the classical work of [13] and by [21]. First, note that when testing Hj

0 : β0
j = 0 under

the case where n > p, we have the classical Rao’s test statistic, defined by

TRao
j =

√
n Î

−1/2
j|−j ∇jℓ(0, β̂−j) , (6)

where ∇jℓ(0, β̂−j)
def.
= ∇βj

ℓ(βj , β̂−j)
∣∣∣
βj=0

is the Fisher score. Here β̂−j
def.
=

argminβ−j∈Rp−1 ℓ(βj ,β−j) is the constrained maximum-likelihood estimator of β−j with fixed
βj , and Îj|−j is a consistent estimator of the partial Fisher information Ij|−j . The appearance of the
term Î

−1/2
j|−j is due to the fact that under the null hypothesis Hj

0 , we have, by [13, Chapter 9], [24],
√
n∇jℓ(0, β̂−j)

(d)−−−−→
n→∞

N (0, Ij|−j) ,

which makes the asymptotic distribution of TRao
j standard normal. However, in the high-dimension

case, where n < p, we do not reach this convergence in distribution. To see this, consider the Taylor
expansion of the Fisher score of variable j around any given estimator β̃−j of the true β0

−j :

∇jℓ(0, β̃−j) = ∇jℓ(0,β
0
−j) +∇2

j,−jℓ(0,β
0
−j)(β̃−j − β0

−j) +O
(
(β̃−j − β0

−j)
2
)

(7)

On the right-hand side, the first term converges weakly to a normal distribution due to the Central
Limit Theorem, the remainder term becomes negligible using ℓ1 regularization to induce sparsity, but
the second term does not, due to estimation bias and sparsity effect of β̃−j [14].

Adapting distillation operation for sparse logistic regression Fortunately, Eq. (7) suggests that
for each variable j, we can debias the Fisher score by correcting the impact of other terms. In
particular, for each variable j, we replace the Fisher score by

∇jℓ(0,β−j)− Ij,−jI
−1
−j,−j∇−jℓ(0,β−j) . (8)
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The inversion of the large matrix I−j,−j ∈ R(p−1)×(p−1) is computationally prohibitive, but we can
estimate the term Ij,−jI

−1
−j,−j straightforwardly by solving

ŵj = argmin
w∈Rp−1

1

2n

n∑
i=1

[
∇2

j,−jℓi(β̂)−wT∇2
−j,−jℓi(β̂)

]2
+ λ∥w∥1, (9)

for each variable j, where β̂ is given with Eq. (2). Moreover, since we have the closed-form of
the derivatives of the logistic loss ℓ(β̂), a simple derivation from Eq. (9) suggests the following
xj-distillation operation, adapted for logistic regression:

β̂dX∗,j = argmin
β∈Rp−1

1

n

n∑
i=1

g′′(Xi,∗β̂)(Xi,j −Xi,−jβ)
2 + λdx∥β∥1, (10)

where the extra term (second-order derivative of the sigmoid function) g′′(Xi,∗β̂) =
exp (Xi,∗β̂)

[1+exp (Xi,∗β̂)]2

appears from differentiating twice the loss function ℓ(β̂), and β̂ = β̂λ is defined in Eq. (2). On the
other hand, we can obtain β̂

dy,j
j from β̂ by simply omitting the j-th coefficient from it, i.e.

β̂dy,j def.
= (β̂1, β̂2, . . . , β̂j−1, β̂j+1, . . . , β̂p) .

Finally, the equation for decorrelated test score, adapted from both Eq. (5) and (6), reads

T decorr
j = − 1√

n
Î
−1/2
j|−j

n∑
i=1

[
yi − g(Xi,−jβ̂

dy,j)
] [

Xi,j −Xi,−jβ̂
dX∗,j

]
, (11)

where the formula for the empirical partial Fisher information is Îj|−j =

n−1
∑n

i=1 g
′′(Xi,∗β̂)(Xi,j − Xi,−j β̂dX∗,j ) Xi,j . A summary of the full procedure, which

we call CRT-logit, can be found in Algorithm 1. Notice that the runtime of CRT-logit is the same as
dCRT, which means in general slower than KO and HRT. To speedup inference time, we introduce a
variable-screening step that eliminates potentially unimportant variables before distillation, similar to
dCRT. We provide empirical benchmark of the runtime of each method in Section 4.5.

