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Abstract

In this paper, we consider Byzantine-tolerant federated learning for streaming
data using Gaussian process regression (GPR). In particular, a cloud and a group
of agents aim to collaboratively learn a latent function where some agents are
subject to Byzantine attacks. We develop a Byzantine-tolerant federated GPR
algorithm, which includes three modules: agent-based local GPR, cloud-based
aggregated GPR and agent-based fused GPR. We derive the upper bounds on the
prediction error between the mean from the cloud-based aggregated GPR and the
target function provided that Byzantine agents are less than one quarter of all the
agents. We also characterize the lower and upper bounds of the predictive variance.
Experiments on a synthetic dataset and two real-world datasets are conducted to
evaluate the proposed algorithm.

The Internet of Things (IoT) produces large volumes of spatially distributed data. A typical practice is
to store data in a centralized entity, e.g., a cloud, and train machine learning models there. However, it
poses challenges in communication overhead and computation efficiency. In addition, data storage on
the centralized entity raises privacy concerns. Federated learning provides a promising paradigm to
address the two challenges [1], [2], [3], [4]. First, only a finite number of model parameters are shared
and the size of these parameters is much smaller than that of raw data; second, data samples are kept
by data owners and local models are trained without sharing raw data. However, these data owners
are vulnerable to Byzantine attacks, which force them to behave arbitrarily and send any message to
the cloud. The cloud cannot access each agent’s local private data and training processes, and then
cannot verify the correctness of local updates. Byzantine attacks incur significant degradation of
learning performance if they are not explicitly taken in account.

Related work. There have been many recent works to secure federated learning against Byzantine
attacks [5], [6], [7], [8], [9]. Paper [5] proposes Krum as the aggregation rule where the cloud selects
a gradient such that the overall distance between this gradient to a fixed number of its closest gradients
is minimal. Paper [6] develops an algorithm which is based on integrated stochastic quantization,
geometric median based outlier detection and secure model aggregation. Paper [7] analyzes two robust
distributed gradient descent algorithms based on median and trimmed mean operations, respectively.
Paper [8] proposes a high-dimensional robust mean estimation algorithm at the cloud to combat the
adversary. In paper [9], the cloud partitions all the received local gradients into batches and computes
the mean of each batch. After that, the cloud computes the geometric median of the batch means.
The above set of papers can guarantee that the estimation error of the parameter aggregated by the
cloud is upper bounded and determined by the number of Byzantine agents. However, the existing
works only consider deep neural networks (DNN) as the learning model and are limited to static data
and off-line learning.

On-line learning is demanded to process data that arrives sequentially across time [10], [11], [12].
Gaussian process regression (GPR) is a solution candidate to solve the problem [13], [14], [15],
[16]. First of all, GPR is a non-parametric statistical learning model. With proper choice of prior
covariance function and mild assumptions of the target function, GPR is able to approximate any
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continuous function [17]. Second, GPR can be implemented recursively, reducing computational
complexity and memory [18]. Third, GPR is able to quantify learning uncertainties since it predicts
the target function using a posterior probability distribution [19]. However, Byzantine-tolerant GPR
has not been studied yet.

Contributions. This paper considers Byzantine-tolerant federated learning for streaming data using
GPR where a cloud and a group of agents aim to collaboratively learn a latent function despite some
agents are subject to Byzantine attacks. Major contributions are listed as follows:

1) We develop a Byzantine-tolerant federated GPR algorithm, which includes three modules:
agent-based local GPR, cloud-based aggregated GPR and agent-based fused GPR. Specif-
ically, the agent-based local GPR sends potentially compromised local predictions to the
cloud, and the cloud-based aggregated GPR computes a global model by a Byzantine-
tolerant product of experts (PoE) aggregation rule. Then the cloud broadcasts the current
global model to all the agents. Agent-based fused GPR returns local predictions by fusing
the models from the cloud-based GPR with those from the agent-based local GPR.

2) The predictive mean of the cloud-based aggregated GPR is theoretically guaranteed to be
restricted within a neighborhood of the target function provided that Byzantine agents are
less than one quarter of all the agents. The prediction error is positively proportional to the
number of Byzantine agents and that of the agents with extreme values. Predictive variance
is quantified by lower and upper bounds, which are identical to that of the attack-free case.

Experiments on a synthetic dataset and two real-world datasets are conducted to demonstrate that the
Byzantine-tolerant GPR algorithm is resilient to Byzantine attacks. To the best knowledge of authors,
this is the first paper to study Byzantine-tolerant federated learning over streaming data using GPR.

