A Algorithms.

```
Algorithm 1 Training DHRL
    sample \(D_{i}^{\text {lo }}=\left(s_{t}, w p_{t}, a_{t}, r\left(s_{t+1}, w p_{t}\right), s_{t+1}\right)_{i} \in \mathcal{B}^{\text {lo }}\)
    relabel \(w p_{t} \leftarrow \hat{w} p_{t}=a g_{t+t_{\mathrm{ftr}}}\) to make \(\hat{D}_{i}^{\text {lo }}\)
    update \(Q_{\text {critic }, \theta_{1}}^{\mathrm{lo}}\) and \(\pi_{\phi_{1}}^{\mathrm{lo}}\) using \(D_{i}^{\text {lo }} \cup \hat{D}_{i}^{\text {lo }}\)
    update \(Q_{\text {graph }, \theta_{2}}^{\mathrm{lo}}\) using \(\hat{D}_{i}^{\text {lo }}\)
    if \(t \bmod d\) then
        sample \(D_{i}^{\mathrm{hi}}=\left(s_{t}, g_{t}, s g_{t}, r_{t}, s_{t+c_{h}}\right)_{i} \in \mathcal{B}^{\mathrm{hi}}\)
        relabel \(s g_{t} \leftarrow a g_{t+c_{h}}\) to make \(\hat{D}_{i}^{\mathrm{hi}}\)
        for \(\left(s_{t}, g_{t}, s g_{t}, r_{t}, s_{t+c_{h}}\right)\) in \(D_{i}^{\text {hi }}\) do
        if \(r\left(s_{t+c_{h}}, s g_{t}\right)=0\) then
            \(r_{t} \leftarrow r_{t} \quad \triangleleft\) subgoal \(\in \mathbf{L}_{1}\)
            else if use GradualPenalty then
                \(r_{t} \leftarrow\) GradualPenalty \(\left(\right.\) graph \(\left.\mathbf{G}, s g_{t}, Q_{\text {graph }}^{\mathrm{lo}}\right)\)
            else
                \(r_{t} \leftarrow\) penalty \(p_{1}\)
            end if
        end for
        update \(Q_{\theta_{3}}^{\mathrm{hi}}\) and \(\pi_{\phi_{2}}^{\mathrm{hi}}\) using \(D_{i}^{\mathrm{hi}} \cup \hat{D}_{i}^{\mathrm{hi}}\)
    end if
```

```
Algorithm 2 Farthest Point Sampling Algorithm [2]
    Input: set of states \(\left\{s_{1}, s_{2}, . . s_{K}\right\}\), sampling number k, temporal distance function \(\operatorname{Dist}(\cdot \rightarrow \cdot)\)
    SelectedNode = []
    DistList = [inf, inf, ... inf]
    for \(i=1\) to \(k\) do
        FarthestNode \(\leftarrow \operatorname{argmax}(\) DistList)
        add FarthestNode to SelectedNode
        DistFromFarthest \(\leftarrow\left[\right.\) Dist(FarthestNode \(\left.\rightarrow s_{1}\right), \ldots\), Dist(FarthestNode \(\left.\left.\rightarrow s_{K}\right)\right]\)
        DistList = ElementwiseMin(DistFromFarthest, DistList)
    end for
    return SelectedNode
```

```
Algorithm 3 Planning with DHRL
    while not done do
        if t mod graph_construct_freq then
            construct a graph \(\mathbf{G}(\mathbf{V}, \mathbf{E})\) : sample \(\mathbf{V}=\psi(s)\) where \(s \in D^{\text {lo }}\) through FPS algorithm and
            get edge cost \(\mathbf{E}\) by Eq. (1)
        end if
        \(s g_{t}=\pi^{\mathrm{hi}}\left(s_{t}, g_{t}\right)\)
