
A Algorithms.

Algorithm 1 Training DHRL
1: sample Dlo

i = (st, wpt, at, r(st+1, wpt), st+1)i ∈ Blo
2: relabel wpt ← ŵpt = agt+tftr to make D̂lo

i

3: update Qlo
critic,θ1 and πlo

ϕ1
using Dlo

i ∪ D̂lo
i

4: update Qlo
graph,θ2 using D̂lo

i

5: if t mod d then
6: sample Dhi

i = (st, gt, sgt, rt, st+ch)i ∈ Bhi
7: relabel sgt ← agt+ch to make D̂hi

i

8: for (st, gt, sgt, rt, st+ch) in Dhi
i do

9: if r(st+ch , sgt) = 0 then
10: rt ← rt ◁ subgoal ∈ L1

11: else if use GradualPenalty then
12: rt ← GradualPenalty(graph G, sgt, Qlo

graph)
13: else
14: rt ← penalty p1
15: end if
16: end for
17: update Qhi

θ3
and πhi

ϕ2
using Dhi

i ∪ D̂hi
i

18: end if

Algorithm 2 Farthest Point Sampling Algorithm [2]
1: Input: set of states {s1, s2, ..sK}, sampling number k, temporal distance function Dist(· → ·)
2: SelectedNode = []
3: DistList = [inf, inf, ... inf]
4: for i = 1 to k do
5: FarthestNode← argmax(DistList)
6: add FarthestNode to SelectedNode
7: DistFromFarthest← [Dist(FarthestNode→ s1), ..., Dist(FarthestNode→ sK)]
8: DistList = ElementwiseMin(DistFromFarthest, DistList)
9: end for

10: return SelectedNode

Algorithm 3 Planning with DHRL
1: while not done do
2: if t mod graph_construct_freq then
3: construct a graph G(V,E) : sample V = ψ(s) where s ∈ Dlo through FPS algorithm and

get edge cost E by Eq. (1)
4: end if
5: sgt = πhi(st, gt)
6: getW : (wpt,0 = ψ(st), wpt,1, wpt,2, ..., wpt,k−1, wpt,k = sgt)
7: previous waypoint index idp← 0; tracking waypoint index idt← 1; tracking time ttr ← 0
8: for τ = 1 to ch do
9: get low-level action aτ from πlo(aτ |sτ , wpt,idt)

10: act aτ in the environment and get sτ+1

11: ttr += 1; t += 1
12: if agent achieve wpt,idt or ttr > Dist(wpt,idp → wpt,idt) then
13: idp += 1; idt += 1; ttr ← 0
14: end if
15: end for
16: end while

12

Algorithm 4 Gradual Penalty
1: Input: graph G(V,E), subgoal sgt, Qlo

graph,θ2
, gradual penalty threshold ζ1, penalty p1, penalty

p2
2: if min(Qlo

graph,θ2
(v ∈ V, sgt)) < ζ1 then

3: rt ← penalty p1 ◁ subgoal ∈ L2

4: else
5: rt ← penalty p2 ◁ subgoal ∈ L3

6: end if

Algorithm 5 Frontier-Based Goal-Shifting (FGS)
1: Input: st, graph G(V,E), goal g, Qlo

graph,θ2
, cut-off threshold ζ2

2: Dist(s, g) := logγ (1 + (1− γ)Qlo
graph,θ2

(s, π(s, g)|g))
3: if minv∈V(Dist(v → g)) < ζ2 then
4: Vcandidate ← V + noise
5: gt ← random.choice(Vcandidate,weight = −Qlo

graph,θ2
(st, π(st,Vcandidate)|Vcandidate))