Notations and notions. Throughout the paper, we use lower-case letters, e.g, a, to denote scalars, bold
letters, e.g., a, to denote vectors; upper-case letters, e.g., A, to denote matrices, calligraphic letters,
e.g., A, to denote sets, and bold calligraphic letters, e.g., A, to denote spaces. Denote In ∈ Rn×n the
n-by-n identity matrix. We denote by R the set of real numbers. The set of non-negative real numbers
is denoted by R+, and the set of positive real numbers is denoted by R++. The cardinality of set A
is denoted by |A|. Define the distance metric D(z, z′) ≜ ∥z − z′∥, and the point to set distance as
D(z,Z) ≜ infz′∈Z D(z, z′). Define proj(z,Z) ≜ {z′ ∈ Z|D(z, z′) = D(z,Z)} the projection
set of point z onto set Z . Denote the supremum of a function η : Z → R as ∥η∥∞ ≜ supz∈Z |η(z)|.
For a real number a, we denote the floor function by ⌊a⌋. We denote byO(g(t)) the limiting behavior
of some function f(t) if limt→∞

f(t)
g(t) = a for some constant a > 0.

We give formal definitions of sub-Gaussian random variables with parameter σ and Gaussian process.

Definition 1 [20] A random variable X with mean µ ≜ E [X] is sub-Gaussian (denoted by X ∼
subG(σ2)) if there exists a positive number σ such that

E [exp(λ(X − µ))] ≤ exp

(
σ2λ2

2

)
, ∀λ ∈ R. (1)

Definition 2 [13] A Gaussian process is a collection of random variables, any finite number of which
have a joint Gaussian distribution.

1 Preliminary

In this section, we provide basic knowledge of GPR. Let η : Z → Y be the target function, where
Z ⊆ Rnz and Y ⊆ R. Given input z(t) ∈ Z at time t, the corresponding output is given by

y(t) = η(z(t)) + e(t), e(t) ∼ N (0, σ2
e), (2)

where e(t) is the Gaussian measurement noise and the latent function η is sampled from a Gaussian
process prior. Let training data be in the form D ≜ (Z,y), where Z ≜ {z(1), . . . ,z(ns)} is the set
of input data and y ≜ [y(1), . . . , y(ns)]

T is the column vector aggregating the outputs. GPR aims to
infer the values of the latent function η over a set of test data points Z∗ ⊂ Z using D.
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Define kernel function k : Rnz × Rnz → R that is symmetric and positive semi-definite. Let η(Z)
return a column vector such that the i-th entry of η(Z) equals η(z(i)). Assume that the latent function
η is sampled from a GP prior specified by mean function µ and kernel function k. Then the training
outputs y and the test outputs η(Z∗) are jointly Gaussian distributed as:[

y
η(Z∗)

]
∼ N (

[
µ(Z)
µ(Z∗)

]
,

[
k(Z,Z) + σ2

eIns k(Z,Z∗)
k(Z∗,Z) k(Z∗,Z∗)

]
),

where µ(Z) and µ(Z∗) return a vector consisting of µ(z(i)) and µ(z∗(j)); k(Z,Z∗) returns a
matrix such that the entry at the ith row and the jth column is k(z(i), z∗(j)), and k(Z,Z), k(Z∗,Z)
and k(Z∗,Z∗) are defined in an analogous way.

Utilizing identities of joint Gaussian distribution (see page 200 in [13]), GPR makes predictions of η
on Z∗ based on dataset D as η(Z∗) ∼ N (µZ∗|D,ΣZ∗|D), where

µZ∗|D ≜ µ(Z∗) + k(Z∗,Z )̊k(Z,Z)−1(y − µ(Z)),

ΣZ∗|D ≜ k(Z∗,Z∗)− k(Z∗,Z )̊k(Z,Z)−1k(Z,Z∗), (3)

with k̊(Z,Z) ≜ k(Z,Z) + σ2
eIns

. We refer (3) as full GPR. If y is multi-dimensional, GPR is
performed for each element.

2 Problem formulation

2.1 Observation model

Consider a network consisting of n agents and a cloud. We denote the agent set by V ≜ {1, . . . , n}.
At each time instant t, the observation model of agent i is given as

y[i](t) = η(z[i](t)) + e[i](t) (4)

where z[i](t) ∈ Z ⊆ Rnz is the input of η, y[i](t) ∈ Y ⊆ R is the observation of the agent, and
e[i](t) is independent zero-mean Gaussian noise with e[i](t) ∼ N (0, (σ

[i]
e )2).

