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A Proof of Proposition 2.1

Consider applying the stochastic updates θt+1 = θt − ηGt to a function R(θ). Using the µ-
smoothness of the function R,

R(θt+1) = R(θt − ηGt) ≤ R(θt)− η∇R(θt)⊺Gt +
µη2

2
∥Gt∥22. (7)

Taking the expectation of the inequality and using the fact that E[∥Gt∥22] ≤ V ,

E[R(θt+1)] ≤ E[R(θt)]− ηE[∥∇R(θt)∥22]− ηE[∇R(θt)⊺
(
Gt −∇R(θt)

)
] +

µη2V

2
. (8)

Using the Lipschitz smoothness of the R and re-ordering the terms,

ηE[∥∇R(θt)∥22] ≤ E[R(θt)]− E[R(θt+1)] +
µη2V

2
+ ηL

∥∥E[Gt]−∇R(θt)
∥∥
2
. (9)

Summing up from t = 1 to T and dividing by η, we obtain

T∑
t=1

E[∥∇R(θt)∥22] ≤
2∆

η
+

µηTV

2
+ L

T∑
t=1

∥E[Gt]−∇R(θt)∥2. (10)

Using the fact that the distortions are bounded as Dt = ∥E[Gt]−∇R(θt)∥2 ≤ D/
√
t, we can bound

the sum
∑T

t=1 D
t with 2D

√
T . By solving for the optimal η as;

η = 2

√
∆

µTV
. (11)

The final bound becomes,

T∑
t=1

E[∥∇R(θt)∥22] ≤
2∆

η
+

µηTV

2
+ L

T∑
t=1

∥E[Gt]−∇R(θt)∥2. (12)

We plug the resulting step size in the bound and divide it with T , to obtain,

1

T

T∑
t=1

E[∥∇R(θt)∥22] ≤ 2
(√

∆µV + LD
)√

1

T
(13)

B Proofs of Statements from Section 2.4

In this section, we prove the facts that we state in Section 2.4 without proof. These proofs straightfor-
wardly follow their rate-distortion version from [13].

We are interested in understanding the following function;

R(D) ≜ min
p(Gt)

EGt

[
Penalty(θt +Gt; {xi, ei, yi})

]
st. EGt

[
∥Gt −∇θL̂(θ)∥2

]
≤ D√

t

(14)

We state the formal versions of the informal statements in Section 2.4 and their proofs as follows;

Proposition B.1 (Extreme Cases). i) When Dt = D/
√
t = 0, E[Gt] = ∇L(θt). ii) When the

distortion is unbounded (Dt = D = ∞), updates follow a distribution with the minimum penalty in
expectation.
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Proof for i. When Dt = D = 0, the constraint in (14) becomes,

EGt

[
∥Gt −∇θL̂(θ)∥2

]
≤ 0 (15)

The norm is nonnegative, and a nonnegative random variable has zero expectation if and only if it is
zero almost surely. Hence,

p(Gt = ∇θL̂(θ)) = 1 (16)

Proof for ii. When Dt = D = ∞, the constraint in (14) is trivially satisfied for all distribution as we
assume Gt is finite. Hence, (14) is equivalent to;

R(D) = min
p(Gt)

EGt

[
Penalty(θt +Gt; {xi, ei, yi})

]
(17)

where the solution is a distribution with the minimum penalty in expectation.

Proposition B.2 (Monotonicity and Convexity). R(D) is a non-increasing and convex function of D.

Proof. R(D) is minimum of the penalty over increasingly larger sets as D increases. Hence, R(D)
is non-increasing in D.

In order to prove convexity, consider two solutions p(Gt
1) and p(Gt

2), minimizing R(D) for given
Dt

1, D
t
2. Now, consider the distribution p(Gt

λ) = λp(Gt
1) + (1− λ)p(Gt

2) and Dt
λ = λDt

1 + (1−
λ)Dt

2. Since the R(Dt
λ) is minimization over all distributions, it is smaller than penalty for p(Gt

λ).
In other words,

R(Dt
λ) ≤ EGt∼p(Gt

λ)

[
Penalty(θt +Gt; {xi, ei, yi})

]
(18)

Since expectation is a linear operator,

EGt∼p(Gt
λ
)

