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Abstract

Traditional causal inference techniques assume data are independent and identically
distributed (IID) and thus ignores interactions among units. However, a unit’s
treatment may affect another unit’s outcome (interference), a unit’s treatment may
be correlated with another unit’s outcome, or a unit’s treatment and outcome may
be spuriously correlated through another unit. To capture such nuances, we model
the data generating process using causal graphs and conduct a systematic analysis
of the bias caused by different types of interactions when computing causal effects.
We derive theorems to detect and quantify the interaction bias, and derive conditions
under which it is safe to ignore interactions. Put differently, we present conditions
under which causal effects can be computed with negligible bias by assuming that
samples are IID. Furthermore, we develop a method to eliminate bias in cases
where blindly assuming IID is expected to yield a significantly biased estimate.
Finally, we test the coverage and performance of our methods through simulations.

1 Introduction

Motivating Example Suppose we are interested in studying the effectiveness of Covid-19 vaccines.
Specifically, we are interested in the causal effect of vaccine doses, V , on the severity of sickness S.
A naive method would be building a causal model on V , S, and other related factors, and estimating
the causal effect of V on S using available data. However, this method may result in biased estimation
primarily because traditional causal inference techniques assume that attributes of all units in the
sample are independent and identically distributed (IID)[Rubin, 1978], which does not hold true in
the pandemic setting since units are not isolated from each other. We exemplify below few instances
of this problem that violate IID (Eyre et al. [2022]).
Case 1: The vaccination V of a unit i, (Vi), decreases their viral load, Li, which in turn decreases
the transmission rate of the virus, and hence decreases the severity of sickness S of another unit j,
(Sj), who comes into contact with i. Vi causally affects Sj .
Case 2: Vi is affected by the area A that i lives in, and a contact j who lives in vaccine deprived
areas and areas with a higher incidence of Covid-19 infection is more likely to get sick. Vi and Sj

are confounded.
Case 3: Si, determines whether or not i is quarantined and thus affects whether i transmits the disease
to another unit j. Si causally affects Sj .

Such interactions between units plague both observational and experimental studies. If the latter is
performed in a controlled environment where subjects are isolated from each other, the results would
not be valid for the target environment, where subjects affect each other, and vice versa.

Modeling Interactions A line of existing work that analyzes interactions between units is interference
[Cox, 1958]. Interference is the phenomenon in which treatment of unit i (Vi) causally affects the

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



outcome, Sj , of another unit j. In almost all existing literature this is interpreted as there existing a
causal pathway from Vi to Sj . Case-1 above is a typical example. Clearly, ignoring unit interactions
while computing causal effects would result in a biased estimate. However, we note that interference
is not the only type of interaction between units that can yield biased estimates. For example, in
Case-2 Vi and Sj are confounded and Vi is not a cause of Sj . Another example is an instance where
unit i′s treatment affects their own outcome through an attribute of unit j i.e., Vi →Wj → Si, for
some Wj /∈ {Sj , Vj}. In both these cases units interact with each other in a way that might bias the
estimation of causal effects although they may not typically be classified as interference. In spite of
the prevalence of such interactions in applications related to health care, infectious diseases, social
networks and ad placements, they have not been systematically studied. It is this deficiency that this
paper attempts to overcome.

Questions addressed The scenario exemplified above raises several questions regarding the com-
putation of causal effects given non-IID data. How can we model different types of interactions
among units in the population? Under what conditions can we safely ignore unit interactions with the
guarantee that assuming IID (and applying existing estimation techniques) will result in negligible
bias? If assuming IID would yield a biased estimate, then how can we get rid of this bias?

Our contributions In this work we study causal inference in the presence of interactions among
samples using linear models due to the convenience they offer with regard to path analysis. We
develop interaction models that portray different types of interactions among units and conduct a
systematic analysis of the bias caused by different types of interactions. We derive theorems to
detect and quantify the interaction bias. We derive conditions under which it is safe to ignore unit
interactions when computing the average causal effects. Furthermore, we develop a method to
compute an unbiased estimate of causal effect in cases where blindly assuming IID is expected to
yield a significant bias. Finally, we corroborate our findings through simulation studies.