2.2 Attack model

All communications between the cloud and the agents are attack-free. Some agents are Byzantine
agents, and they can behave arbitrarily during learning process, and send arbitrary local predictions
to the cloud. We assume that an α fraction of the agents are Byzantine, and the remaining 1 − α
fraction are benign. We denote B ⊂ V as the set of Byzantine agents, and thus |B| = ⌊αn⌋. Both the
cloud and the benign agents are unaware of the identities of Byzantine agents, but we assume the
cloud knows that 1

4 is an upper bound of α.

Assumption 1 It holds that 0 < α < 1
4 .

Most existing works on Byzantine-tolerant algorithms, e.g., [5], [7], [9], can tolerate Byzantine agents
with α < 1

2 . These algorithms only transmit one variable, e.g., the gradients of the loss function or the
model parameter, between the cloud and the agents, whereas our federated GPR algorithm requires to
exchange two variables, e.g., local mean and variance, to realize the aggregation of predictions.

2.3 Objective

The objective of this paper is to design an algorithm, which enables the benign agents and the
cloud to correctly learn the function η without requiring the agents to share local streaming data
(z[i](t), y[i](t)) despite some agents are subject to Byzantine attacks.

3 Byzantine-tolerant federated GPR

In this section, we develop a Byzantine-tolerant federated GPR algorithm to solve the problem
formulated in Section 2. This algorithm consists of three modules: agent-based local GPR, cloud-
based aggregated GPR and agent-based fused GPR.
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Algorithm 1 Byzantine-tolerant federated GPR

1: Input: test inputs Z∗, prior mean function µ, kernel k and noise variance (σ
[i]
e )2 for i ∈ V

2: Initialization: D(0) = ∅.
3: for t = 1, 2, . . . do
4: for i ∈ V do {Agent-based local GPR}
5: D[i](t) = D[i](t− 1)

⋃
(z[i](t), y[i](t))

6: µ̌′
Z∗|D[i](t)

, σ̌′2
Z∗|D[i](t)

= lGPR(D[i](t))

7: end for
8: µ̂Z∗|D(t), σ̂

2
Z∗|D(t) = cGPR(µ̌′

Z∗|D[i](t)
, σ̌′2

Z∗|D[i](t)
) {Cloud-based aggregated GPR}

9: for i ∈ V do {Agent-based fused GPR}
10: µ̃

[i]
Z∗|D(t), (σ̃

[i]
Z∗|D(t))

2= fGPR(µ̌′
Z∗|D[i](t)

, σ̌′2
Z∗|D[i](t)

, µ̂Z∗|D(t), σ̂
2
Z∗|D(t))

11: end for
12: end for

Specifically, first at each time instant t, each agent i ∈ V makes its own prediction of η
through agent-based local GPR over a given set of points Z∗ ⊆ Z using local streaming
dataset D[i](t) ≜ (Z [i](t),y[i](t)) with local input data Z [i](t) ≜ {z[i](1), . . . ,z[i](t)} and out-
put y[i](t) ≜ [y[i](1), . . . , y[i](t)]T. Then the benign agents send correct local predictions to the
cloud and the Byzantine agents instead send arbitrary values. Second, the cloud collects all the
local predictions and constructs two agent sets by trimming a fraction of outliers with respect to the
predictive means and variances. Then the cloud uses a Byzantine-tolerant PoE aggregation rule to
compute a global prediction, and broadcasts the global prediction to all the agents. Third, the agents
refine the predictions on Z∗ by fusing the predictions from the cloud-based GPR with those from the
agent-based local GPR. Note that each agent only communicates local predictions with the cloud,
and does not share its local streaming data with the cloud and other agents. The formal description of
Byzantine-tolerant federated GPR is given in Algorithm 1.