[
Penalty(θt +Gt; {xi, ei, yi})

]
= λEGt∼p(Gt

1)

[
Penalty(θt +Gt; {xi, ei, yi})

]
+ (1− λ)EGt∼p(Gt

2)

[
Penalty(θt +Gt; {xi, ei, yi})

]
(19)

Since p(Gt
1) and p(Gt

2) are the solutions for the corresponding minimization problems,

EGt∼p(Gt
1)

[
Penalty(θt +Gt; {xi, ei, yi})

]
= R(Dt

1)

EGt∼p(Gt
2)

[
Penalty(θt +Gt; {xi, ei, yi})

]
= R(Dt

2)
(20)

Combining these two statements proves the convexity as;

R(λDt
1 + (1− λ)Dt

2) ≤ λR(Dt
1) + (1− λ)R(Dt

2) (21)

C Missing Derivations for Blahut-Arimoto and its Application to CORAL,
FISH and VRex.

C.1 Deriving Blahut-Arimoto Style Method to Solve (6)

We develop a Blahut-Arimoto [11, 4] style method to solve the following problem:

min
p(Gt)

EGt

[
Penalty(θt +Gt; {xi, ei, yi})

]
+ γI(Gt;E)

st. EGt

[
∥Gt −∇θL̂(θ)∥2

]
≤ D√

t

(22)
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Before we apply the Blahut-Arimoto technique, we first utilize the definition of mutual information
to convert (22) into

min
p(Gt)

EGt

[
Penalty(θt +Gt; {xi, ei, yi})

]
+ γEE [DKL(p(G|E)||p(G))]

st. EGt

[
∥Gt −∇θL̂(θ)∥2

]
≤ D√

t

(23)

where DKL is the KL-Divergence.

The key technique used in the Blahut-Arimoto method is decomposing p(Gt) as
p(Gt) =

∑
e p(G

t|E = e)p(E = e). Denote d(Gt, e) = ∥Gt − ∇Le(θ)∥2 where Le is the loss
for domain e and |E| as the number of domains. Moreover, we assume all domains are equal in
importance as p(E = e) = 1/|E|. Using the fact that the problem is discrete, Gt ∈ {G1, . . . , GK},
the problem in (22) can be transformed into

min
p(Gk|E=e)

∑
e

K∑
k=1

p(Gk|E = e)Penalty(θt +Gk; {xi, ei, yi}) + γ
∑
e

K∑
k=1

p(Gk|E = e) log
p(Gk|E = e)

p(Gk)

st.
∑
e

K∑
k=1

p(Gk|E = e)d(Gk, e) ≤
D|E|√

t

(24)

here we replaced EGt

[
∥Gt −∇θL̂(θ)∥2

]
≤ D√

t
with a stronger constraint of uniform bounds

over domains as EGt|E=e

[
∥Gt −∇θL̂e(θ)∥2

]
≤ D√

t
. We further compute the Lagrangian of this

optimization problem with the Lagrange multiplier β as;

min
p(Gk|E=e)

max
β≥0

∑
e

K∑
k=1

p(Gk|E = e)
[
Penalty(θt +Gk; {xi, ei, yi}) + . . .

. . .+ γ
log p(Gk|E = e)

p(Gk)
+ βd(Gk, e)

]
− β

D|E|√
t

(25)

We take the derivative with respect to p(Gk|E = e) and equate it to 0. Ignoring the constant factor,

p(Gk|E = e) ∼ p(Gk) exp

[
− 1

γ

(
Penalty(θt +Gk; {xi, ei, yi}) + βd(Gk, e)

)]
(26)

Since we know the probabilities sum to 1, we can handle the normalization factor separately. Start
with initialization p◦(Gk|E = e), which is typically uniform unless a prior information exists. Then,
the following iterations sove (22),

• p̂l+1(Gk|E = e) = pl(Gk) exp
[
− 1

γ

(
Penalty(θt +Gk; {xi, ei, yi}) + βd(Gk, e)

)]
• pl+1(Gk|E = e) = p̂l+1(Gk|E=e)∑

k̂ p̂l+1(Gk̂|E=e)

• pl+1(Gk) = 1/|E|
∑

E=e p
l+1(Gk|E = e)

