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Abstract

Prediction failures of machine learning models often arise from deficiencies in training
data, such as incorrect labels, outliers, and selection biases. However, such data points
that are responsible for a given failure mode are generally not known a priori, let alone a
mechanism for repairing the failure. This work draws on the Bayesian view of continual
learning, and develops a generic framework for both, identifying training examples
which have given rise to the target failure, and fixing the model through erasing
information about them. This framework naturally allows leveraging recent advances
in continual learning to this new problem of model repairment, while subsuming
the existing works on influence functions and data deletion as specific instances.
Experimentally, the proposed approach outperforms the baselines for both identification
of detrimental training data and fixing model failures in a generalisable manner.

1 Introduction

Machine learning (ML) models often exhibit unexpected failures once deployed in the “wild”. Recent
lines of research aim to alleviate different well-known shortcomings in supervised models, such as
vulnerability to annotation errors [1] and adversarial attacks [2], sensitivity to data shifts [3], and biases to
underrepresented subgroups [4, 5, 6]. However, it is often challenging to anticipate beforehand all plausible
failure scenarios, and protect against them pre-emptively. This motivates developing a technique that is
able to repair a model on demand, as new failure cases arise in practice.

Undesirable behaviours of ML models commonly stem from defects in the training data. However, it is un-
clear how to detect the causes of such failures automatically, rendering a manual troubleshooting necessary.
Furthermore, once the problems are uncovered, one would still need to design fixes, which typically involve
further data curation/collection, and model retraining/redesigning from scratch. Executing the above steps
demand not only time, but also mature expertise in the relevant ML areas, a scarcity in the present job market.

This work introduces an approach to identifying a set of most detrimental training examples that have caused
failure cases observed at test time, and to subsequently repairing the model on these failures by deleting
those culprits. At the basis of both cause identification and repairment steps is the approximation of “coun-
terfactual” posterior distribution where some training examples are assumed absent. We formalise this as a
Bayesian continual (un)learning problem [7], where the above counterfactual posterior is estimated by delet-
ing the evidence of selected training data from the current posterior. We note that, while other factors (e.g.
model class and optimisation) may play a role, we focus on “data debugging” and investigate, to what extent,
prediction failures could be remedied by only intervening on data and updating the model accordingly.

Fig. 1 gives an overview of the proposed approach for model repairment, which operates in two steps
by 1) identifying causes of failure among training data, and 2) updating the model by erasing the
“memories” of those harmful examples. Importantly, the proposed framework is agnostic to why a particular
datapoint hurts model performance, handling both, issues in the input data and/or labels. We only require
specification of the set of failed cases for which we wish to improve performance.
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Figure 1: (a) Real-world datasets are often fraught with issues such as annotation noise, low-quality inputs, anomalies,
and acquisition biases (e.g. demographic imbalances). Such issues may lead to undesirable performance of the trained
models in deployment. Our approach aims at repairing such models by (b) identifying detrimental training examples
which have caused the target failures, and then (c) erasing efficiently the memories of those examples from the models.

Our contributions: We develop a framework for repairing machine learning models by erasing memories
of detrimental datapoints. The framework connects both identification and removal of detrimental data under
a (Bayesian) continual learning perspective, which brings forth practical benefits. Firstly, the framework
subsumes works on influence function [8] and data deletion [9] as specific examples, which are developed
independently, and our work reveals their close connections and limitations. Secondly, the generality of our
formulation allows translating any continual learning method into this model repairment setting, and opens
doors to further research. In particular, we extend Elastic Weight Consolidation [10] – a specific continual
learning algorithm – to cause identification and data removal, and demonstrate improvements over the prior
works in a variety of settings where training data are contaminated with annotation and/or input noise.