Algorithm 2 Agent-based local GPR: lGPR(D[i](t))

1: Z [i](t) = {z[i](1), . . . ,z[i](t)}
2: y[i](t) = [y[i](1), . . . , y[i](t)]T

3: for z∗ ∈ Z∗ do
4: Choose z

[i]
∗ (t) ∈ proj(z∗,Z [i](t))

5: Compute µ̌′
z∗|D[i](t)

←
{

µ̌z∗|D[i](t) Benign agent,
⋆ Byzantine agent

6: Compute σ̌′2
z∗|D[i](t)

←
{

σ̌2
z∗|D[i](t)

Benign agent,
⋆ Byzantine agent

7: Send µ̌′
z∗|D[i](t)

and σ̌′2
z∗|D[i](t)

to the cloud
8: end for
9: return µ̌′

Z∗|D[i](t)
, σ̌′2

Z∗|D[i](t)

3.1 Agent-based local GPR

To reduce computational complexity, we perform Nearest-neighbor (NN) GPR as the agent-based
local GPR to predict for each test point z∗ ∈ Z∗. Instead of feeding the whole training dataset to
GPR, the agent-based local GPR only uses the nearest input denoted by z

[i]
∗ (t) ∈ proj(z∗,Z [i](t))

and its corresponding output y[i]
z
[i]
∗ (t)

to compute the local predictions. Notice that, computation

complexity of the hyperparameter tuning for NN GPR is O(t3). In fact, the computation complexity
of the hyperparameter tuning can be reduced to O(1) by using recursive hyperparameter tuning [21].
NN GPR in prediction has computation complexity equivalent to nearest-neighbor search, whose
worst case complexity is O(t) [22], while full GPR in (3) has computation complexity O(t3) [23].
Denote µ̌′

z∗|D[i](t)
and σ̌′2

z∗|D[i](t)
the predictive mean and variance output from the agent-based local

GPR. The predictive mean and variance of the benign agents are written in the following forms
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µ̌′
z∗|D[i](t)

= µ̌z∗|D[i](t), σ̌′2
z∗|D[i](t)

= σ̌2
z∗|D[i](t)

where

µ̌z∗|D[i](t) ≜ µ(z∗) + k(z∗, z
[i]
∗ (t))̊k(z

[i]
∗ (t), z

[i]
∗ (t))−1(y

[i]

z
[i]
∗ (t)
− µ(z

[i]
∗ (t))),

σ̌2
z∗|D[i](t) ≜ k(z∗, z∗)− k(z∗, z

[i]
∗ (t))̊k(z

[i]
∗ (t), z

[i]
∗ (t))−1k(z

[i]
∗ (t), z∗) (5)

with k̊(z
[i]
∗ (t), z

[i]
∗ (t)) ≜ k(z

[i]
∗ (t), z

[i]
∗ (t))+(σ

[i]
e )2. When the agent is a Byzantine agent, its outputs

can be arbitrary, and in this case we write µ̌′
z∗|D[i](t)

= ⋆ and σ̌′2
z∗|D[i](t)

= ⋆. The implementation of
the agent-based local GPR is provided in Algorithm 2.

3.2 Cloud-based aggregated GPR

In the sequel, we consider a Byzantine-tolerant PoE aggregation rule for the cloud. The algorithm is
described as follows:

Step 1: For each z∗ ∈ Z∗, the cloud collects potentially corrupted mean µ̌′
z∗|D[i](t)

and variance
σ̌′2
z∗|D[i](t)

from each agent i.

Step 2: The cloud constructs two agent sets to tolerate Byzantine attacks by removing the largest and
smallest β fraction of the local predictive means µ̌′

z∗|D[i](t)
and variances σ̌′2

z∗|D[i](t)
, respectively.

For i ∈ V , we sort µ̌′
z∗|D[i](t)

and σ̌′2
z∗|D[i](t)

in non-descending order. We denote by T µ
max(t) a set

of ⌊βn⌋ agent sets with the largest local predictive means, and by T µ
min(t) a set of ⌊βn⌋ agents with

the smallest local predictive means. Similarly, we denote trimmed sets of variance by T σ
max(t) and

T σ
min(t). Then, we define

M(t) ≜ V\(T µ
max(t)

⋃
T µ
min(t)), C(t) ≜ V\(T σ

max(t)
⋃
T σ
min(t)). (6)

Notice thatM(t) and C(t) include n− 2⌊βn⌋ agents with extreme values removed. These are the
agents whose predictions do not deviate much from the attack-free case.

Step 3: Define a global training dataset as D(t) ≜
⋃

i∈V D[i](t), and a common set as I(t) ≜
M(t)

⋂
C(t). The following lemma shows that I(t) is never empty.

Lemma 1 Suppose that β < 1
4 , it holds that (1− 4β)n ≤ |I(t)| ≤ (1− 2β)n at each time instant t.

The proof of Lemma 1 can be found in Appendix A.1. The following lemma shows that µ̌′
z∗|D[i](t)

and σ̌′2
z∗|D[i](t)

for i ∈ I(t) are bounded by the values of the benign agents.

