
Societal Implications

In our work, we use only publicly available data with no privacy concerns. Furthermore, our algorithm
reduces the overall time for fitting deep networks, therefore, saving computational resources and
yielding a positive impact on the environment. Moreover, our method can help smaller research
organizations with limited access to resources to be competitive in the deep learning domain, which
reduces the investment costs on hardware. Although our method significantly reduces the time
taken for optimizing a machine learning algorithm that achieves peak performance, we warn against
running our method for an extended time only to achieve marginal gains in performance, unless it is
mission-critical. Last but not least, in order to save energy, we invite the community to create sparse
benchmarks with surrogates, instead of dense tabular ones.

A Experimental Setup

A.1 Benchmarks

LCBench. LCBench4 is a feedforward neural network benchmark on tabular data which consists
of 2000 configuration settings for each of the 35 datasets. The configurations were evaluated during
HPO runs with AutoPyTorch. LCBench features a search space of 7 numerical hyperparameters,
where every hyperparameter configuration is trained for 50 epochs. The objective is to optimize
seven different hyperparameters of funnel-shaped neural networks, i.e., batch size, learning rate,
momentum, weight decay, dropout, number of layers, and maximum number of units per layer.

TaskSet. TaskSet5 is a benchmark that features over 1162 diverse tasks from different domains and
includes 5 search spaces. In this work, we focus on NLP tasks and we use the Adam8p search space
with 8 continuous hyperparameters. We refer to Figure 11 for the exact task names considered in
our experiments. The learning curves provided in TaskSet report scores after every 200 iterations.
We refer to those as "steps". The objective is to optimize eight hyperparameters for a set of different
recurrent neural networks (RNN) that differ in embedding size, RNN cell, and other architectural
features. The set of hyperparameters consists of optimizer-specific hyperparameters, such as the
learning rate, the exponential decay rate of the first and second momentum of Adam, β1 and β2, and
Adam’s constant for numerical stability ε. Furthermore, there are two hyperparameters controlling
linear and exponential learning rate decays, as well as L1 and L2 regularization terms.

NAS-Bench-201. NAS-Bench-2016 is a benchmark that has precomputed about 15,600 archi-
tectures trained for 200 epochs for the image classification datasets CIFAR-10, CIFAR-100, and
ImageNet. The objective is to select for each of the six operations within the cell of the macro
architecture one of five different operations. All other hyperparameters such as learning rate and
batch size are kept fixed. NAS-Bench-201 features a search space of 6 categorical hyperparameters
and each architecture is trained for 200 epochs.

A.2 Preprocessing

In the following, we describe the preprocessing applied to the hyperparameter representation. For
LCBench, we apply a log-transform to batch size, learning rate, and weight decay. For TaskSet, we
apply it on the learning rate, L1 and L2 regularization terms, epsilon, linear and exponential decay
of the learning rate. All continuous hyperparameters are scaled to the range between 0 and 1 using
sklearn’s MinMaxScaler. If not mentioned otherwise, we use one-hot encoding for the categorical
hyperparameters. As detailed in subsection A.5, some baselines have a specific way of dealing with
them. In that case, we use the method recommended by the authors.

A.3 Framework

The framework contains the evaluated hyperparameters and their corresponding validation curves.
The list of candidate hyperparameters is passed to the baseline-specific interface, which in turn,

4https://github.com/automl/LCBench
5https://github.com/google-research/google-research/tree/master/task_set
6https://github.com/D-X-Y/NAS-Bench-201

16

https://github.com/automl/LCBench
https://github.com/google-research/google-research/tree/master/task_set
https://github.com/D-X-Y/NAS-Bench-201


optimizes and queries the framework for the hyperparameter configuration that maximizes utility.
Our framework in turn responds with the validation curve and the cost of the evaluation. In case a
hyperparameter configuration has been evaluated previously up to a budget b and a baseline requires
the response for budget b+ 1, the cost is calculated accordingly only for the extra budget requested.