Summary of results in words Blindly assuming that data are IID when in fact they are not, can
potentially bias the outcome of a research study. Such bias can occur for the query: causal effect of
treatment on outcome, when there is an open (not necessarily directed) path from the treatment of
unit i to the outcome of unit j and/or to the outcome of unit i itself such that an intermediate node
on the path belongs to unit j. The formula in Theorem 1 quantifies the bias. Furthermore, only the
two types of interaction structures previously mentioned can induce bias. In the presence of such
bias inducing structures it is still possible to compute an unbiased estimate by selecting a subset of
samples B such that no biasing paths exist in the interaction graph corresponding to samples in B
(Theorem 2). More importantly, such a debiasing procedure does not require the selection of IID
samples and may contain interactions among them. Such a debiasing procedure can also be done in
polynomial time (Algorithm 1). Empirical analysis: We randomly generate interaction models and
show that the bias can be huge if IID is wrongly assumed on non-IID data. The debiasing method
in this paper yields an unbiased estimate. We further show that, as the number of bias-free samples
increases, and as the strengths of bias structures decrease, the overall interaction bias decreases.

2 Preliminaries

Independent and Identically Distributed (IID) If X1, . . . , Xn are independent and each has the
same marginal distribution with CDF F , we say that X1, . . . , Xn are IID (independent and identically
distributed) [Wasserman, 2013]. For the sake of simplicity, we use X is IID to refer to all the units of
X , X1, . . . , Xn, being IID. A dataset is IID if all variables in it are IID.

Linear Causal Models A traditional linear causal model is also known as a linear structural causal
model (SCM) [Brito, 2004, Pearl, 2009, Chen and Pearl, 2014]. The edge coefficients on the causal
DAG represent direct effects. An open path is collider-free, i.e., there are no head-to-head arrows
on this path. Note that if there exists an open path from Wi to Vj , it implies Wi ⊥̸⊥ Vj . The value
‘V al(p)’ of an open path p in a linear model is defined as the product of the edge coefficients on p.
The root of an open path p is defined as the variable on p that is the ancestor of all variables on p.

Average Causal Effects In this work the query we are primarily interested in generalizing to the
non-IID case is the Average Causal Effect (ACE), also named as the Average Treatment Effect (ATE)
[Rubin, 1977, Holland, 1988]. For consistency, we use ACE to refer to both. Given a causal model M ,
the average causal effect (ACE) of X = t vs X = c (t and c are constants) on Y for k units is defined
as ACEXY = 1

k

∑
i(YiXi=t − YiXi=c). ACE is defined under the assumption that Yi depends only
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on factors of unit i (including Xi) Holland [1988]. Without loss of generality, we assume t = c+ 11.
In linear models, ACE of X on Y can be identified as βY X , the linear regression slope of Y on X ,
if there is no backdoor (non-directed open paths) between X and Y [Pearl et al., 2016, Pearl, 2017].

3 Graphical Modeling of Interactions

3.1 Interaction models

In this section, we define a graphical model derived from traditional causal models M =< G,S >
(Pearl [2009], definition 7.1.1). G is the causal graph and S is the set of structural equations of
variables. We refer to the variables in a traditional causal model as generic variables. X,C, Y in
Figure 1 are generic variables. An explicit variable is similar to a generic variable except that it
represents an attribute/event of one specific unit (or sample or individual). For example, “treatment
(X)” is a generic variable, and “the treatment of unit i (Xi)” is an explicit variable.

X

Y

C

Figure 1: Tra-
ditional DAG.

X1

Y1

X2

Y2

X3

Y3

X4

Y4

C4C3C2C1

Figure 2: Interaction network with 4 units and 12
explicit variables (Xi, Yi, Ci for i = 1, 2, 3, 4).

X1 = UX1
(1)

Y1 = X1 + Y2 + 3C1 + UY1
(2)

Y2 = 2X2 − C1 +X3 + UY2
(3)

. . .

Definition 1 (Interaction model M∗(G∗, S∗)). An interaction model, M∗(G∗, S∗), is a causal model
where G∗ is the interaction network and S∗ is the set of structural equations defining the data
generating process of the observed explicit variables. An interaction network, G∗, is a directed
acyclic graph with each node representing an explicit variable and each directed edge Ai → Bj

representing Ai causes Bj .