C.2 Applying Blahut-Arimoto Style Method to Penalty Based Deep Domain Generalization

In this section, we develop the CORAL+SDG and VREX+SDG method considering an ar-
bitrary penalty function. To apply the derivation in Section C.1, we need to compute
Penalty(θt +Gk; {xi, ei, yi}) for an arbitrary Gk. We consider the first order approximation
of this penalty as,

Penalty(θt+Gk; {xi, ei, yi}) ≈ Penalty(θt; {xi, ei, yi})+∇θPenalty(θ
t; {xi, ei, yi})⊺Gk

(27)
By this approximation, we do not need to perform additional computations for Penalty for each
Gk, instead we can compute the derivative once and perform dot-products for the rest. We substitute
this approximation in the Blahut-Arimoto iteration eventually obtaining;
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• p̂l+1(Gk|E = e) = pl(Gk) exp
[
− 1

γ (βd(Gk, e) +∇θPenalty(θt)⊺Gk)
]

• pl+1(Gk|E = e) = p̂l+1(Gk|E=e)∑
k̂ p̂l+1(Gk̂|E=e)

• pl+1(Gk) = 1/|E|
∑

E=e p
l+1(Gk|E = e)

We further apply two approximations, i) solving each parameter independently, and ii) solving only
for the direction of the gradient (positive or negative). When these approximations are applied, the
resulting iterations can be efficiently performed via vector operations and summarized in Algorithm 1.

Algorithm 1 PenaltyBasedDeepDG+SDG-Single Iteration

G+ = 0, G− = 0 ▷ Initialize positive grad, and negative grad with 0 Vector
Gpenalty = ∇θL

penalty(θt) ▷ Gradient of the penalty
for e ∈ {1, . . . , |E|} do ▷ For each domain

Ge =
1

|E|∇θLe(θt)

G+ = G+ + 1[Ge > 0] ·Ge ▷ Parameters with positive gradients
G− = G− + 1[Ge < 0] ·Ge ▷ Parameters with negative gradients

end for
Prob+ = BLAHUTARIMOTOSTYLESOLVER(G1, . . . , G|E|, Gpenalty)
P+ ∼ Bern(Prob+) ▷ Sample the gradient directions
G = P+ ·G+ + (1− P+) ·G−
θt+1 = θt − ηG
procedure BLAHUTARIMOTOSTYLESOLVER(G1, . . . , G|E|, Gpenalty)

Initialize: Prob+ = Prob− = 0.5 ▷ Initialize probabilities uniformly
for iter = 1, . . . , IterCount do

for e ∈ {1, . . . , |E|} do ▷ All Operations are Elementwise during the Loop
˜Prob+,e = Prob+ · exp (−1/γ [β(Ge −G+) · (Ge −G+) +Gpenalty ·G+])
˜Prob−,e = Prob− · exp (−1/γ [β(Ge −G+) · (Ge −G+) +Gpenalty ·G+])

Prob+,e = ˜Prob+,e/( ˜Prob+,e + ˜Prob−,e)
Prob−,e = 1− Prob+,e

end for
Prob+ = 1/|E|

∑
e Prob+,e

Prob− = 1− Prob+
end for
return Prob+

end procedure

C.3 Applying Blahut-Arimoto Style Method to Fish [39]

Fish [39] is not using a direct penalty function; hence, applying SDG requires some modifications.
In order to apply the SDG to Fish, we simply use the approximation provided in the original work
[39]. Specifically, Shi et al. [39] shows that when an inner update of SGD is applied to θt for a few
domains to obtain θ̃t, θ̃t − θt approximates the gradient of the penalty. Hence, we utilize this fact to
perform the iterations as

• p̂l+1(Gk|E = e) = pl(Gk) exp
[
− 1

γ

(
βd(Gk, e) + (θ̃t − θ)⊺Gk

)]
• pl+1(Gk|E = e) = p̂l+1(Gk|E=e)∑

k̂ p̂l+1(Gk̂|E=e)

• pl+1(Gk) = 1/|E|
∑

E=e p
l+1(Gk|E = e)

D Generalization Gap in WILDS [23]

We argued that when the empirical estimation error of the invariance penalty is high, the resulting
optimization problem might hurt empirical risk (in-distribution performance) and fails to perform
out-of-distribution even if it generalizes well. To further quantify this motivation, we look at the

17



benchmarking results of [23]. We specifically enclosed the out-of-distribution and in-distribution
results of various benchmarked algorithms from [23] in Table 6&7. Moreover, we compute the
generalization gap as the difference between in-distribution and out-of-distribution performance and
tabulate them in Table 8.