        get \(\mathcal{W}:\left(w p_{t, 0}=\psi\left(s_{t}\right), w p_{t, 1}, w p_{t, 2}, \ldots, w p_{t, k-1}, w p_{t, k}=s g_{t}\right)\)
        previous waypoint index \(i d p \leftarrow 0\); tracking waypoint index \(i d t \leftarrow 1\); tracking time \(t_{t r} \leftarrow 0\)
        for \(\tau=1\) to \(c_{h}\) do
            get low-level action \(a_{\tau}\) from \(\pi^{\mathrm{lo}}\left(a_{\tau} \mid s_{\tau}, w p_{t, i d t}\right)\)
            act \(a_{\tau}\) in the environment and get \(s_{\tau+1}\)
            \(t_{t r}+=1 ; t+=1\)
            if agent achieve \(w p_{t, i d t}\) or \(t^{t r}>\operatorname{Dist}\left(w p_{t, i d p} \rightarrow w p_{t, i d t}\right)\) then
                \(i d p+=1 ; i d t+=1 ; t_{t r} \leftarrow 0\)
            end if
        end for
    end while
```

```
Algorithm 4 Gradual Penalty
    Input: graph \(\mathbf{G}(\mathbf{V}, \mathbf{E})\), subgoal \(s g_{t}, Q_{\mathrm{graph}, \theta_{2}}^{\mathrm{lo}}\), gradual penalty threshold \(\zeta_{1}\), penalty \(p_{1}\), penalty
    \(p_{2}\)
    if \(\min \left(Q_{\text {graph }, \theta_{2}}^{\text {lo }}\left(v \in \mathbf{V}, s g_{t}\right)\right)<\zeta_{1}\) then
        \(r_{t} \leftarrow\) penalty \(p_{1} \quad \triangleleft\) subgoal \(\in \mathbf{L}_{2}\)
    else
        \(r_{t} \leftarrow\) penalty \(p_{2} \quad \triangleleft\) subgoal \(\in \mathbf{L}_{3}\)
    end if
```

```
Algorithm 5 Frontier-Based Goal-Shifting (FGS)
    Input: \(s_{t}\), graph \(\mathbf{G}(\mathbf{V}, \mathbf{E})\), goal \(g, Q_{\text {graph }, \theta_{2}}^{\text {lo }}\), cut-off threshold \(\zeta_{2}\)
    \(\operatorname{Dist}(s, g):=\log _{\gamma}\left(1+(1-\gamma) Q_{\text {graph }, \theta_{2}}^{\mathrm{lo}}(s, \pi(s, g) \mid g)\right)\)
    if \(\min _{v \in \mathbf{V}}(\operatorname{Dist}(v \rightarrow g))<\zeta_{2}\) then
        \(\mathbf{V}_{\text {candidate }} \leftarrow \mathbf{V}+\) noise
        \(g_{t} \leftarrow \operatorname{random} . \operatorname{choice}\left(\mathbf{V}_{\text {candidate }}\right.\), weight \(\left.=-Q_{\text {graph }, \theta_{2}}^{\text {lo }}\left(s_{t}, \pi\left(s_{t}, \mathbf{V}_{\text {candidate }}\right) \mid \mathbf{V}_{\text {candidate }}\right)\right)\)
    end if
    return \(g_{t}\)
```

```
Algorithm 6 Overview of DHRL
    Input: initial random steps \(\tau_{\text {randomwalk }}\), initial steps without planning \(\tau_{\text {w/o graph }}\), total training