Setting ℓ1-regularization parameter λ and λdx In general, we advise to use cross-validation for
obtaining β̂λ in Eq. (2) and for X∗,j-distillation operator, as defined by Eq. (10). This is in line
with the theoretical argument for dCRT [19, Lemma 1 and Theorem 3]. However, we also observe
empirically that choosing the ℓ1-regularization parameters of the distillation step can strongly affect
how variables are selected by CRT-logit. We provide more details in the Supplementary Material,
and leave further theoretical investigations of this phenomenon for future work.

Algorithm 1: CRT-logit
1 INPUT design matrix X ∈ Rn×p, reponses y ∈ Rn

2 OUTPUT vector of p-values {pj}pj=1;
3 β̂λ ← solve_sparse_logistic_cv(X,y) // Using Eq. (2)
4 ŜSCREENING ← {j : j ∈ [p], β̂j ̸= 0}
5 for j ∈ ŜSCREENING do
6 β̂

dX∗,j ← solve_scaled_lasso_cv(X∗,j ,X∗,−j) // Using Eq. (10)
7 β̂dy,j ← (β̂1, β̂2, . . . , β̂j−1, β̂j+1, . . . , β̂p)

8 T decorr
j ← decorrelated_test_score(j,X,y, β̂

dX∗,j , β̂dy,j) // Using Eq (11)
9 p̂j ← 2[1− |Φ

(
T decorr
j

)
|]

10 end
11 for j /∈ ŜSCREENING do
12 p̂j = 1
13 end

Asymptotic analysis of the Decorrelated Test Statistic We now provide theoretical analysis of
CRT-logit in large-sample regime. All the proofs can be found in the Supplementary Material. First,
we introduce the following assumption.
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Assumption 3.1 (Regularity conditions). Assume that

(A1) λmin(I) ≥ K for some constant K > 0.

(A2) Sparsity of β0 and w0,j , with w0,j the ground truth weights for the distillation of xj in
Eq. (10): |S| = s∗ and ∥w0,j∥0 = s′ with s∗ = o

(
n1/2/ log(p)

)
and s′ = o

(
n1/2/ log(p)

)
.

(A3) For all i ∈ [n], Xi,∗ and (−yi + g′(Xi,∗β)) are sub-exponential random variables, and
|Xi,−jw

0,j | ≤ K ′ almost surely, for some constant K ′ > 0.

We then have the following result, that states that the asymptotic distribution of the decorrelated test
scores is standard normal.
Theorem 3.1. Let j ∈ [p], and let T decorr

j be defined as in Eq. (11), with λ ≍ λdx ≍
√
n−1 log(p).

Then, if Assumption 3.1 holds true, and if we consider p = p(n), under the null hypothesis Hj
0 : β0

j =
0, we have

∀t ∈ R , lim
n→∞

|Pβ0(T decorr
j ≤ t)− Φ(t)| = 0 ,

where Φ(·) is the CDF of the standard Gaussian distribution. Moreover, for each j ∈ [p], if we

define p̂j
def.
= 2 [1− Φ (Tj)] , i.e. p̂j is the output of Algorithm 1, then, under the null hypothesis

Hj
0 : β0

j = 0, we have
lim sup
n→∞

Pβ0(p̂j ≤ t) ≤ t for all t ∈ [0, 1] ,

that is, the p-values output by Algorithm 1 are valid asymptotically.

Remark 3.1. We also show in the proof of Theorem 3.1 (in Suppementary Material) that the rate of
convergence is O(1/

√
n). Compared with some of the related works (e.g. , knockoffs) that come with

finite sample guarantees, our theoretical analysis only works in the asymprotic regime. We leave the
finite sample analysis as one of the directions for future works.