6: end if
7: return gt

Algorithm 6 Overview of DHRL
1: Input: initial random steps τrandomwalk, initial steps without planning τw/o graph, total training

step τtotal, Env, low-level agent Qlo
critic,θ1 , Q

lo
graph,θ2 and πlo

ϕ1
, high-level agent Qhi

θ3
and πhi

ϕ2

2: Dist(s, g) := logγ (1 + (1− γ)Qlo
graph,θ2

(s, π(s, g)|g))
3: for τ = 1 to τtotal do
4: if Env.done then
5: Env.reset (episode step resets to 0)
6: if Use FGS then
7: g ← FGS(G, g,Qlo

graph,θ2)
8: end if
9: end if

10: if τ < τrandomwalk then
11: at ← random.uniform(high = action.high, low = action.low) ◁ random action
12: else if τ < τw/o graph then
13: at ← vanillaHRL(sgt = πhi

ϕ2
(st, g) and πlo

ϕ1
(st, sgt)) ◁ act without planning

14: else
15: if Graph G is not initialized then
16: Create a graph G(V,E) using FPS algorithm ◁ initialize graph
17: end if
18: if episode step(the step of the environment) % cl = 0 then
19: sgt ← πhi

ϕ2
(st, g) ◁ get subgoal

20: {wpt,1, wpt,2, · · ·wpt,k} ← Dijkstra′salgorithm(st, sgt) ◁ get waypoints
21: current waypoint index n = 1
22: end if
23: if achieved wpt,n or tried more than Dist(wpt,n−1, wpt,n) to achieve wpt,n then
24: current waypoint index += 1
25: end if
26: at ← πlo

ϕ1
(st, wpt,n+1) ◁ get low-level action

27: end if
28: Env.step(at)
29: Train low-level agent Qlo

critic,θ1 , Qlo
graph,θ2 and πlo

ϕ1
, high-level agent Qhi

θ3
and πhi

ϕ2

30: if τ % graph update freq = 0 then
31: Update Graph G(V,E) using FPS algorithm
32: end if
33: end for

13

B Proofs of Theorems.

Derivation of equation 1. If a given policy πlo requires n steps to get from current s to a goal g, the
γ-discounted return is Qlo(s, π(s, g)|g) = (−1) + (−1)γ + (−1)γ2 · · · (−1)γn−1 = − 1−γn

1−γ
.

Thus, the temporal distance between s to g(= n) is derived from γn − 1 = (1− γ)Qlo(s, π(s, g)|g) as

n = logγ (1 + (1− γ)Qlo(s, π(s, g)|g)). (3)

Definition B.1. WG(st, sgt) = (wpt,0, wpt,1, ..., wpt,k) is a sequence of waypoint obtained by the graph
search algorithm and w(WG, τ) = wpt,i ∈ WG(st, sgt) is the waypoint that is given to low-level policy at τ .

Given the transition distribution of the environment T (sτ+1|sτ , aτ), the transition data
(st, gt, sgt, r(st+ch , gt), st+ch) from the high-level policy’s replay buffer has been obtained as

st+ch =

t+ch−1∏
τ=t

T (sτ+1|sτ , aτ) · πlo
β (aτ |sτ , w(WGβ , τ)), (4)

where πlo
β and Gβ are the previous low-level policy and graph respectively. Also, by using a different graph G

and an optimal policy πlo∗, we get a new transition data (st, gt, sgt, r(s
′
t+ch , gt), s

′
t+ch), where

s′t+ch =

t+ch−1∏
τ=t

T (sτ+1|sτ , aτ) · πlo∗(aτ |sτ , w(WG, τ)). (5)

For given st and st+ch , we define the off-policy error rate, which is the normalized distance error with respect
to the total traversal distance according to the change of πlo

β and Gβ to πlo∗ and G, as

ρ(G) =
Dist(ψ(s′t+ch) → ψ(st+ch))

Dist(ψ(st) → ψ(st+ch))
. (6)

Lemma B.2. Suppose that Dist(· → ·) in Eq. (1) is Lipschitz continuous. Then, there exists a constant L > 0
such that ∀x and y, max(Dist(x→ y), Dist(y → x)) ≤ L||x− y||, where || · || is the Euclidean norm, since
Dist(x→ x) = 0. Then, any ϵ/L−resolution graph w.r.t the Euclidean norm, whose existence is trivial, is an
ϵ−resolution graph w.r.t Dist(· → ·).