    step \(\tau_{\text {total }}\), Env, low-level agent \(Q_{\text {critic }, \theta_{1}}^{\text {lo }}, Q_{\text {graph }, \theta_{2}}^{\mathrm{lo}}\) and \(\pi_{\phi_{1}}^{\mathrm{lo}}\), high-level agent \(Q_{\theta_{3}}^{\mathrm{hi}}\) and \(\pi_{\phi_{2}}^{\mathrm{hi}}\)
    \(\operatorname{Dist}(s, g):=\log _{\gamma}\left(1+(1-\gamma) Q_{\text {graph }, \theta_{2}}^{\text {lo }}(s, \pi(s, g) \mid g)\right)\)
    for \(\tau=1\) to \(\tau_{\text {total }}\) do
        if Env.done then
            Env.reset (episode step resets to 0)
            if Use FGS then
                \(g \leftarrow \operatorname{FGS}\left(\mathbf{G}, g, Q_{\text {graph }, \theta_{2}}^{\mathrm{lo}}\right)\)
            end if
        end if
        if \(\tau<\tau_{\text {randomwalk }}\) then
            \(a_{t} \leftarrow\) random.uniform(high \(=\) action.high, low \(=\) action.low) \(\quad \triangleleft\) random action
        else if \(\tau<\tau_{\text {w/o graph }}\) then
            \(a_{t} \leftarrow\) vanilla \(H R L\left(s g_{t}=\pi_{\phi_{2}}^{\mathrm{hi}}\left(s_{t}, g\right)\right.\) and \(\left.\pi_{\phi_{1}}^{\mathrm{lo}}\left(s_{t}, s g_{t}\right)\right) \quad \triangleleft\) act without planning
        else
            if Graph \(\mathbf{G}\) is not initialized then
                Create a graph \(\mathbf{G}(\mathbf{V}, \mathbf{E})\) using FPS algorithm \(\quad \triangleleft\) initialize graph
            end if
            if episode step(the step of the environment) \(\% c_{l}=0\) then
                    \(s g_{t} \leftarrow \pi_{\phi_{2}}^{\mathrm{hi}}\left(s_{t}, g\right) \quad \triangleleft\) get subgoal
                    \(\left\{w p_{t, 1}, w p_{t, 2}, \cdots w p_{t, k}\right\} \leftarrow\) Dijkstra'salgorithm \(\left(s_{t}, s g_{t}\right) \triangleleft\) get waypoints
                    current waypoint index \(n=1\)
            end if
            if achieved \(w p_{t, n}\) or tried more than \(\operatorname{Dist}\left(w p_{t, n-1}, w p_{t, n}\right)\) to achieve \(w p_{t, n}\) then
                current waypoint index \(+=1\)
            end if
            \(a_{t} \leftarrow \pi_{\phi_{1}}^{\text {lo }}\left(s_{t}, w p_{t, n+1}\right) \quad \triangleleft\) get low-level action
        end if
        Env.step \(\left(a_{t}\right)\)
        Train low-level agent \(Q_{\text {critic }, \theta_{1}}^{\mathrm{lo}}, Q_{\text {graph }, \theta_{2}}^{\mathrm{lo}}\) and \(\pi_{\phi_{1}}^{\mathrm{lo}}\), high-level agent \(Q_{\theta_{3}}^{\mathrm{hi}}\) and \(\pi_{\phi_{2}}^{\mathrm{hi}}\)
        if \(\tau \%\) graph update freq \(=0\) then
            Update Graph \(\mathbf{G}(\mathbf{V}, \mathbf{E})\) using FPS algorithm
        end if
    end for
```