An example of interaction model M∗(G∗, S∗), is the interaction network, G∗, portrayed in Figure 2
and the structural equations S∗ (part of) specified beside it; UVi

denotes the unobserved exogenous
error of an explicit variable Vi. Observe that interaction networks allow edges between explicit
variables of the same unit (e.g., X1 → Y1), as well as two distinct units (e.g., C1 → Y2).

We are now ready to define an isolated interaction model for an interaction model M∗. It is the “ideal”
model constructed from M∗ by eliminating all interactions between units.

Definition 2 (Isolated interaction model IM∗(IG∗, IS∗)). IM∗(IG∗, IS∗) is the Isolated interac-
tion model of an interaction model M∗(G∗, S∗) if IM satisfies the following conditions:

1. IG∗ = G′ where G′ is the graph obtained by removing from G∗ all edges Ai → Bj , i ̸= j,

2. IS∗ = S′ where S′ is the set of equations obtained by removing from each equation
Xi = f(Pa(Xi))

2 in S∗ all terms containing any Yj , ∀j ̸= i.

For example, the interaction model M∗(G∗, S∗) has Figure 2 as G∗, and Equations (1-3) as part of
S∗. The isolated model for M∗ is denoted IM∗(IG∗, IS∗). IG∗ is given in Figure 3 below. And
IS∗ for Equations (1-3) are given by Equations (4-6).

3.2 Symmetry Assumptions

In real-world applications, we will have at our disposal limited (usually just one) observations
corresponding to a unit which in turn will make it hard to draw useful conclusions if the model
is completely arbitrary. In traditional causal inference techniques this is not a problem since they
assume IID, which is assuming for each variable, the distribution is the same and independent for

1If t ̸= c+ 1, the ACE is multiplied by the constant (t− c).
2Pa(Xi) denotes the parents of Xi in G∗.
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Figure 3: Interaction network with 4 units.

X1 = UX1
(4)

Y1 = X1 + 3C1 + UY1 (5)
Y2 = 2X2 + UY2 (6)

all units. While we do not make strong assumptions such as IID, we need to make certain weaker
symmetry restrictions (definitions 3, 4), in order to quantify bias and identify ACE. We only require
some of the variables are IID instead of all.

Definition 3 (Balanced interaction model M∗(G∗, S∗)). Let M∗(G∗, S∗) be an interaction model
with isolated model IM∗. M∗ is a balanced interaction model if IM∗ has the same unit-model
(IM∗

i (IG
∗
i , IS

∗
i )) for every unit i.

Let G∗ be the graph in Figure 2 and S∗ be the set of equations (1-3) corresponding to M∗(G∗, S∗).
IG∗ in Figure 3 is the graph and IS∗ are the equations (4), (5) and (6) that correspond to IM∗, which
is the isolated model of M∗. The unit-graph for unit 1 is different from unit 2. Also, the structural
equations for Y1 and Y2 of the isolated interaction model (Equations (5) and (6)) are different. Hence,
M∗ is not a balanced interaction model.

X1

Y1

X2

Y2

C2C1

(a) X satisfies ASDC.

X1

Y1

X2

Y2

C2C1

(b) X does not satisfy ASDC. (c) Structural equations for (a)

Figure 4: Two balanced interaction networks and the structural equations for (a)

For another example, the interaction model M∗ is balanced where G∗ is the graph in Figure 4(a), and
S∗ is the set of equations given in Figure 4(c).

Remark 1. Note that a balanced interaction model M∗ does not imply that data generated by it are
IID. Being balanced only requires all units share the same causal relationships within each unit itself,
but permits interactions and effects from other units. For example, the parents of explicit variables Yi

and Yj , i ̸= j can be different in G∗ i.e., Yi can be caused by a set of variables Sk corresponding to
unit, k, and Yj can be caused by a distinct set of variables Tk. However, for M∗ to be balanced it is
required that for all distinct units i and j, all Yi have the same relationship with i’s explicit variables
as Yj with j’s variables.

We further note that if M∗∗ is balanced then all the unit-models IM∗
i (IG

∗
i , IS

∗
i ) in definition 3 are

identical (with no edges between IG∗
i and IG∗

j ), and can be succinctly represented by a (single)
causal model M(G,S) where G and S can be constructed from any IG∗

i and IS∗
i by replacing

explicit variables with generic variables.