FDR control with CRT-logit As a consequence of Theorem 3.1, we have the following result,
which establishes that the FDR of the test is controlled when using the Benjamini-Yekutieli procedure
[6] with the p-values output from Algorithm 1, assuming that the number of tests p is fixed.
Corollary 3.1. Under Assumptions 3.1 and logistic model defined in Eq (1), with λ ≍ λdx ≍√
n−1 log(p), assume n−1/2(s′ ∨ s∗) log(p) = o(1), and assume the number of tests p is fixed. Let

α ∈ (0, 1) and ŜBY-CRT be given by applying following the Benjamini-Yekutieli FDR-controlling
procedure to the CRT-logit p-values {p̂j}j∈[p], output from Algo.1. Then, we have

lim sup
n→∞

E

[
card(ŜBY-CRT ∩ Sc)

card(ŜBY-CRT) ∨ 1

]
≤ α .

Remark 3.2. Assumption 3.1 is also assumed in [21, 28], which also provide a detailed discussion
of this regularity assumption in generalized linear models. This assumption, in turn, is built on the
regularity assumption in the classic work [13, Chapter 9] to establish asymptotic normality of Rao’s
test statistic. Theorem 3.1 is an adaptation of [21, Theorem 3.1], specialized for the case of sparse
logistic regression and the p-values output from CRT-logit.

4 Empirical Results

We provide benchmarks of the proposed CRT-logit algorithm along with most other methods men-
tioned in the introduction, in particular: model-X Knockoff (KO) [10], Debiased Lasso (dLasso)
[33, 16], original CRT with 1000 samplings [10], Holdout Randomization Test with 5000 samplings
[26], and Lasso-Distillation CRT (dCRT) [19]. We did not include SLOE and CPT as the provided
open-source implementation are particularly unstable and do not fit in the sparse-regression setting
(for SLOE), or implementation is not available (for CPT). For the lack of space, we leave the extra
experiment with a genome-wide association study in the Supplementary Material.
Remark 4.1. As a slight caveat, in the simulated and semi-realistic experiment sections (Sections 4.1,
4.2 and 4.3), we introduce an additional noise term to the logistic relationship of Eq. (1):

P(yi = 1 | xi) = g(xT
i β

0 + σξi) , (12)
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where ξi ∼ N (0, 1) is a Gaussian noise and σ > 0 the noise magnitude. The formula in Eq. (12) has
been used in previous works, e.g. [8]. There is a clear justification to this: in most of the applications
we consider, data are collected with measurement errors. In the case of brain-imaging, for example,
recording the brain signal of the human subjects by scanners often includes noise caused either
from the machine, or from the movement of the subjects [18]. Moreover, in general, this setting
corresponds to a model mis-specification, which the CRT-logit is robust to under Assumption 3.1,
following the same argument as in [21, Section 5].
Remark 4.2. We use Benjamini-Hochberg step-up procedure [5] to control FDR with the p-values in
all the empirical experiments in Section 4.2 and App. 4.4, as we observe that the FDR is empirically
controlled with this procedure, without compromising power with the conservative BY bound.

4.1 Effectiveness of the decorrelation step

To show how decorrelating the test statistics helps, we set up a simulation with matrix X of p = 400
features and vary the number of samples n ∈ {200, 400, 800, 4000}. The binary response vector
y is created following Eq. (12), and the design matrix X is sampled from a multivariate normal
distribution with zero mean, while the covariance matrix Σ ∈ Rp×p is a symmetric Toeplitz matrix,
where the parameter ρ ∈ (0, 1) controls the correlation between neighboring features: correlation
decreases quickly when the distance between feature indices increases. The true signal β0 is picked
with a sparsity parameter κ = s∗/p that controls the proportion of non-zero elements with magnitude
2.0, i.e. βj = 2.0 for all j ∈ S. For the specific purpose of this experiment, non-zero indices of S
are kept fixed. The noise ξ is i.i.d. normal N (0, Idn) with magnitude σ = ∥Xβ0∥2/(