B Proofs of Theorems.

Derivation of equation 1. If a given policy $\pi_{l o}$ requires n steps to get from current s to a goal g, the γ-discounted return is $Q_{\mathrm{lo}}(s, \pi(s, g) \mid g)=(-1)+(-1) \gamma+(-1) \gamma^{2} \cdots(-1) \gamma^{n-1}=-\frac{1-\gamma^{n}}{1-\gamma}$.
Thus, the temporal distance between s to $g(=n)$ is derived from $\gamma^{n}-1=(1-\gamma) Q_{1 \circ}(s, \pi(s, g) \mid g)$ as

$$
\begin{equation*}
n=\log _{\gamma}\left(1+(1-\gamma) Q_{\mathrm{lo}}(s, \pi(s, g) \mid g)\right) . \tag{3}
\end{equation*}
$$

Definition B.1. $\mathcal{W}_{\mathbf{G}}\left(s_{t}, s g_{t}\right)=\left(w p_{t, 0}, w p_{t, 1}, \ldots, w p_{t, k}\right)$ is a sequence of waypoint obtained by the graph search algorithm and $w\left(\mathcal{W}_{\mathbf{G}}, \tau\right)=w p_{t, i} \in \mathcal{W}_{\mathbf{G}}\left(s_{t}, s g_{t}\right)$ is the waypoint that is given to low-level policy at τ.
Given the transition distribution of the environment $\mathcal{T}\left(s_{\tau+1} \mid s_{\tau}, a_{\tau}\right)$, the transition data $\left(s_{t}, g_{t}, s g_{t}, r\left(s_{t+c_{h}}, g_{t}\right), s_{t+c_{h}}\right)$ from the high-level policy's replay buffer has been obtained as

$$
\begin{equation*}
s_{t+c_{h}}=\prod_{\tau=t}^{t+c_{h}-1} \mathcal{T}\left(s_{\tau+1} \mid s_{\tau}, a_{\tau}\right) \cdot \pi_{\beta}^{\mathrm{lo}}\left(a_{\tau} \mid s_{\tau}, w\left(\mathcal{W}_{\mathbf{G}_{\beta}}, \tau\right)\right) \tag{4}
\end{equation*}
$$

where $\pi_{\beta}^{\text {lo }}$ and \mathbf{G}_{β} are the previous low-level policy and graph respectively. Also, by using a different graph \mathbf{G} and an optimal policy $\pi^{\mathrm{lo*}}$, we get a new transition data $\left(s_{t}, g_{t}, s g_{t}, r\left(s_{t+c_{h}}^{\prime}, g_{t}\right), s_{t+c_{h}}^{\prime}\right)$, where

$$
\begin{equation*}
s_{t+c_{h}}^{\prime}=\prod_{\tau=t}^{t+c_{h}-1} \mathcal{T}\left(s_{\tau+1} \mid s_{\tau}, a_{\tau}\right) \cdot \pi^{\mathrm{lo*}}\left(a_{\tau} \mid s_{\tau}, w\left(\mathcal{W}_{\mathbf{G}}, \tau\right)\right) \tag{5}
\end{equation*}
$$

For given s_{t} and $s_{t+c_{h}}$, we define the off-policy error rate, which is the normalized distance error with respect to the total traversal distance according to the change of $\pi_{\beta}^{\mathrm{lo}}$ and \mathbf{G}_{β} to $\pi^{\mathrm{lo} *}$ and \mathbf{G}, as

$$
\begin{equation*}
\rho(\mathbf{G})=\frac{\operatorname{Dist}\left(\psi\left(s_{t+c_{h}}^{\prime}\right) \rightarrow \psi\left(s_{t+c_{h}}\right)\right)}{\operatorname{Dist}\left(\psi\left(s_{t}\right) \rightarrow \psi\left(s_{t+c_{h}}\right)\right)} . \tag{6}
\end{equation*}
$$

Lemma B.2. Suppose that Dist $(\cdot \rightarrow \cdot)$ in Eq. (1) is Lipschitz continuous. Then, there exists a constant $L>0$ such that $\forall x$ and $y, \max (\operatorname{Dist}(x \rightarrow y), \operatorname{Dist}(y \rightarrow x)) \leq L\|x-y\|$, where $\|\cdot\|$ is the Euclidean norm, since $\operatorname{Dist}(x \rightarrow x)=0$. Then, any ϵ / L-resolution graph w.r.t the Euclidean norm, whose existence is trivial, is an ϵ-resolution graph w.r.t Dist $(\cdot \rightarrow \cdot)$.