A.4 Implementation Details

We implement the Deep Kernel Gaussian Process using GPyTorch 1.5 [Gardner et al., 2018]. We use
an RBF kernel and the dense layers of the transformation function φ have 128 and 256 units. We used
a convolutional layer with a kernel size of three and four filters. All parameters of the Deep Kernel
are estimated by maximizing the marginal likelihood. We achieve this by using gradient ascent and
Adam [Kingma and Ba, 2015] with a learning rate of 0.1 and batch size of 64. We stop training as
soon as the training likelihood is not improving for 10 epochs in a row or we completed 1,000 epochs.
For every new data point, we start training the GP with its old parameters to reduce the required effort
for training.

A.5 Baselines

Random Search & Hyperband. Random search and Hyperband sample hyperparameter config-
urations at random and therefore the preprocessing is irrelevant. We have implemented both from
scratch and use the recommended hyperparameters for Hyperband, i.e. η = 3.

BOHB. For our experiments with BOHB, we use version 0.7.4 of the officially-released code7.

DEHB. For our experiments with DEHB, we use the official public implementation8. We devel-
oped an interface that communicates between our framework and DEHB. In addition to the initial
preprocessing common for all methods, we encode categorical hyperparameters with a numerical
value in the interval [0, 1]. For a categorical hyperparameter xi, we take Ni equal-sized intervals,
where Ni represents the number of unique categorical values for hyperparameter xi and we assign
the value for a categorical value n ∈ Ni to the middle of the interval [n, n+ 1] as suggested by the
authors. For configuring the DEHB algorithm we used the default values from the library.

Dragonfly. We use the publicly available code of Dragonfly9. No special treatment of categorical
hyperparameters is required since Dragonfly has its own way to deal with them. We use version 0.1.6
with default settings.

MF-DNN. We use the official implementation of MF-DNN by the authors10. Initially, we tried to
use multiple incremental fidelity levels like for DYHPO, however, the method runtime was too high
and it could not achieve competitive results. For that reason, we use only a few fidelity levels like the
authors do in their work Li et al. [2020b]. We use the same fidelity levels as for Hyperband, DEHB,
and BOHB to have a fair comparison between the baselines. We also use the same number of initial
points as for the other methods to have the same maximal resource allocated for every fidelity level.

ASHA-HB. We use the public implementation from the well-known optuna library (version 2.10.0).
We used the same eta, minimum and maximal budget as for HB, DEHB, and BOHB in our experi-
ments, to have a fair comparison.

B Additional Plots

In Figure 8, we ablate the learning curve input in our kernel, to see the effect it has on performance
for the CIFAR-10 and CIFAR-100 datasets from the NAS-Bench-201 benchmark. The results
indicate that the learning curve plays an important role in achieving better results by allowing faster
convergence and a better anytime performance.

7https://github.com/automl/HpBandSter
8https://github.com/automl/DEHB/
9https://github.com/dragonfly/dragonfly

10https://github.com/shib0li/DNN-MFBO

17

https://github.com/automl/HpBandSter
https://github.com/automl/DEHB/
https://github.com/dragonfly/dragonfly
https://github.com/shib0li/DNN-MFBO


10
2

10
3

10
4

10
5

Training Time in Seconds

10
2

10
1

R
eg

re
t

cifar10

DyHPO
DyHPO w/o CNN
Random Search

10
2

10
3

10
4

10
5

Training Time in Seconds

10
2

10
1

R
eg

re
t

cifar100

DyHPO
DyHPO w/o CNN
Random Search

Figure 8: The learning curve ablation for the CIFAR-10 and CIFAR-100 tasks of NAS-Bench-201.

0 1000 2000 3000 4000
Number of Epochs

10
2

10
1

R
eg

re
t

cifar10

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 1000 2000 3000 4000
Number of Epochs

10
2

10
1

R
eg

re
t

cifar100

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

Figure 9: NAS-Bench-201 regret results over the number of epochs spent during the optimization.

Additionally, in Figure 9, we show the performance comparison over the number of epochs of every
method for the CIFAR-10 and CIFAR-100 datasets in the NAS-Bench-201 benchmark. While, in
Figure 10, we present the performance comparison over time. As can be seen, DYHPO converges
faster and has a better performance compared to the other methods over the majority of the time or
steps, however, towards the end although it is the optimal method or close to the optimal method, the
difference in regret is not significant anymore.