In addition to the assumption that the isolated components being the same, it would be helpful if
we also have symmetrical assumptions on the underlying distributions of specific sets of variables.
For example, it is reasonable to assume all units’ treatments have the same distribution, i.e., for any
treatment X = x, all units have an equal chance of getting the treatment X = x.

Definition 4 (Ancestral same-distribution condition (ASDC)). In the interaction network G∗ a
balanced interaction model, generic variable W to satisfies the ancestral same-distribution condition
(ASDC) if for all unit i, 1) Pa(Wi) satisfies ASDC, and 2) Pa(Wi) ⊆ V(i), and 3) for any different
unit j ̸= i, Pa(Wi) and Pa(Wj) have the same set of generic variables, and their exogenous errors
UWi

and UWj
have the same distribution. (When i=j, the condition is automatically satisfied.)
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For example, in Figures 4(a) and 4(b), X satisfies ASDC in the former (assuming the condition on
exogenous errors is satisfied) but not in the latter, since in the latter Pa(X1) ̸= Pa(X2). ASDC
implies IID as stated in the following lemma.
Lemma 1. If W satisfies ASDC, then any two explicit variables Wi and Wj are IID (Independent
and Identically Distributed.)

Remark 2. The descendants of an ASDC variable need not be IID. For example, in Figure 4(a),
X satisfies ASDC, and Yi and Yj are descendants of Xi and Xj . Yi and Yj have different sets of
parents, making their distributions different, so Y is non-IID.

3.3 Quantity of Interest: True Average Causal Effect (TACE)

We generalize traditional ACE to the non-IID setting. Examine the interactions depicted in Figure
5(c). Unit i’s treatment Xi affects their outcome through unit j’s outcome Yj . Xi → Yj → Yi is a
“spurious” causal path. We are interested in computing the ACE of a unit’s treatment on their outcome,
excluding the effects transmitted via spurious paths from their neighbors/contacts. In an experimental
setting, interactions can be eliminated by isolating all subjects. In an observational setting, where we
are given the non-IID data, we are interested in computing the average causal effect of treatment on
outcome as if all units were isolated. We present the formal definition below.
Definition 5 (True Average Causal Effect (TACEXY )). Let M∗ be an interaction model. True
average causal effect of X on Y , denoted as TACEXY , is defined as the ACE of X on Y in the
isolated interaction model IM∗ corresponding to M∗.

TACE is the non-IID version of ACE and is the same as ACE in a traditional causal model where
all samples are isolated. Again, without loss of generality, we assume the difference between the
treatment value and the outcome value is 1, i.e. treatment is X = c+ 1 and the outcome is X = c.

4 Defining, Quantifying, Detecting and Removing Interaction Bias for TACE

Almost all machine learning algorithms including those that employ causal techniques assume that
data are IID (Schölkopf [2022], section 3). In other words, the theoretical and performance guarantees
of these algorithms are based on data being IID. As such it would be useful to determine conditions
under which an algorithm meant for IID data can be applied on non-IID data with the certainty that
the resulting bias would be negligible. We formally define interaction bias below.
Definition 6 (Interaction bias). Let balanced model M∗ be the true model that generated the
(available) non-IID dataset D. Let Q denote the query of interest and let Q∗ be its true value. Let A
denote an algorithm that outputs an unbiased estimate of Q given data that are IID and the causal
graph that generated the IID data. Let G† denote an approximate causal graph constructed under
the assumption that D is IID such that no assumption in G† is refuted by D. Let Q̂ be the estimate
computed by A using G† and D as input. Interaction bias is given by ||Q∗ − Q̂||.

4.1 Quantifying Bias

We define the two main types of problematic graphical structures in a linear interaction network that
introduces bias in the estimation of TACE.
Definition 7 (Deflecting bias structure). A deflecting bias structure for TACEXY in an interaction
network G∗ is an open path between Xj and Yi for i ̸= j.

Deflecting bias structures are open paths from one unit to another unit. For example, Figures 5(a)
and 5(b) contain deflecting bias structures. The interaction network in Figure 5(a) has a directed
open path between Xj and Yi, and the interaction network in Figure 5(b) has a confounded open path
between Xj and Yi.
Definition 8 (Reflecting bias structure). A reflecting bias structure for TACEXY in an interaction
network G∗ is an open path between Xi and Yi through some explicit variable Wj with i ̸= j.