Proof of Theorem 4.2

Proof. Let $\mathcal{C}^{s \rightarrow g}$ be one of the shortest paths from s to g and T be the distance of $\mathcal{C}^{s \rightarrow g}$. Also let $p_{1} \in \mathcal{C}^{s \rightarrow g}$ be a point that $\operatorname{Dist}\left(\psi(s) \rightarrow p_{1}\right)=c_{l}-\epsilon$. Then, $\exists w p_{1} \in \mathbf{V}$ s.t. $\max \left(\operatorname{Dist}\left(p_{1} \rightarrow w p_{1}\right)\right.$, $\left.\operatorname{Dist}\left(w p_{1} \rightarrow p_{1}\right)\right)<\epsilon$, because G is an ϵ-resolution graph. Since $\operatorname{Dist}(\cdot \rightarrow \cdot)$ is a temporal distance, it satisfies the triangular inequality and then, $\operatorname{Dist}\left(\psi(s) \rightarrow w p_{1}\right) \leq \operatorname{Dist}\left(\psi(s) \rightarrow p_{1}\right)+\operatorname{Dist}\left(p_{1} \rightarrow w p_{1}\right)<\left(c_{l}-\epsilon\right)+\epsilon=c_{l}$ and $\operatorname{Dist}\left(w p_{1} \rightarrow g\right) \leq \operatorname{Dist}\left(w p_{1} \rightarrow p_{1}\right)+\operatorname{Dist}\left(p_{1} \rightarrow g\right)<\epsilon+\left(T-c_{l}+\epsilon\right)=T-c_{l}+2 \epsilon$.
Repeating the above procedure, let $p_{i+1} \in \mathcal{C}^{w p_{i} \rightarrow g}$ be a point that $\operatorname{Dist}\left(w p_{i} \rightarrow p_{i+1}\right)=c_{l}-\epsilon$. Then, $\exists w p_{i+1} \in \mathbf{V}$ s.t. $\max \left(\operatorname{Dist}\left(p_{i+1} \rightarrow w p_{i+1}\right), \operatorname{Dist}\left(w p_{i+1} \rightarrow p_{i+1}\right)\right)<\epsilon$. Then, $\operatorname{Dist}\left(w p_{i} \rightarrow w p_{i+1}\right)<c_{l}$ and $\operatorname{Dist}\left(w p_{i+1} \rightarrow g\right)<T-(i+1) c_{l}+2(i+1) \epsilon$. Consequently, the agent after T time-step will be closer than the $\left\lfloor T / c_{l}\right\rfloor^{\text {th }}$ waypoint from g. The remaining distance is less than

$$
\begin{equation*}
T-\left\lfloor T / c_{l}\right\rfloor c_{l}+2\left\lfloor T / c_{l}\right\rfloor \epsilon . \tag{7}
\end{equation*}
$$

Thus, if an agent follows the sequence of waypoints $\left\{s, w p_{1}, w p_{2}, \ldots, g\right\}$, which is generated from a graph search algorithm over \mathbf{G} and $\pi^{\text {lo* }}$, the error rate over this path satisfies

$$
\begin{equation*}
\rho(\mathbf{G}) \leq \frac{T-\left\lfloor T / c_{l}\right\rfloor c_{l}+2\left\lfloor T / c_{l}\right\rfloor \epsilon}{T} \leq \frac{T-\left(c_{l}-2 \epsilon\right)\left(T / c_{l}\right)}{T}=\frac{2 \epsilon}{c_{l}} . \tag{8}
\end{equation*}
$$

Thus the off-policy error rate ρ is equal or less than $2 \epsilon / c_{l}$ during T. Since all path from s to g takes at least T time-steps, this upper-bound of error rate is also satisfied in all path from s to g.

C Additional Results

Figure 10: Comparison with shallow RL (SAC) and vanilla HRL (HIRO). The completely failed baselines are occluded by others.

Figure 11: Examples of various initial state distributions.

Table 2: Performance of DHRL in various difficulties of initial state distributions.

SUCCESS RATE	EASY(UNIFORM)	MEDIUM(2 FIXED POINT)	HARD(1 FIXED POINT)
ANTMAZE 0.3M	80.4%	28.5%	12.2%
ANTMAZE 0.5 M	87.1%	88.2%	71.5%

As shown in the table above, the wider the initial distribution, the easier it is for the agent to explore the map. In other words, the 'fixed initial state distribution' condition we experimented with in this paper is a more difficult condition than the 'uniform initial state distribution' that previous graph-guided RL algorithms utilize. Of course, 'fixed initial state distribution' requires less prior information about the state space. We further experimented with ours (DHRL) under various types of reset conditions as shown in Table 2 As expected, our algorithm shows faster exploration at the uniform reset point.