Proof of Theorem 4.2

Proof. Let Cs→g be one of the shortest paths from s to g and T be the distance of Cs→g . Also let p1 ∈ Cs→g be a
point that Dist(ψ(s) → p1) = cl − ϵ. Then, ∃wp1 ∈ V s.t.max(Dist(p1 → wp1), Dist(wp1 → p1)) < ϵ,
because G is an ϵ−resolution graph. Since Dist(· → ·) is a temporal distance, it satisfies the triangular
inequality and then, Dist(ψ(s) → wp1) ≤ Dist(ψ(s) → p1) +Dist(p1 → wp1) < (cl − ϵ) + ϵ = cl and
Dist(wp1 → g) ≤ Dist(wp1 → p1) +Dist(p1 → g) < ϵ+ (T − cl + ϵ) = T − cl + 2ϵ.

Repeating the above procedure, let pi+1 ∈ Cwpi→g be a point that Dist(wpi → pi+1) = cl − ϵ. Then,
∃wpi+1 ∈ V s.t.max(Dist(pi+1 → wpi+1), Dist(wpi+1 → pi+1)) < ϵ. Then,Dist(wpi → wpi+1) < cl
and Dist(wpi+1 → g) < T − (i+ 1)cl + 2(i+ 1)ϵ. Consequently, the agent after T time-step will be closer
than the ⌊T/cl⌋th waypoint from g. The remaining distance is less than

T − ⌊T/cl⌋cl + 2⌊T/cl⌋ϵ. (7)

Thus, if an agent follows the sequence of waypoints {s, wp1, wp2, ..., g}, which is generated from a graph
search algorithm over G and πlo∗, the error rate over this path satisfies

ρ(G) ≤ T − ⌊T/cl⌋cl + 2⌊T/cl⌋ϵ
T

≤ T − (cl − 2ϵ)(T/cl)

T
=

2ϵ

cl
. (8)

Thus the off-policy error rate ρ is equal or less than 2ϵ/cl during T . Since all path from s to g takes at least T
time-steps, this upper-bound of error rate is also satisfied in all path from s to g.

14

C Additional Results

PointMaze AntMazeSmall

AntMazeBottleneck Reacher3D

AntMazeComplex

Timesteps(k) Timesteps(k)

T
e

s
t

s
u

c
c
e

s
s
 r

a
te

AntMaze

DHRL(OURS)

T
e

s
t

s
u

c
c
e

s
s
 r

a
te

Timesteps(k)

Timesteps(k) Timesteps(k)Timesteps(k)

PointMaze AntMazeSmall

AntMazeBottleneck Reacher3D

AntMazeComplex

Timesteps(k) Timesteps(k)

T
e
s
t

s
u
c
c
e
s
s
 r

a
te

AntMaze

T
e
s
t

s
u
c
c
e
s
s
 r

a
te

Timesteps(k)

Timesteps(k) Timesteps(k)Timesteps(k)

HIRO(Dense) HIRO(Sparse) SAC

UR3Obstacle

UR3Obstacle

Timesteps(k)

Timesteps(k)

Figure 10: Comparison with shallow RL (SAC) and vanilla HRL (HIRO). The completely failed
baselines are occluded by others.

15

Figure 11: Examples of various initial state distributions.

Table 2: Performance of DHRL in various difficulties of initial state distributions.

SUCCESS RATE EASY(UNIFORM) MEDIUM(2 FIXED POINT) HARD(1 FIXED POINT)
ANTMAZE 0.3M 80.4% 28.5% 12.2%
ANTMAZE 0.5M 87.1% 88.2% 71.5%

As shown in the table above, the wider the initial distribution, the easier it is for the agent to explore the map. In
other words, the ‘fixed initial state distribution’ condition we experimented with in this paper is a more difficult
condition than the ‘uniform initial state distribution’ that previous graph-guided RL algorithms utilize. Of course,
‘fixed initial state distribution’ requires less prior information about the state space. We further experimented
with ours (DHRL) under various types of reset conditions as shown in Table 2. As expected, our algorithm shows
faster exploration at the uniform reset point.