Reflecting bias structures are open paths that go from a unit through another unit and back to the
same unit. For example, Figures 5(c) and 5(d) contain a reflecting bias structure. In each of them,
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there is an open path from Xi to Yi through Yj . In some cases, there can be a deflecting bias structure
embedded in a reflecting bias structure, as in Figures 5(c) and 5(d). However, this is not necessary.
Figure 5(e) contains only a reflecting bias structure (Xi → Cj → Yi) but no deflecting bias structure.

Xi

Yi

Xj

Yj

(a) Deflecting bias:
Xj causes Yi through
a path.

Xi

Yi

Xj

Yj

Cj

(b) Deflecting bias:
Xj and Yi are con-
founded.

Xi

Yi

Xj

Yj

(c) Reflecting bias:
Xi causes Yi through
Wj(= Yj here).

Xi

Yi

Xj

Yj

Ci

(d) Reflecting bias:
Xi and Yi have a con-
founding path.

Xi

Yi

Xj

Yj

Cj

Uj

(e) Reflecting bias
only.

Figure 5: Two main types of interaction bias.

Theorem 1. Let M∗(G∗, S∗) be a balanced interaction model in which treatment variable Xi and
outcome variable Yi are not confounded by any variable in Vi, ∀i. Let D be the available data
generated by M∗ and let G† be the approximate graph constructed using D. Let TACEXY be
identifiable in G† and be given by βY X , the regression coefficient of Y on X . Let α denote the true
value of TACEX,Y in M∗. If X satisfies ASDC then the interaction bias is given by,∣∣∣E[ ˆβY X ]− α

∣∣∣ = ∣∣∣ 1n ∑
1≤i≤n

∑
p∈P [iji]

V al(p)
σ2
Rp

σ2
X
− 1

n(n−1)

∑
1≤i≤n

∑
p∈P [ji]

V al(p)
σ2
Rp

σ2
X

∣∣∣,
where P [iji] is the set of reflecting bias structures between Xi and Yi through any explicit variable
Wj of unit j with i ̸= j, P [ji] is the set of deflecting bias structures between Xj and Yi with i ̸= j,
and Rp is the root of path p.

It follows from Theorem 1 that in a balanced interaction model in which no Xi and Yi are confounded
by any variable in Vi, the reflecting and deflecting structures are the only two structures that will
bias the identification of TACE. Note that although definition of interaction bias (Definition 6) on
TACE is for any unbiased estimator for ACE, we focus only on the ordinary least squares estimator
in this paper. This is because among the class of unbiased linear estimators, the OLS estimator has
the minimum variance [Johnson et al., 2014].

We exemplify theorem 1.

X1

Y1

X2

Y2

X3

Y3

X4

Y4

C4

X5

Y5

2 20.3 2 2

0.
5

0.
6

0.
2

0.4

2

0.3

Figure 6: Interaction network with 4 units.
The numbers represent edge coefficients.
(C1, C2, C3, C5 are omitted)

X1

Y1 B2

A2

X2

Y2

X3

Y3

C3

Figure 7: Interaction net-
work with 3 units. (Other
A,B,C variables including
A1, B1, . . . are omitted)

X1

Y1

X2

Y2

X3

Y3

C1 C2

Figure 8: Interaction net-
work with 3 units. (C3 is
omitted)

Example 1. Figure 6 shows an example of an interaction model with 4 units where X1, . . . , X5 are
the treatments, and Y1, . . . , Y5 the outcomes. The numbers on the edges are the edge coefficients. C
satisfies ASDC, and Ci for i = 1, 2, 3, 5 are omitted from the graph for simplicity.

Suppose we want to estimate the ACE of X on Y as if the units were isolated: Input: the interaction
network G∗ as shown in Figure 6 (no parameter i.e., S∗ is not an input), Output: the TACEXY

(should equal to 2). If we estimate ACEXY ignoring the connections between units, our estimator will
be ˆβY X , with Y = {Y1, . . . , Y5} and X = {X1, . . . , X5}. This is because ignoring the connections,
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the graph becomes Xi → Yi separated for i = 1, . . . , 5, so is essentially X → Y Pearl [2009].
However, by Theorem 1,

|βY X − 2| = |0.3 · 0.4
5

− 1

20
· 0.5− 1

20
· 2 · 0.4− 1

20
· 0.5 · 0.4− 1

20

0.6 · 0.2σ2
C

σ2
X

− 1

20
· 2 · 0.3|

̸= 0.