√
n SNR),

controlled by the SNR parameter. In short, the three main parameters controlling this simulation
are correlation ρ, sparsity degree κ and signal-to-noise ratio SNR. We generate randomly 1000
datasets, and run dCRT and CRT-logit algorithm to obtain one sample of test statistics {Tj}pj=1 and
{T decorr

j }pj=1. Then, we pick 1000 samples of one null test statistic Tj and T decorr
j , defined in Eq. (5)

and (11), respectively, and plot the qq-plot of their empirical quantile versus the standard normal
quantile. From the results in Figure 6, we observe that the empirical null distribution of the test
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Figure 2: QQ-Plot for one null CRT statistic for logistic regression, with varying number of samples
and a fixed number of variables p = 400. The theoretical quantiles are obtained from a standard Gaussian
distribution. The decorrelation step makes the empirical null distribution of the null statistics much closer to
standard Gaussian. Parameters: SNR = 3.0, ρ = 0.4, sparsity = 0.06. Upper row: Distilled-CRT statistic
defined by Eq. (5). Bottom row: CRT-logit, with decorreleated test score defined by Eq. (11) (ours).

statistic is much closer to a standard normal when adding the decorrelation step. In particular, when
the sample size n increases to 400, the decorrelated test statistic has empirical quantiles almost inline
with the theoretical quantiles of the standard normal distribution, while dCRT test score strays away
from the 45-degree line. Again, we emphasize that the normality of Tj is crucial for the p-values
calculation. This outlines the importance of the decorrelating step on Tj .

4.2 High-dimensional scenario with varying simulation parameters

To see how each algorithm performs under different settings, we follow the same simulation scenario
as in Sec. 4.1, but vary each of the three simulation parameters, while keeping the others unchanged
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at a default value of SNR = 2.0, ρ = 0.5, κ = 0.04. We target a control of FDR at level 0.1, using
the Benjamini-Hochberg procedure. The results in Figure 3 show that CRT-logit is the most powerful
method while still controlling the FDR. Moreover, in the presence of higher correlations between
nearby variables (ρ > 0.6), other methods suffer a drop in average power, but this is not as severe
for CRT-logit. The original CRT, in general, is conservative. We believe that this is due to using
only B = 500 samplings to generate empirical p-values for the two methods, due to prohibitive
average runtime of the algorithm with larger B (which we provide in Section 4.5). For HRT, the
conservativeness is expected, due to the usage of only half of the sample for test-statistics calculation –
even though the number of samplings is bigger than original CRT (B = 5000). We note that, perhaps
surprisingly, the debiased lasso (cdlasso) is the most conservative. It controls FDR well in all
settings. This might be due to the fact that dlasso also relies on the choice of the ℓ1-regularization
λ in the nodewise Lasso operation, similar to the X∗,j-distillation of dCRT, as noted in Section 1.
What makes the difference is that instead of using cross-validation for setting λ for each variable j,
a fixed value of λ = 10−2λmax is used in the implementation of dlasso. We strongly suspect this
fixed value is not optimal, which makes the procedure powerless.

4.3 Application: large-scale analysis on brain-imaging dataset
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Figure 3: FDR/Average Power of 100 runs of simula-
tions across varying parameters in high-dimensional
settings. Default parameter: n = 400, p =
600, SNR = 2.0, ρ = 0.5, κ = 0.04. FDR is controlled
at level α = 0.1. Methods: Debiased Lasso (dlasso),
model-X Knockoff (KO-logit), original CRT (CRT),
HRT (HRT), dCRT (dCRT), and our version of CRT (dark
green line – CRT-logit).

Description The Human Connectome Project
dataset (HCP) is a collection of brain imaging
data on healthy young adult subjects with age
ranging from 22 to 35. More specifically, the in-
put X is a set of 2mm statistical maps of 400 sub-
jects across 8 cognitive tasks. These are called
z-maps, as the data follow a standard normal
distribution under the null hypothesis. Each task
in turn features 2 different contrasts, which ef-
fectively form binary responses y ∈ {0, 1}n. In
short, the goal of this fMRI data analysis is to
identify voxels with task-related levels of activ-
ity by fitting y through distributed brain signals.
The setting is high-dimensional with n = 800
samples, corresponding to 400 subjects, while
the total number of variables is p ≈ 200, 000
brain voxels. Following [11, 20], we use a hier-
archical clustering scheme to group the variables
into C = 1000 spatially connected clusters. We
provide details of the pre-processing step in Sup-
plementary Material.