The results confirm the failure mode we hypothesized. Specifically, ERM outperforms existing
domain generalization algorithms in almost all benchmarks when the metric is out-of-distribution
performance. However, existing domain generalization methods generalize better (generalization gap
is smaller than ERM). Hence, the failure of these methods is not due to the lack of generalization but
due to the lack of effective minimization of the empirical risk.

Table 6: Out-of-distribution test performance of the benchmarked algorithm reported by [23].
ERM overwhelmingly outperforms existing domain generalization algorithms.

DATASET METRIC ERM CORAL IRM GROUPDRO

IWILDCAM MACRO F1 31.0± 1.3 32.8 ± 0.1 15.1± 4.9 23.9± 2.1
CAMELYON17 AVERAGE ACC. 70.3 ± 6.4 59.5± 7.7 64.2± 8.1 68.4± 7.3
RXRX1 AVERAGE ACC. 29.9 ± 0.4 28.4± 0.3 8.2± 1.1 23.0± 0.3
OGBMOLPCBA AVERAGE AP 27.2 ± 0.3 17.9± 0.5 15.6± 0.3 22.4± 0.6
FMOW WORST REGION ACC. 32.3 ± 1.3 31.7± 1.2 30.0± 1.4 30.8± 0.8
POVERTYMAP WORST REGION PEARSON R 0.45±0.06 0.44±0.06 0.43±0.07 0.39±0.06
AMAZON 10TH PERCENTILE ACC. 53.8 ± 0.8 52.9± 0.8 52.4± 0.8 53.3± 0.1
PY150 METHOD/CLASS ACC 67.9 ± 0.1 65.9± 0.1 64.3± 0.2 65.9± 0.1

Table 7: In-distribution test performance of the benchmarked algorithm reported by [23]. ERM
overwhelmingly outperforms existing domain generalization algorithms. Hence, domain generaliza-
tion algorithms struggle to minimize empirical risk.
DATASET METRIC ERM CORAL IRM GROUPDRO

IWILDCAM MACRO F1 47.0 ± 1.4 43.5± 3.5 22.4± 7.7 37.5± 1.7
CAMELYON17 AVERAGE ACC. 93.2± 5.2 95.4 ± 3.6 91.6± 7.7 93.7± 5.2
RXRX1 AVERAGE ACC. 35.9 ± 0.4 34.0± 0.3 9.9± 1.4 28.1± 0.3
OGBMOLPCBA AVERAGE AP 27.8 ± 0.1 18.4± 0.2 15.8± 0.2 23.1± 0.6
CIVILCOMMENTS WORST GROUP ACC 50.5± 1.9 64.7± 1.4 65.9± 2.8 67.7 ± 1.8
FMOW WORST REGION ACC. 58.30±0.92 55.00±1.02 56.00±0.34 57.80±0.60
POVERTYMAP WORST REGION PEARSON R 0.57±0.07 0.59±0.03 0.57±0.08 0.54±0.11
AMAZON 10TH PERCENTILE ACC. 57.3 55.1± 0.4 54.7± 0.1 55.8± 1.0
PY150 METHOD/CLASS ACC 75.4 ± 0.4 70.6 67.3± 1.1 70.8

Table 8: Generalization Gap (difference between in-distribution and out-distribution performance)
in the WILDS benchmarks [23]. We denote the results which generalize better than ERM with Green
color and worse than ERM with Red color. Domain generalization algorithms typically generalize
better than ERM. Hence, although they are good generalizers, they fail to perform out-of-distribution
due to poor in-distribution performance.