Hence, the result is biased, and does not give us what we want. We show later in Theorem 2 how to
compute an unbiased estimate of TACE.

4.2 Detecting Bias

In this section, we provide a graphical criterion resulting from Theorem 1, to detect interaction bias.
Corollary 1. Let M∗∗(G∗∗, S) be a balanced interaction model in which X satisfies ASDC and
TACE is identified as βY X = α in the approximate graph, then interaction bias exists iff G∗∗ contains
a reflecting or deflecting bias structure.

For example, Figure 7 contains both reflecting and deflecting bias structures. Figure 8 does not
contain any bias structure. So Figure 7 has interaction bias and Figure 8 does not. Note that the
interactions in Figure 8 do not qualify as bias structures by Definitions 7 and 8.

4.3 Removing Bias

Theorem 2 presents a technique for computing an unbiased estimate of TACE in cases where theorem
1 predicts significant bias. It proceeds by applying linear regression on a set of samples B that
satisfy the condition that no bias inducing structures exist between any two distinct units i and j. In
particular, a subset of samples/units B is termed as a bias-free subset for TACEXY if no reflecting
bias structures exist for any i ∈ S and no deflecting bias structures exist in G∗

S where G∗
S is the latent

projection of G∗ on B (Definition 2.6.1, Pearl [2009]). For example in figure 6, B comprises of units
2 & 5 and G∗

S is X2 → Y 2 X5 → Y5. However, B is not unique for a given interaction network.
Another candidate for B is units 2 & 4 and the associated G∗

S is X2→ Y 2 X4 → Y4. An algorithm
for constructing B is presented in Algorithm 1, with an example and discussion in the appendix.
This algorithm starts by randomly initializing B with a sample. Then it goes through the rest of the
samples and adds a sample to B if its inclusion does not create bias structures in the resultant graph,
G∗

S .

Algorithm 1 Select a bias-free subset B from an interaction network G∗ and return the largest subset
from t iterations

Input: an interaction network G∗, iterations t
Output: the largest bias-free subset B selected from t iterations

1: function FINDSUB(G∗, t)
2: B = ∅
3: for i = 1, . . . , t do
4: Units = randomly sorted list 1, . . . , n
5: B = {Units[1]} (The indices for Units start from 1)
6: for i = 2, . . . , n do
7: if Units[i] has no reflecting bias structure in G∗ then
8: if Units[i] has no deflecting bias structure in G∗ with an element in B then
9: B = B ∪ {Unit[i]}

10: B = B ∪ {B}
11: return Largest B in B

Theorem 2. Let G∗ be an interaction network. Given the conditions in Theorem 1 and ‘B’ a
bias-free subset for G∗, TACEXY = E[ ˆβY X ] where the regression coefficient is calculated using
only samples in set B.

Note that bias-free subset of samples B used in Theorem 2 is not always IID. While we insist that
no reflecting or deflecting bias structures exist in G∗

S , we do not restrict other forms of interactions
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among these samples. For example, in Figure 8, Units {1, 2, 3} constitute a bias-free subset. In this
case, Y is not IID (Y1 and Y2 are dependent, Y2 and Y3 are dependent) and hence the bias-free subset
is non-IID.

Also note that to compute an unbiased estimate using Theorem 2, we have at our disposal a smaller
set of samples; so the variance of estimation will be larger. There is a trade off between ignoring
interaction (large bias, small variance), and using theorem 2 (no bias, large variance). It remains future
work to quantify the variance of the estimator in Theorem 2 for different interaction models, but in
Section 5, we provide simulation results and case analysis study to empirically show its performance.