2 Model Repairment by Data Deletion

Let us consider a prediction model p(y|x,θ) that returns a probability distribution of the output y given
an input x. We make the i.i.d. modelling assumption and denote p(θ|D) as the posterior distribution over
the model parameters θ given training data D={(x(n),y(n))}Nn=1. At test time, the posterior predictive
distribution is used to infer label y⋆ given a new sample x⋆:

p(y⋆|x⋆,D)=

∫
p(y⋆|x⋆,θ)p(θ|D)dθ, (1)

where p(y⋆|x⋆,θ) is the likelihood term for sample (x⋆,y⋆). While we use approximate posteriors in
practice, we focus on the exact case for now to formalise the problem.

Imagine that, in deployment, this model makes incorrect predictions in certain situations. After collecting
a “failure set” F={(x(n)

f ,y
(n)
f )}Nf

n=1 of examples from such failure mode in the test set2, we would like to
repair the model, such that it improves performance on the failure set F and similar future cases. We also
argue that a successful repairment should also maintain a similar level of performance on the rest of test ex-
amples. These two objectives of model repairment are analogous to those of a medical treatment, in that both
aim to fix a specific problem while leaving the “healthy” part as intact as possible. A further discussion of
different aspects, including generalisation, efficiency and specificity properties is provided in Appendix A.1.

In this work, we assume that the main reason for such failures F is due to the existence of detrimental
examples in the training data D, for example, noisy labels, low-quality inputs and/or group imbalances.
Our hypothesis is that, by removing these harmful datapoints and adapting the model accordingly, the
model can be repaired to return correct predictions for datapoints in F as well as similar future cases. We
acknowledge that there might be other reasons for a model to make wrong predictions on F, such as bad
local optima and model biases, which are outside the scope of this work. Addressing data-based failures
is complementary to accounting for other problems and is of relevance regardless, as datasets typically
come with unexpected issues no matter how much we curate them beforehand.

We formulate the process of model repairment as the following two steps (see Fig. 1 for an illustration):

1. Cause identification: Identify a set of detrimental datapoints, i.e. “failure causes” C in the
training data D that contributed the most to the failure set F.

2. Treatment: Given the set of failure causes C, adapt the model to predict correctly on the failure
set F, while maintaining performance on remaining test examples.

2There may be multiple different ways in which the model fails [11], and the failure cases may consist of several
groups. One type of mistake might incur more costs than others (e.g. in certain medical applications, false negative is
more costly than false positive). Here we assume that we have identified at least one failure type that we would like to fix.
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Algorithm 1 Model Repairment
Input: training dataD; failure casesF; approximate posterior q(θ)≈p(θ|D); likelihood p(z|θ)
Output: failure causes C, “repaired” posterior q−C(θ)
# Step I: Cause Identification
Update posterior: Apply a continual learning method to obtain q+F(θ)≈p(θ|D,F) by fitting the failure setF
Compute influences of training examples onF: Calculate r̃(z)∀z∈D (Eq. (9))
Find failure causes C: Return the examples with positive influence, C←{z∈D: r̃(z)>0}
# Step II: Treatment
Delete information of C: Apply a continual (un)learning method to the original posterior q(θ), and obtain the
posterior on the corrected data q−C(θ)≈p(θ|D\C)

Below we describe a formal framework for performing these two steps. In the first phase of cause identifi-
cation, we need to define a measure of how much a subset of training examples C={(x(n)

c ,y
(n)
c )}Nc

n=1⊂D
is responsible for the failure cases F. To this end, we propose to check how much the posterior predictive
distribution on F changes as a result of deleting C from the training data:

r(C):=logp(F|D\C)−logp(F|D), (2)

where p(F|D) and p(F|D\C) are the posterior predictive distributions before and after removing a subset
of training examples C defined as follows:

p(F|D)=

∫
p(F|θ)p(θ|D)dθ, p(F|D\C)=

∫
p(F|θ)p(θ|D\C)dθ, p(F|θ)=

∏
(x,y)∈F

p(y|x,θ). (3)

If a given C leads to a large positive value of r(C) in Eq. (2), it means that removing C fromD would have im-
proved the performance of the Bayesian predictive inference on the failure set F . The first cause identifica-
tion step thus entails finding a subset C with the maximal log-density ratio r(C). In the second treatment step,
we can directly adopt p(F|D\C) for such identified C as the updated predictive distribution, as it confers the
largest improvement over the failure cases. In other words, the posterior predictive distribution p(F|D\C)
after data removal is key to both the search of detrimental datapoints and repairment of the model.