Creating semi-realistic ground-truth and re-
sponse labels Since there is no ground truth
for this dataset, we create synthetic true signals
by fitting the data X and response y with an ℓ1-
penalized logistic classifier. In other words, the
estimator β̂logreg will serve as true regression
coefficients for each task. Then, to avoid bias in
simulating label ŷ, the z-maps matrix X of one
task are used in conjunction with the discrimi-
native pattern map β̂logreg from the next task in
the following order: relational, gambling,
emotion, social. For instance, we use β̂logreg

of gambling with z-maps data matrix of relational, i.e. for all i = 1, . . . , n, given xi,relational,

ŷi ∼ Bern
{
g(x⊤

i,relational β̂
logreg
gambling + σξi)

}
, (13)

where Bern(a) is a Bernoulli probability mass function that takes a value 1 with probability a, σ is a
noise magnitude and ξi is a standard normal noise. Finally, we apply all inference algorithms on the
semi-synthetic data (X, ŷ), and we evaluate their performance using the ground-truth β̂logreg. This
simulation setting is similar to [11], except that here we consider a classification and not a regression
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problem. It allows us to calculate the False Discovery Rate and average power with multiple runs of
the inference procedure (across tasks).
Remark 4.3. The i.i.d. assumption is formally violated in this experiment, where for each subject
we analyze two sample images that are not independent. Yet, this remains a short-range correlation
structure, and is thus not a strong challenge to the i.i.d. assumption.

Results The results in Figure 4 show that CRT-logit achieves a better recovery compared to KO
or original CRT/dCRT/HRT, which results in higher statistical power. This gain comes with a good
control of the FDR under desired level α = 0.1. On a related note, the only analysis where dCRT
makes more discoveries than CRT-Logit is in the emotion task, but at the cost of failing to control
FDR at the nominal level.
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Figure 4: FDR/Average Power of 50 runs of semi-realistic experiments on four tasks of Human Connectome
Project dataset. Parameters: n = 800 (taken from 400 subjects), SNR = 2.0. Methods (clustering versions):
Debiased Lasso (cdlasso), model-X Knockoff (cKO-logit), original CRT (CRT), HRT (HRT), dCRT (dCRT),
and our version of CRT (dark green line – CRT-logit).

4.4 Application: genome-wide association study with Human Brain Cancer Dataset

Description The last in our benchmark is a Genome-wide Association Study (GWAS) on the The
Cancer Genome Atlas (TCGA) dataset [30, 31]. We choose to analyze the Glioma cohort, which
consists of n = 1026 patients across a wide age range, diagnosed with this type of brain tumor, with
a total of p = 24776 genes in the data matrix recorded as copy number variations (CNVs) at the gene
level in log ratio format. As with the brain-imaging inference in Section 4.3, we use clustering to
reduce the dimension to C = 1000 clusters. However, we use different criterion to merge variables
(genes) to clusters of variables, which is the pairwise Linkage Disequilibrium, following [1, Section
4] (with available R library). For the response, a long-term survivor (LTS) is defined as a patient who
survived more than five years after diagnosis and would be labeled y = 0, and otherwise would be a
short-term survivor (STS), labeled y = 1. The objective is to identify significant genes that contribute
to classification of the LTS/STS status. Similar to the Human Connectome Project dataset, there is no
real ground-truth for the TCGA Glioma. However, we have the list of mutations and the frequency of
those detected in the diagnosed patients. We therefore select the 1000 most frequent gene mutations
that appeared in this list, i.e. the ground truth list consists of 1000 genes (variables).

Table 1: List of detected genes associated with Glioma Cancer from the TCGA dataset. n = 1026,
p = 24776 (clustered to C = 1000). Empty line (—) signifies no detection. Methods listed in the table are the
clustering version. Commonly detected genes between methods are put in bold text. Most detected genes are
listed in the mutant list database that can be found in the recorded patients [30].