Algorithm 3 Cloud-based aggregated GPR: cGPR(µ̌′
Z∗|D[i](t)

, σ̌′2
Z∗|D[i](t)

)

1: for t = 1, 2 . . . do
2: D(t) =

⋃
i∈V D[i](t)

3: for z∗ ∈ Z∗ do
4: Construct setsM(t) and C(t) according to (6)
5: Compute I(t) =M(t)

⋂
C(t)

6: Implement aggregation rule (7)
7: Broadcast µ̂Z∗|D(t) and σ̂2

Z∗|D(t) to all the agents
8: end for
9: end for

10: return µ̂Z∗|D(t), σ̂2
Z∗|D(t)

Lemma 2 Let 0 < α ≤ β < 1
4 hold. For i ∈ I(t), we have that minj∈V\B

{
µ̌z∗|D[j](t)

}
≤

µ̌′
z∗|D[i](t)

≤ maxj∈V\B
{
µ̌z∗|D[j](t)

}
, and minj∈V\B

{
σ̌2
z∗|D[j](t)

}
≤ σ̌′2

z∗|D[i](t)
≤

maxj∈V\B

{
σ̌2
z∗|D[j](t)

}
.
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The proof of Lemma 2 is presented in Appendix A.2. Given I(t), we propose a Byzantine-tolerant
PoE aggregation rule below

µ̂z∗|D(t) ≜
σ̂2
z∗|D(t)

|I(t)|
∑

i∈I(t)

µ̌′
z∗|D[i](t)σ̌

′−2
z∗|D[i](t)

, σ̂2
z∗|D(t) ≜

|I(t)|∑
i∈I(t) σ̌

′−2
z∗|D[i](t)

. (7)

Note that if all the agents are known to be benign, we can simply select β = α = 0, and henceM(t) =
C(t) = V . In this case, (7) reduces to the standard PoE in [24]. Then the cloud-based aggregated
GPR returns µ̂Z∗|D(t) ≜ [µ̂z∗|D(t)]z∗∈Z∗ and σ̂2

Z∗|D(t) ≜ [σ̂2
z∗|D(t)]z∗∈Z∗ . The implementation of

the cloud-based aggregated GPR is provided in Algorithm 3.

3.3 Agent-based fused GPR

Notice that the cloud makes predictions using more data than each agent, and it could achieve better
learning performances. Then the agent-based fused GPR aims to refine predictions of η(Z∗) by
integrating the agent-based local GPR with the cloud-based aggregated GPR. When the cloud variance
σ̂2
z∗|D(t) is lower than the local predictive variances σ̌′2

z∗|D[i](t)
, the predictions from the cloud-based

aggregated GPR are used. Otherwise, those from the agent-based local GPR are used. Our algorithm
is one-round. The refined predictions in the agent-based fused GPR will not be transmitted back to
the cloud, hence it cannot change the final aggregation. The implementation of the agent-based fused
GPR is provided in Algorithm 4.

Algorithm 4 Agent-based fused GPR: fGPR(µ̌′
Z∗|D[i](t)

, σ̌′2
Z∗|D[i](t)

, µ̂Z∗|D(t), σ̂
2
Z∗|D(t))

1: for z∗ ∈ Z∗ do
2: if σ̂2

z∗|D(t) ≤ σ̌′2
z∗|D[i](t)

then
3: Compute

µ̃
[i]
z∗|D(t), (σ̃

[i]
z∗|D(t))

2 ←
{

µ̂z∗|D(t), σ̂
2
z∗|D(t) Benign agent,

⋆ Byzantine agent

4: else
5: Compute

µ̃
[i]
z∗|D(t), (σ̃

[i]
z∗|D(t))

2 ←
{

µ̌z∗|D[i](t), σ̌
2
z∗|D[i](t)

Benign agent,
⋆ Byzantine agent

6: end if
7: end for
8: return µ̃

[i]
Z∗|D(t), (σ̃

[i]
Z∗|D(t))

2

3.4 Performance guarantee

This section discusses the robustness of the cloud-based aggregated GPR. We start with the assump-
tions of the kernel function k.

Assumption 2 1) (Decomposition). The kernel function k(·, ·) can be decomposed in such a way
that k(·, ·) = κ(D(·, ·)), where κ : R+ → R++ is continuous.

2) (Monotonicity). It holds that κ(s) is monotonically decreasing in s and κ(0) = σ2
f .