Applicability of theorems 1 & 2 to real world problems: A natural question that arises at this
juncture is whether we need an entire interaction network to apply these results to real world problems.
Theorem 1 quantifies bias and in doing so reveals to us if and how various factors such as sample
size and strength of connections (value of path coefficients) influence bias. This in turn allows us to
use available information about the problem from prior experience, domain knowledge or external
sources to determine if bias would be negligible or not. Specifically, bias becomes smaller as the
number of bias-structure-free samples increases. In fact, if the numbers of deflecting and reflecting
structures are fixed, the bias terms diminishes as n increases, indicated by the 1/n for the reflecting
bias term and 1/n(n − 1) for the deflecting bias term. It is also evident that if the values of path
coefficients are high, V al(p) would be high and this will result in increased bias. Finally, if the
interaction connections are sparse (fewer edges between units), the reduction in the total number of
paths could potentially lower bias but more importantly the number of samples in the bias-free set B
used in theorem 2 will tend to be larger, which in turn will help in computing better quality estimates.

5 Experiments

5.1 Simulations

Simulated Model We randomly generate balanced interaction network with n units (i.e., the sample
size is n), with Ci → Xi → Yi and Xi →Mi for all i = 1, . . . , n. For all ordered pairs of distinct
units i, j, we randomly add deflecting bias structures in the form of Xi ← Ci → Yj with probability
dRate. For all units i, we randomly add reflecting bias structures in the form of Xi → Mk → Yi

with probability rRate for a random k ̸= i.

Experiment: Bias of REG It follows from theorem 1 that larger sample sizes and smaller path values
on the bias structures result in smaller bias. We perform two simulations to show how bias varies as a
function of sample size and path values.We simulate data such that for each variable, the exogenous
error term follows a Gaussian distribution with mean 0 and standard deviation 1. For each set of
parameters, we randomly generate an interaction network, and simulate the data 10000 times. Each
time, we record the result from a naive regression of Y on X (REG). As a comparison, we also record
the result from Theorem 2 (THM-2). We run the algorithm (provided in the appendix) to randomly
select bias-free subsets for 10 times and select the largest subset.
Simulation 1: Xi → Yi’s edge coefficient is 100, the edge coefficients of Ci → Xi, Xi →
Mj ,Mj → Yi are all set to 10, the numbers of deflecting bias structures and additional reflecting
bias structures are both 100.
Simulation 2: Number of units n = 1000, Xi → Yi’s edge coefficient is 100, the numbers of
deflecting bias structures and additional reflecting bias structures are both 100. The results are plotted
in Figure 9. As seen in the plots, as n increases or the path values on the bias structures decreases
(both with all other parameters fixed), βY X from a naive regression approaches TACE. Such results
coincide with Theorem 1. The βY X computed by THM-2 is very close to TACE and the two lines
almost overlap.

5.2 Case Study

Settings We are interested in analyzing the effect of tutoring time on students’ grades. In particular,
we wish to compute the effect provided through the tutoring program only, but not through “side
effects” from other units, such as learning from classmates, although such interactions are encouraged
in this scenario. For instance, unit i might help unit j understand the course materials better which in
turn might improve j’s grade. If unit i helped unit j improve their understanding and unit j states
this in the peer review, then it would boost i’s grade. To construct an interaction network and apply
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Figure 9: Left: βY X vs. number of units n. Right: βY X vs. path value on the bias structures. TACE = 100.

Figure 10: Left: estimated TACE distribution from THM-2. Right: estimated TACE distribution from REG.

our results, we ask the students to fill out a survey including 1) their tutoring time, 2) their grade, 3)
whom they helped, 4) who helped them, 5) peer review score.

Construction of the Interaction Network Three generic variables are T (tutoring time in hours), U
(understanding of course materials), and R (grade). For each unit i, Ti → Ui → Ri. In addition, if
i helped j, add Ui → Uj (deflecting bias structure). If i first helped j and j mentioned this in the
peer review and thus boosted i’s grade, add Ui → Uj → Ri (reflecting bias structure). We assume no
additional back-and-forth help happens.

Simulation Let there be 500 students, assume each student on average help 5 other students, and
the other student has a 0.5 chance of helping back. Let TACE = 2, and the Ui → Uj and Ui → Rj

edges both have the value 2. We randomly generate an interaction network and simulate data based
on these parameters.