Furthermore, Figure 11 shows the performance comparison for the datasets chosen from TaskSet over
the number of steps. Looking at the results, DYHPO is outperforming all methods convincingly on
the majority of datasets by converging faster and with significant differences in the regret evaluation
metric.

In Figure 12 and 13, we show the performance comparison for all the datasets from LCBench
regarding regret over the number of epochs. Similarly, in Figure 14 and 15, we show the same
performance comparison, however, over time. As can be seen, DYHPO manages to outperform the
other competitors in the majority of the datasets, and in the datasets that it does not, it is always close
to the top-performing method, and the difference between methods is marginal.

In Figure 16 we provide the extended results of Experiment 3 for TaskSet. We show the precision,
average regret, and promotion percentage for poor-performing configurations for DYHPO and the
other competitor methods.

Lastly, we explore the behavior of DYHPO after finding the configuration which is returned at
the end of the optimization as the best configuration. In Figure 17, we show how the budget is
distributed on the configurations considered during that part of the optimization. Clearly, DYHPO
is spending very little budget on most configurations. Furthermore, we investigated how many new
configurations are considered during this phase. For LCBench, 76.98% of considered configurations
are new demonstrating that DYHPO is investigating most of the budget into exploration. These are
even more extreme for TaskSet (93.16% and NAS-Bench-201 (97.51%).

18



10
2

10
3

10
4

Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

cifar10

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

10
2

10
3

10
4

Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

cifar100

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

Figure 10: NAS-Bench-201 regret results over the total optimization time. The total time includes the
method overhead time and the hyperparameter configuration evaluation time.

0 200 400 600 800 1000
Number of Steps

10
3

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch128_LSTM128_avg_bs64

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
3

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch128_LSTM128_bs64

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch128_LSTM128_embed128_bs64

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

6 × 10
2

2 × 10
1

3 × 10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_GRU128_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_GRU64_avg_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_IRNN64_relu_avg_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

10
0

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_IRNN64_relu_last_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_LSTM128_E128_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_LSTM128_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

2 × 10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_VRNN128_tanh_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_VRNN64_relu_avg_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Steps

10
3

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_VRNN64_tanh_avg_bs128

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

Figure 11: Performance comparison over the number of steps on a dataset level for TaskSet.

19



0 200 400 600 800 1000
Number of Epochs

10
2R

eg
re

t
APSFailure

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
1

3 × 10
2

4 × 10
2

6 × 10
2

R
eg

re
t

Amazon_employee_access

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
3

10
2

10
1

R
eg

re
t

Australian

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
3

10
2

10
1

R
eg

re
t

Fashion-MNIST

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

KDDCup09_appetency

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
4

10
3

10
2

10
1

R
eg

re
t

MiniBooNE

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
3

10
2

10
1

R
eg

re
t

adult

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
3

10
2

R
eg

re
t

airlines

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
3

10
2

10
1

R
eg

re
t

albert

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

bank-marketing

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

blood-transfusion-service-center

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
1

R
eg

re
t

car

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

christine

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

10
0

R
eg

re
t

cnae-9

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

connect-4

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
4

10
3

10
2

10
1

R
eg

re
t

covertype

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
1

R
eg

re
t

credit-g

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
4

10
2

10
0

R
eg

re
t

dionis

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

Figure 12: Performance comparison over the number of steps on a dataset level for LCBench.

20



0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

fabert

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
1

R
eg

re
t

helena

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

higgs

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

jannis

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

jasmine

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
4

10
3

10
2

10
1

R
eg

re
t

jungle_chess_2pcs_raw_endgame_complete

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
1

R
eg

re
t

kc1

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

kr-vs-kp

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

mfeat-factors

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
4

10
3

10
2

10
1

R
eg

re
t

nomao

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

R
eg

re
t

numerai28.6

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

phoneme

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
1

R
eg

re
t

segment

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
1

R
eg

re
t

shuttle

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
4

10
2

R
eg

re
t

sylvine

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
3

10
2

10
1

R
eg

re
t

vehicle

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

volkert

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

Figure 13: Performance comparison over the number of steps on a dataset level for LCBench (cont.).