Many existing kernel functions can satisfy Assumption 2, e.g., squared exponential kernel [13]. As
[13], any non-zero mean Gaussian process can be decomposed into a deterministic process and a
zero-mean stochastic process. Without loss of generality and for notational simplicity, we assume η
follows a zero-mean Gaussian process in the analysis.

Assumption 3 It satisfies that η ∼ GP(0, k) and η is Lipschitz continuous on Z .

The target function η is completely specified by Gaussian process with kernel function k. This
assumption is common in the analysis of GPR [25]. The Lipschitz continuity of η implies that there
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exists some positive constant ℓη such that |η(z)− η(z′)| ≤ ℓηD(z, z′) for all z, z′ ∈ Z . For i ∈ V ,
we define the dispersion of local data as d[i](t) ≜ supz∈Z D(z,Z [i](t)). We denote the maximal

local dispersion as dmax(t) ≜ maxi∈V{d[i](t)} and sub-Gaussian parameter as σ ≜
σ2
fσ

max
e

σ2
f+(σmin

e )2

where σmax
e ≜ maxi∈V{σ[i]

e } and σmin
e ≜ mini∈V{σ[i]

e }. The following theorem shows that the
prediction error from the cloud-based aggregated GPR is upper bounded, and characterizes the bounds
of the global predictive variance.

Theorem 1 Part I: (Cloud-based aggregated GPR: Mean) Suppose 0 < α ≤ β < 1
4 and Assump-

tions 2, 3 hold. For any z∗ ∈ Z and 0 < δ < 1, with probability at least 1 − δ, it holds that∣∣µ̂z∗|D(t) − η(z∗)
∣∣ ≤ (1 − κ(dmax(t))

σ2
f+(σmax

e )2
)∥η∥∞ +

σ2
f ℓηd

max(t)

σ2
f+(σmin

e )2
+

√
2σ2(ln 2− ln δ) + ∆(dmax(t))

where ∆(s) ≜
2α(
√

2σ2(ln(2n)−ln δ)+
σ2
f∥η∥∞

σ2
f
+(σmin

e )2
)

1−4β

σ4
f+σ2

f (σ
max
e )2−κ(s)2

σ2
f (σ

min
e )2

.

Part II: (Cloud-based aggregated GPR: Variance) Let 0 < α ≤ β < 1
4 and Assumption 2 hold. For

any z∗ ∈ Z , it holds that
σ2
f (σ

min
e )2

σ2
f+(σmax

e )2
≤ σ̂2

z∗|D(t) ≤ σ2
f −

κ(dmax(t))2

σ2
f+(σmax

e )2
.

The proof of Theorem 1 is presented in Appendix A.3. For the attack-free case, i.e., α = β = 0, the

upper bound of Part I becomes (1− κ(dmax(t))
σ2
f+(σmax

e )2
)∥η∥∞+

σ2
f ℓηd

max(t)

σ2
f+(σmin

e )2
+
√
2σ2(ln 2− ln δ). We assume

limt→∞ d[i](t) = 0 for i ∈ V , the limit of the upper bound is (σmax
e )2

σ2
f+(σmax

e )2
∥η∥∞+

√
2σ2(ln 2− ln δ).

Recall that σ =
σ2
fσ

max
e

σ2
f+(σmin

e )2
. Then we can see that (σmax

e )2

σ2
f+(σmax

e )2
∥η∥∞ and

√
2σ2(ln 2− ln δ) are

positively related to the maximal variance (σmax
e )2 of the noise.

The term ∆(dmax(t)) characterizes the performance loss caused by Byzatine agents. First, notice
that ∆(dmax(t)) is positively related to α, which provides a trade-off between the prediction error
and the number of Byzantine agents. With a larger α, our algorithm can tolerate more Byzantine
agents, but the prediction error gets larger. As α approaches zero, ∆(dmax(t)) goes to zero. This
implies that the prediction performance improves if the number of Byzantine agents is decreasing.
Second, when α is fixed, ∆(dmax(t)) is proportional to β. This implies that learning performance
improves if the set I(t) expands.

The upper and lower bounds in Part II are independent of α and β. Then the variance shares the same
upper and lower bounds with that in the attack-free case. This is due to the fact that the extreme
values are removed by the Byzantine-tolerant PoE in the cloud-based GPR. As t goes to infinity, we

have lim supt→∞ σ̂2
z∗|D(t) ≤

σ2
f (σ

max
e )2

σ2
f+(σmax

e )2
. This implies that the prediction uncertainty diminishes as

the variance of measurement noise decreases.