Figure 12: Changes in the graph level over the training; DHRL can explore long tasks with ‘fixed
initial state distribution’ and limited knowledge about the environment.

16

Table 3: Comparisons between our algorithm (DHRL) and baselines: The numbers next to the
environment names are the time-steps for training the models. The results are averaged over 4 random
seeds and smoothed equally. ‘-D’ and ‘-S’ mean dense reward and sparse reward respectively. We use
NVIDIA RTX A5000.

S
U

C
C

E
S

S
R

A
T

E
S

A
C

H
IR

O
-D

H
IR

O
-S

H
R

A
C

-D
H

R
A

C
-S

H
IG

L
-D

H
IG

L
-S

D
H

R
L

P
O

IN
T

M
A

Z
E

0.
25

M
1.

2%
73

.8
%

77
.9

%
6.

1%
56

.1
%

25
.5

%
34

.3
%

96
.9

%
0.

5M
0.

3%
93

.6
%

76
.8

%
33

.5
%

93
.7

%
88

.3
%

91
.8

%
99

.8
%

A
N

T
M

A
Z

E
S

M
A

L
L

0.
5M

0.
0%

0.
0%

2.
0%

9.
2%

54
.0

%
36

.3
%

44
.1

%
89

.8
%

1.
0M

0.
0%

24
.1

%
60

.1
%

83
.4

%
88

.4
%

83
.7

%
52

.2
%

95
.1

%

A
N

T
M

A
Z

E
0.

5M
0.

0%
0.

0%
0.

0%
1.

1%
0.

0%
60

.2
%

32
.7

%
71

.5
%

1.
0M

0.
0%

0.
7%

0.
8%

68
.7

%
48

.9
%

78
.1

%
60

.3
%

91
.1

%

B
O

T
T

L
E

N
E

C
K

0.
5M

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

16
.5

%
1.

0M
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
38

.7
%

C
O

M
P

L
E

X
2.

5M
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
20

.4
%

4.
0M

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

40
.1

%

R
E

A
C

H
E

R
-3

D
0.

25
M

49
.2

%
-

66
.0

%
-

26
.5

%
-

78
.2

%
95

.1
%

0.
5M

47
.2

%
-

67
.1

%
-

44
.1

%
-

47
.1

%
90

.6
%

U
R

3O
B

S
TA

C
L

E
0.

0%
2.

5%
1.

9%
0.

5%
0.

0%
11

.1
%

0.
5%

69
.8

%

17

Table 4: Hyperparameters for HRL: When evaluating the previous HRL algorithms, we used the same
hyperparameters as used in their papers. We also tried various numbers of landmarks and ch which
may affect the performance in long-horizon tasks.

HIRO HRAC HIGL
high-level τ 0.005 0.005 0.005

πhi lr 0.0001 0.0001 0.0001
Qhi lr 0.001 0.001 0.001

high-level γ 0.99 0.99 0.99
high-level train freq 10 10 10

ch 10-50
low-level τ 0.005 0.005 0.005
πlo lr 0.0001 0.0001 0.0001
Qlo lr 0.001 0.001 0.001

low-level γ 0.95 0.95 0.95
hidden layer (300,300) (300,300) (300,300)

number of coverage landmarks γ - - 20-250
number of novelty landmarks γ - - 20-250

batch size 128 128 128

Table 5: Hyperparameters for SAC

SAC
hidden layer (256, 256, 256)

actor lr 0.0003
critic lr 0.0003

entropy coef 0.2
τ 0.005

batch size 256
γ 0.99

Table 6: Hyperparameters for DHRL

DHRL
hidden layer (256, 256, 256)

initial episodes without graph planning 75
gradual penalty transition rate 0.2

high-level train freq 10
actor lr 0.0001
critic lr 0.001
τ 0.005
γ 0.99

number of landmarks 300-500
target update freq 10
actor update freq 2

18