Methods Detected Genes

dLasso —
KO ABCC10, ANK3, CDH23, PTEN, SPEN, SVIL, ZMIZ1
dCRT ANK3, ANKRD30A, CDH23, PTEN, RET, SPEN,ZMIZ1
CRT-logit ABCC10, ANKRD30A, BCOR, EPHA3, PPL, SPAG17, SPEN, SVIL, USP9X
Original CRT ABCC10, BCOR, EPHA3, SPEN, SVIL
HRT ABCC10, SPEN
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Result The result from Table 1 shows that CRT-logit finds the largest number of genes. Moreover,
most of selected genes in this table are detected in the list of mutated genes found on recorded patients.
Some genes are detected by all the benchmarked methods, most prominently SPEN, which is found
on over 10 % of patients in the cohort. Furthermore, this gene is known to be associated not only
with brain cancer, but also with other types of cancer in The Human Protein Atlas project [17]. Note
that, in the absence of a ground-truth, this does not guarantee all genes found are associated with
glioma, but this experiment demonstrates the capability of CRT-logit in GWAS studies.

4.5 Average runtime of benchmarked methods
Table 2: Average runtime of benchmarked methods for one simulation (in seconds). Standard error is
reported in parentheses.

Methods Simulated (Sec. 4.2) HCP-semi-real (Sec. 4.3)

Debiased Lasso [33, 28, 16] 61.83 (5.2) 154.27 (8.79)
Knockoff Filter [4, 10] 1.62 (0.02) 8.12 (0.62)
CRT (500 samplings) [10] 2312.91 (38.21) 7069.96 (109.09)
HRT (5000 samplings) [26] 14.84 (2.01) 52.17 (4.11)
dCRT[screening=True] [19] 16.83 (1.89) 65.18 (3.91)
dCRT[screening=False] [19] 370.12 (8.18) 962.40 (20.63)
CRT-logit[screening=True] (this work) 14.16 (0.35) 61.26 (3.55)
CRT-logit[screening=False] (this work) 367.91 (4.11) 983.78 (17.26)

Besides statistical performance, it is equally important to assess the computational cost of inference
procedures. The average runtime in Table 2 from the two experiments shows that the original CRT is
not suitable for large-scale inference: it is over 2000 times slower than the fastest method (Knockoff
Filter), and over 150 times slower than dCRT/CRT-logit. The empirical runtime also confirms the
effectiveness of the screening step before doing distillation/decorrelation of the test-statistics: the
step makes CRT-logit and dCRT 20 times faster than without. On a related note, although in theory
Debiased Lasso, dCRT and CRT-logit (both without screening) share the same runtime complexity,
the latter two are slower due to the use of cross-validation to estimate the sparsity hyperparameter λ
and λdx (detailed in Section 3).

5 Discussion

We proposed an adaptation of the Conditional Randomization Test (CRT) for sparse logistic regression
in the high-dimensional regime. A major improvement of CRT-logit, our proposed algorithm,
compared to original CRT, comes from the decorrelation of test statistics to make their distribution
closer to standard normal. Indeed, results from synthetic experiments in Figure 6 show that in high-
dimension (when 0.5 ≤ n/p ≤ 1.0), the empirical null distribution of CRT-logit’s test statistic T decorr

is much more similar to a standard normal compared to the original CRT test statistic. Moreover,
empirical benchmarks in Section 4 demonstrate that CRT-logit performs better than related statistical
inference methods, such as the Debiased Lasso or Model-X Knockoffs. In particular, CRT-logit is the
most powerful method in our synthetic experiment with high-dimensional datasets in Section 4.2,
while still keeping FDR controlled under predefined level α = 0.1 (with a slight caveat of using BH
instead of BY procedure, as elaborated in Remark 4.2). We note that there exist some limitations to
CRT-logit. The computational cost of CRT-logit, while lower than vanilla CRT, is still larger than
alternative methods such as Knockoff Filter and Holdout Randomization Test. Moreover, tuning
the ℓ1−regularization λdx parameter by cross-validation, as is often done, can further increase
the computational cost of CRT-logit (and dCRT). Despite this, our empirical benchmarks on both
simulated and real data show real promises of CRT-logit. Henceforth, we believe CRT-logit is
competitive for practical settings that involve structured data, such as brain-imaging and genomics
applications.
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