4 Numerical experiments

This section experimentally demonstrates the performance of the proposed Byzantine-tolerant fed-
erated GPR algorithm using one synthetic dataset and two real-world datasets. We conduct the
experiments on a computer with Intel i7-6600 CPU, 2.60GHz and 12 GB RAM.

Synthetic dataset: For the observation model (4), we consider the target function introduced in [23]

η(z) =5z2 sin(12z) + (z3 − 0.5) sin(3z − 0.5) + 4 cos(2z), (8)

with z ∈ R and e ∼ N (0, 0.01). We generate ns = 103, 5×103, 104, 5×104 training points in [0, 1],
respectively, and choose nt = 120 test points randomly in [0, 1]. There are n = 40 agents in a network.
We partition the training dataset into 40 disjoint groups, and each agent is assigned with ns/n training
data points. We use the following squared-exponential kernel k(z, z∗) = σ2

f exp(− 1
2ℓ2 (z − z∗)

2),
and use Mean Square Error (MSE) to evaluate the proposed algorithm in terms of consistency, the
effect of α and the effect of β in the following experiments.

In the first experiment, we let α = 2.5%, 5%, 7.5%, 10%, 12.5%, 15%. We randomly choose the
agents in the network to be compromised by same-value attacks [26], and let β = α. Specifically,
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for each test point z∗, the Byzantine agents only change the local predictive means to 100, that
is, µ̌′

z∗|D[i](t)
= 100 for all t, and send this incorrect prediction to the cloud. The local predictive

variances for all the agents remain unchanged. Fig. 1(a) compares the performances of the pro-
posed Byzantine-tolerant PoE (BtPoE) with the standard PoE. As a benchmark, the bottom curve
depicts the prediction errors of the standard PoE (AfPoE) when there is no Byzantine attack in the
network; it shows that the standard PoE is consistent in the attack-free scenario. However, when
the aforementioned Byzantine attacks are launched, the top curve shows that the standard PoE can
no longer remain consistent. Note that there are 6 curves by attacked standard PoE (AedPoE), and
only the closest one to the bottom curve is shown in Fig. 1(a). We fix ns = 4× 104 and α = 15%.
The prediction comparisons of these three PoEs are given in Fig. 2, which shows that the learning
performance of the Byzantine-tolerant PoE is comparable to that of the attack-free standard PoE with
consistency preserved. As Byzantine attacks are launched in the network, the consistency cannot be
maintained. Therefore, our proposed algorithm is demonstrated to be resilient to Byzantine attacks.

(a) Consistency evaluation (b) Prediction performance on different β

Figure 1: Prediction performance of the cloud-based aggregated GPR.

(a) Attack-free standard PoE (b) Byzantine-tolerant PoE (c) Attacked standard PoE

Figure 2: Comparisons of the prediction performance in terms of different PoEs. Shaded area
represents 99% confidence region.

Notice that the performance of the Byzantine-tolerant PoE increases as α, the ratio of Byzantine
agents, decreases. Fixing the training data size ns = 104, we replicate the experiments for 50 times
with different α and observation noise e. Figs. 3(a) and 3(b) show that the performances of the
Byzantine-tolerant PoE are comparable to that of the attack-free standard PoE with consistency
preserved. The prediction errors for both methods are in the order of 10−4, while Fig. 3(c) shows
that the attacked standard PoE has prediction errors ranged from 2.5 to 30. This demonstrates that
the proposed PoE aggregation rule has strong ability to tolerate Byzantine attacks.

In the second experiment, we evaluate the prediction performance with regard to β. All associated
parameters are the same as those in the above experiments. Notice that for each α, we initially let
β = α and then increase β to 0.225 with increment 0.025, such that the assumption α ≤ β < 1

4
is satisfied. The results are shown in Fig. 1(b). This shows that as the number of trimmed agents
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(a) Attack-free standard PoE (b) Byzantine-tolerant PoE (c) Attacked standard PoE

Figure 3: Comparison of the prediction performance on different α.

increases, the performance of the proposed algorithm grows worse, since more information is excluded
in the aggregation. This result validates the conclusion of part I in Theorem 1.

Table 1: Comparison of the prediction performance on different functions.