21



0 250 500 750 1000 1250
Wallclock Time in Seconds

10
2R

eg
re

t

APSFailure

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500
Wallclock Time in Seconds

10
1

3 × 10
2

4 × 10
2

6 × 10
2

R
eg

re
t

Amazon_employee_access

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 100 200 300
Wallclock Time in Seconds

10
3

10
2

10
1

R
eg

re
t

Australian

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 1000 2000 3000 4000 5000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

Fashion-MNIST

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500 2000 2500
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

KDDCup09_appetency

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500
Wallclock Time in Seconds

10
1

R
eg

re
t

MiniBooNE

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
3

10
2

10
1

R
eg

re
t

adult

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 2500 5000 7500 10000 12500
Wallclock Time in Seconds

10
3

10
2

R
eg

re
t

airlines

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 2000 4000 6000 8000 10000
Wallclock Time in Seconds

10
2R

eg
re

t

albert

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

bank-marketing

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

blood-transfusion-service-center

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

car

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 5000 10000 15000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

christine

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500 2000 2500
Wallclock Time in Seconds

10
2

10
1

10
0

R
eg

re
t

cnae-9

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500 2000 2500
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

connect-4

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 1000 2000 3000 4000 5000
Wallclock Time in Seconds

10
1

R
eg

re
t

covertype

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

credit-g

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 2000 4000 6000 8000
Wallclock Time in Seconds

10
1

R
eg

re
t

dionis

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

Figure 14: Performance comparison over time on a dataset level for LCBench with the overhead
included.

22



0 1000 2000 3000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

fabert

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

helena

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

higgs

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 1000 2000 3000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

jannis

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 250 500 750 1000 1250
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

jasmine

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

jungle_chess_2pcs_raw_endgame_complete

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

kc1

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 250 500 750 1000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

kr-vs-kp

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 250 500 750 1000 1250
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

mfeat-factors

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

nomao

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
2

R
eg

re
t

numerai28.6

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 250 500 750 1000 1250
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

phoneme

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

segment

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
1R

eg
re

t

shuttle

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 250 500 750 1000 1250
Wallclock Time in Seconds

10
4

10
2

R
eg

re
t

sylvine

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

vehicle

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 1000 2000 3000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

volkert

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

Figure 15: Performance comparison over time on a dataset level for LCBench with the overhead
included. (cont.).

23



0 10 20 30 40 50
Number of Epochs

0.0

0.1

0.2

0.3

P
re

ci
si

on
 o

f T
op

 C
an

di
da

te
s Taskset

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 10 20 30 40 50
Number of Epochs

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e 

R
eg

re
t

Taskset

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO

0 10 20 30 40 50
Number of Steps

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n 

of
 P

oo
r

P
er

fo
rm

er
 P

ro
m

ot
io

ns

Taskset

Random
Hyperband
BOHB

DEHB
Dragonfly
ASHA

MF-DNN
DyHPO
Baseline

Figure 16: The efficiency of DYHPO as the optimization progresses. Left: The fraction of top-
performing candidates from all candidates that were selected to be trained. Middle: The average
regret for the configurations that were selected to be trained at a given budget. Right: The percentage
of configurations that belong to the top 1/3 configurations at a given budget and that were in the
top bottom 2/3 of the configurations at a previous budget. All of the results are from the Taskset
benchmark.

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

R
el

at
iv

e 
N

um
be

r o
f C

an
di

da
te

s

LCBench

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e 
N

um
be

r o
f C

an
di

da
te

s

NAS-Bench-201

0 10 20 30 40 50
Steps

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e 
N

um
be

r o
f C

an
di

da
te

s

TaskSet

Figure 17: These plots shed light on how DYHPO behaves after the configuration it finally returns
as the best. The plots show how many epochs are spent per candidate. As we can see, for most
candidates only a small budget was considered, indicating that DYHPO is mostly exploring at this
point.

24


	Introduction
	Related Work on Gray-box HPO
	Dynamic Multi-Fidelity HPO
	Preliminaries
	Deep Multi-Fidelity Surrogate
	Multi-Fidelity Expected Improvement
	The DyHPO Algorithm

	Experimental Protocol
	Experimental Setup
	Benchmarks
	Baselines
	Research Hypotheses and Associated Experiments

	Results
	Limitations of Our Method
	Conclusions
	Experimental Setup
	Benchmarks
	Preprocessing
	Framework
	Implementation Details
	Baselines

	Additional Plots