Figure 12: Changes in the graph level over the training; DHRL can explore long tasks with 'fixed initial state distribution' and limited knowledge about the environment.

Table 3: Comparisons between our algorithm (DHRL) and baselines: The numbers next to the environment names are the time-steps for training the models. The results are averaged over 4 random seeds and smoothed equally. '-D' and '-S' mean dense reward and sparse reward respectively. We use NVIDIA RTX A5000.

SUCCESS RATE		SAC	HIRO-D	HIRO-S	HRAC-D	HRAC-S	HIGL-D	HIGL-S	DHRL
POINTMAZE	0.25 M	1.2%	73.8%	77.9%	6.1%	56.1%	25.5%	34.3%	$\mathbf{9 6 . 9 \%}$
	0.5 M	0.3%	93.6%	76.8%	33.5%	93.7%	88.3%	91.8%	$\mathbf{9 9 . 8 \%}$
ANTMAZESMALL	0.5 M	0.0%	0.0%	2.0%	9.2%	54.0%	36.3%	44.1%	$\mathbf{8 9 . 8 \%}$
	1.0 M	0.0%	24.1%	60.1%	83.4%	88.4%	83.7%	52.2%	$\mathbf{9 5 . 1 \%}$
ANTMAZE	0.5 M	0.0%	0.0%	0.0%	1.1%	0.0%	60.2%	32.7%	$\mathbf{7 1 . 5 \%}$
	1.0 M	0.0%	0.7%	0.8%	68.7%	48.9%	78.1%	60.3%	$\mathbf{9 1 . 1 \%}$
BOTTLENECK	0.5 M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	$\mathbf{1 6 . 5 \%}$
	1.0 M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	$\mathbf{3 8 . 7 \%}$
COMPLEX	2.5 M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	$\mathbf{2 0 . 4 \%}$
	4.0 M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	$\mathbf{4 0 . 1 \%}$
REACHER-3D	0.25 M	49.2%	-	66.0%	-	26.5%	-	78.2%	$\mathbf{9 5 . 1 \%}$
	0.5 M	47.2%	-	67.1%	-	44.1%	-	47.1%	$\mathbf{9 0 . 6 \%}$
UR3OBSTACLE		0.0%	2.5%	1.9%	0.5%	0.0%	11.1%	0.5%	$\mathbf{6 9 . 8 \%}$

Table 4: Hyperparameters for HRL: When evaluating the previous HRL algorithms, we used the same hyperparameters as used in their papers. We also tried various numbers of landmarks and c_{h} which may affect the performance in long-horizon tasks.

	HIRO	HRAC	HIGL
high-level τ	0.005	0.005	0.005
$\pi^{\text {hi }} \mathrm{lr}$	0.0001	0.0001	0.0001
$Q^{\text {hi }} \mathrm{lr}$	0.001	0.001	0.001
high-level γ	0.99	0.99	0.99
high-level train freq	10	10	10
c_{h}		$10-50$	
low-level τ	0.005	0.005	0.005
$\pi^{\text {lo }} \mathrm{lr}$	0.0001	0.0001	0.0001
$Q^{\text {lo }} \mathrm{lr}$	0.001	0.001	0.001
low-level γ	0.95	0.95	0.95
hidden layer	$(300,300)$	$(300,300)$	$(300,300)$
number of coverage landmarks γ	-	-	$20-250$
number of novelty landmarks γ	-	-	$20-250$
batch size	128	128	128

Table 5: Hyperparameters for SAC

	SAC
hidden layer	$(256,256,256)$
actor lr	0.0003
critic lr	0.0003
entropy coef	0.2
τ	0.005
batch size	256
γ	0.99

Table 6: Hyperparameters for DHRL

	DHRL
hidden layer	$(256,256,256)$
initial episodes without graph planning	75
gradual penalty transition rate	0.2
high-level train freq	10
actor lr	0.0001
critic lr	0.001
τ	0.005
γ	0.99
number of landmarks	$300-500$
target update freq	10
actor update freq	2