Algorithm Attack-free standard PoE Byzantine-tolerant PoE Attacked standard PoE
MSE 0.0049± 0.007× 10−3 0.0236± 0.172× 10−3 26.5339± 0.019× 10−3

In the third experiment, we conduct Monte Carlo simulations to evaluate the performance of
Byzantine-tolerant PoE on different functions. We repeat the experiment for 50 times by sam-
pling different functions and observation points. Specifically, we replace sin(12z) in (8) with
sin(12z) + ϵ′ where ϵ′ ∼ N (0, 0.01i), i = 1, . . . , 50. We assign n = 40 agents in the network and
sample ns = 104 training points in [0, 1], and then choose nt = 120 test points randomly in [0, 1].
We also use the square-exponential kernel k(z, z∗). There are six Byzantine agents, i.e., α = 15%,
and we let β = α. Experiment results are presented in Table 1, and it shows that the performance of
the Byzantine-tolerant PoE is comparable to that of the attack-free standard PoE, noticing that the
order of the prediction errors for the Byzantine-tolerant PoE is 10−2. For comparison, the MSE by
the attacked standard PoE is about 26.534. This demonstrates that the proposed Byzantine-tolerant
aggregation rule is effective for learning different functions.

Table 2: Prediction performance comparisons between local GPR and fused GPR on agent 1 and 6.

Training data size 6000 10000 40000 150000
MSE/i = 1/local GPR 0.0721 0.0681 0.0585 0.0527
MSE/i = 1/fused GPR 0.0096 0.0681 0.0094 0.0537
MSE/i = 6/local GPR 0.0727 0.0566 0.0564 0.0555
MSE/i = 6/fused GPR 0.0727 0.0086 0.0564 0.0076

Moreover, we conduct additional experiments to demonstrate the learning performance improvements
by applying our Byzantine-tolerant PoE and the agent-based fused GPR to the synthetic dataset.
We assign n = 40 agents in the network and sample ns = 104 training points in [0, 1], and then
choose nt = 120 test points randomly in [0, 1]. We also use the square-exponential kernel k(z, z∗).
There are six Byzantine agents, i.e., α = 15%, and we let β = α. The prediction performance
comparisons between the agent-based local GPR and fused GPR on agent 1 and 6 are listed in Table
2. For a test point, the local variances σ̌′2

z∗|D[i](t)
lie in [0.3660, 0.6228], and the global variance is

σ̂2
z∗|D(t) = 0.4678. Table 2 shows that the learning performance of the agent-based fused GPR is

better than that of the agent-based local GPR. Note that the order of the prediction errors for the
agent-based fused GPR can decrease from 10−2 to 10−3. This demonstrates that the comparison
between variances in step 2 and step 5 in Algorithm 4 is able to improve the learning accuracy, and
our algorithm is effective.

Real-world dataset: We conduct an experiment to evaluate the prediction performance with different
attack magnitudes using two real-world datasets. The first dataset is collected from a seven degrees-of-
freedom SARCOS anthropomorphic robot arm [13]. The goal is to learn a function η. The input of η
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(a) Attack-free standard PoE (b) Byzantine-tolerant PoE (c) Attacked standard PoE

(d) Attack-free standard PoE (e) Byzantine-tolerant PoE (f) Attacked standard PoE

Figure 4: Prediction performance with different attack magnitudes on datasets SARCOS and Kin40k.

is 21-dimensional including 7 joint positions, 7 joint velocities and 7 joint accelerations; whereas the
output is 1-dimensional, representing the torque of a joint. We randomly sample 40,000 data points
for training and 40 data points for testing. In the experiment, we partition 40, 000 training data into
n = 40 disjoint groups, and assign each group to an agent. The second dataset Kin40k [27] is created
using a robot arm simulator. We randomly choose 9, 000 training points and 40 test points. We also
partition the training data evenly into 40 disjoint groups. The magnitudes of attack we consider are
±1,±10,±50,±100. We randomly sample the training data points and repeat the experiments for
50 times. Fig. 4 shows the prediction performances. For both real-world datasets, when the attack
magnitude is increasing, the prediction errors of the attacked standard PoE largely increases, whereas
those of the attack-free standard PoE and the Byzantine-tolerant PoE are consistently maintained at a
low level. It shows that the proposed Byzantine-tolerant PoE is resilient to the attack.

5 Conclusion

We propose a Byzantine-tolerant federated GPR algorithm, which is able to tolerate less than one
quarter Byzantine agents in the network. We derive the upper bounds on the prediction errors and the
lower and upper bounds of the predictive variances. Experiments are conducted to demonstrate the
robustness of Byzantine-tolerant GPR algorithm. Future work will focus on the comparison of the
learning performance between the agent-based local GPR and the agent-based fused GPR, and the
quantification of the benefits the cloud brings to the agents.
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