Results We apply THM-2 to select a bias-free subset, and compute βGT using data from that subset.
We get the result 1.963, with the size of the subset 72. As a result, the effect of tutoring time on
students’ grades not through other units is estimated to be 1.963, which is close to the ground truth
TACE (2). We further repeat the experiment 1000 times to show the distribution of the results. Each
time a random structure is generated and random data are simulated. THM-2 is on average able to
select a bias-free subset of size 76, and the average recovered TACE = 2.0002. The result from
REG had a significantly high bias with TACE averaging at 194.11. Also since every time the data
are regenerated, the model is different, and REG uses all the data, it has a larger variance. The two
plots in Figure 10 show the distribution of results from THM-2 and REG. The histograms of the
results of βY X computed by THM-2 and REG are shown in Figure 10.

6 Related Work

One of the most studied concepts related to interactions among units is interference [Cox, 1958].
Majority of literature in empirical fields assume no-interference. In fact, SUTVA is a common
assumption in causal inference [Rubin, 1978]. Recent years have witnessed a rise in papers on
interference that employ graphical models. These include Ogburn and VanderWeele [2014] that was
the first to model interference using DAGs, Sherman and Shpitser [2018] that modeled interference
using chain graphs which permits modeling unknown interactions between units and Bhattacharya
et al. [2020]that proposed structure learning methods for chain graphs. These works rely on partial
interference which divides units into equal-sized blocks under the assumption that interactions occur
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only within a block but not across different blocks. [Nabi et al., 2020] developed methods for
identification and estimation of multiple queries under conditions of interference and homophily, and
applied the results to the problem of ad-placements.Sobel [2006] was the first to notice the effect of
interference in the housing mobility problem, and proposes causal estimands for this application.

Aronow and Samii [2017], Sussman and Airoldi [2017] modeled general interference (without
assuming partial inference) by constructing a function to define a unit’s exposure level on the number
of treated neighbors they have. The methods are less restricted than partial interference methods, and
allow units to be affected by any number of neighbors. However, they are limited to interference and
do not handle other forms of interactions.

Jagadeesan et al. [2020] proposed a quasi-coloring method to estimate direct effect under interference
using experimental data. However, it does not easily generalize to observational studies. Other papers
along a similar direction include Fatemi and Zheleva [2020], which proposed experiment design to
minimize interaction bias and selection bias at the same time, and Liu and Hudgens [2014], which
proposed a two-stage randomization design to minimize interference bias. Tchetgen Tchetgen et al.
[2021] proposed a g-computation method, which is the first to model general interference using
graphical models (chain-graphs), but requires the interference effects to be symmetrical between
units. Sävje et al. [2021] and Hudgens and Halloran [2008] defined queries similar to TACE, named
EATE and PADE, respectively. These queries generalize traditional ACE to allow a unit’s outcome to
be affected by treatments of other units. However, they do not allow outcomes to be affected by other
units’ variables other than treatments.

Hudgens and Halloran [2008] defined six types of queries in the problems involving interference.
Work in interference that focuses on different queries/problems include a few as follows. VanderWeele
et al. [2012b] is the first to decompose the spillover effect (the effect of a unit’s treatment on another’s
outcome (Quammen [2012])) to contagion and infectiousness effects using counterfactual mediation
analysis. Shpitser et al. [2017] presented decomposition for units with unknown and symmetrical
interaction patterns and analyzed different interference paths. In linear models, the contagion and
infectiousness effects reduce to the directed paths from Xj to Yi. Moreover, their work does not handle
reflection bias. Hu et al. [2021] was the first to define and provide estimands for the average indirect
effect. VanderWeele et al. [2014] developed methods for sensitivity analysis under interference.

Other types of interactions include the contagion effects, which are defined as a unit’s outcome
affecting another unit’s outcome [VanderWeele and An, 2013]. Work on this line usually used
longitudinal data, including Burt [1987], Lyons [2011], VanderWeele et al. [2012a]. Homophily
effects are defined as the behavior of connected units are similar [Jagadeesan et al., 2020]. Work in
this line include McPherson et al. [2001], Jagadeesan et al. [2020]. The existing work above does not
model interactions using graphical models.

7 Conclusions

In this paper, we represent interactions among units using causal graphical models. We derive
theorems to quantify the interaction bias for average treatment effects in linear models. We provide
sufficient and necessary graphical conditions to detect interaction bias. Additionally, we develop
a method to compute an unbiased estimate of causal effect in cases where blindly assuming IID
is expected to yield a significant bias. Finally, we discuss the performance of our method through
simulation studies.
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