DATASET METRIC ERM CORAL IRM GROUPDRO

IWILDCAM MACRO F1 16 10.7 7.3 13.6
CAMELYON17 AVERAGE ACC. 22.9 35.9 27.4 25.3
RXRX1 AVERAGE ACC. 6 5.6 1.7 5.1
CIVILCOMMENTS WORST GROUP ACC 5.5 0.9 0.4 2.3
OGBMOLPCBA AVERAGE AP 0.6 0.5 0.2 0.7
FMOW WORST REGION ACC. 26 23.3 26 27
POVERTYMAP WORST REGION PEARSON R 0.12 0.15 0.14 0.15
AMAZON 10TH PERCENTILE ACC. 3.5 2.2 2.3 2.5
PY150 METHOD/CLASS ACC 7.5 4.7 3 4.9
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E Details on Used Datasets

iWildCam [8]: The problem is predicting animal species from camera trap images over different
locations. The dataset includes 323 different camera traps, considered as domains. Among these, 243
are used for training, 32 for validation, and 48 for testing. The evaluation metric is the F1-scores.

Camelyon17 [7]: The problem is predicting tumors from tissue slides over 5 different hospitals,
treated as domains. Among these, 3 are used as training, 1 for validation, and 1 for test. The metric is
the accuracy over balanced patches (i.e. same number of positive and negative patches).

OGB-MolPCBA [21]: The problem is predicting bioassays from molecular graphs over 120,084
scaffolds, considered as domains. The largest 44,390 scaffolds are used for training, the next largest
31,361 are for validation, and the smallest 43,793 are for testing. The metric is average precision.

Functional Map of the World (FMoW) [12]: The problem is predicting the land usage from a
satellite image from 5 regions over 16 years, a total of 5× 16 = 80 domains. From 16 years of data,
11 years are used for training, 3 for validation, and 2 for testing. The evaluation metric is the accuracy
over the worst region to evaluate the sub-population shift.

Amazon Reviews [29]: The problem is predicting sentiment from product reviews over 3920 different
users considered as domains. Among those, 1252 users are used for training, 1334 for validation, and
1334 for testing. The evaluation metrics are accuracy averaged over users in the 10th percentile.

py150 [33]: The problem is autocompletion of Python code over 8421 git repositories as domains.
Among them, 5477 are used for training, 261 for validation, and 2471 for testing. The evaluation is
the accuracy of predicting class/method name tokens.

PovertyMap [47]: The problem is predicting asset wealth from satellite images over different
countries. Evaluation is over 5 different folds where 13-14 countries are used for training, 4-5 for
validation, and 4-5 for the test. The metric is the Pearson correlation averaged over the rural regions.

F Hyper Parameters

We share the implementation of our method and experimental setup for all WILDS experiments.
In order to reproduce the experiments, the scripts can be run with the following hyperparameters.
Any hyperparameter not shared here, directly follows the default one shared by [23]. For Do-
mainBed experiments, we directly used the recommended hyperparameter search pipeline without
any modifications.

We perform a hyperparameter search for the WILDS experiments with the same budget reported in
[23]. The chosen hyperparameters are given in Table 9.

Table 9: Chosen hyperparameters for the WILDS [23] experiments.

Learning Rate Batch Size N Groups per Batch

iWildCam 3× 10−5 32 4

Camelyon17 5× 10−3 60 3

OGB-MolPCBA 1× 10−3 64 32

FMoW 1× 10−4 32 4

Amazon 1× 10−5 32 8

Py150 1× 10−5 6 2

PovertyMap 5× 10−4 64 4
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G Societal Impact

Our work studies the optimization of domain generalization algorithms by re-formulating the joint
optimization problem of domain generalization as constrained optimization of penalty under the
constraint of optimality of the empirical risk. Our approach is purely algorithmic and applicable to
any penalty-based method. Hence, it does not change the societal impact of using the original method
and dataset. It is still beneficial to re-iterate some aspects of the societal impact of the state of the
domain generalization algorithms. Our work, among others, shows that immediate deployment of
machine learning models without investigating the fairness and safety when applied to the target
distribution might not be feasible. Performance and behavior on unseen distributions are still far
from being predictable. Hence, particular care should be spent studying and monitoring the target
distribution and its changes over time.

Moreover, a critical aspect of societal impact is the datasets. Fortunately, WILDS benchmark [23]
provides a comprehensive analysis for the datasets we use. We refer the interested reader to this
comprehensive analysis.
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