The central computational question is, therefore, concerned with the efficient calculation of p(F|D\C)
without retraining the model from scratch. The reasons for avoiding retraining are: (1) in the cause
identification step, it is computationally prohibitive as retraining needs to be done for every subset
C⊂D; and (2) in the treatment step, the resulting retrained model may be drastically different from the
original model one would like to fix (due to, e.g. noises in the SGD-based optimisation and parameter
re-initialisation), and may lose other desirable properties that one may wish to retain.

In this work, we present a continual learning [12] framework to simultaneously address the aforementioned
computational challenges in cause identification and treatment. The framework is summarised in Algorithm
1, with the following key developments by leveraging (Bayesian) continual learning:

1. For cause identification (Section 2.1), we present a fast approximation to r(C), which requires a
one-off approximation of p(θ|D,F) only via continual learning, and enables a linear-time search
for the detrimental datapoints in C.

2. For treatment (Section 2.2), we show that the approximation of p(θ|D\C) for C identified in
the first step can be achieved by performing a new “continual learning task” using logp(C|θ)
as its “loss function”.

Our framework is generic and flexible in the sense that any continual learning approach can be applied to
both steps; we demonstrate, in particular, a concrete instantiation by leveraging Elastic Weight Consolidation
[10] as the base continual learning approach. We now elaborate on the mathematical details of the two steps.

2.1 Step I: Cause Identification

Identifying the set of detrimental examples C requires solving the following optimisation problem

C=argmaxC′∈P(D)r(C′), (4)

where P(D) denotes the power set of D. Solving this comes with multiple computational challenges.
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Firstly, a naive approach would require computing the predictive distribution p(F|D\C) — and thus, the
posterior p(θ|D\C) — for every subset C of D, which is prohibitively expensive. To address this, we
present a “predictive” approach that removes this computational burden. The key idea is to notice that

p(D\C|θ)=p(D|θ)/p(C|θ), ∀C⊂D,

due to the i.i.d. modelling assumption. Inserting this into the Bayes’ rule for computing p(θ|D\C) yields:

logp(F|D\C)=log

∫
p(F|θ)p(θ|D\C)dθ=log

∫
p(F|θ)
p(C|θ)

p(D|θ)p(θ)
p(D)

dθ−log
p(D\C)
p(D)

.

Notice that again due to the i.i.d. modelling assumption,

p(D\C)
p(D)

=

∫
1

p(C|θ)
p(D|θ)p(θ)

p(D)
dθ.

Therefore, we can compute the log density ratio r(C) = logp(F|D\C)− logp(F|D) in the following
“predictive” form, without computing p(θ|D\C)—see Appendix A.2 for derivations:

r(C)=log

∫
p(θ|D,F)

p(C|θ)
dθ−log

∫
p(θ|D)

p(C|θ)
dθ=log Ep(θ|D,F)[p(C|θ)−1]−log Ep(θ|D)[p(C|θ)−1]. (5)

In this form, we only need to compute the posterior p(θ|D,F) once, and can side-step the requirement of
computing p(θ|D\C) for inspection of every new C⊂D, thereby removing one of the key computational
bottlenecks. Intuitively, as the “predictive” formulation (Eq. (5)) of r(C) computes the log expectation
difference of p(C|θ)−1, higher r(C) means that datapoints in C are less likely to be predicted correctly
when the posterior is updated by the information from the failure set F. In other words, this indicates
conflicting information exists between F and C, and as we would like to repair the model to produce
correct predictions on F and similar examples, the information of C should be removed from the model.

Secondly, we are still left with the combinatorial search for the best subset C, which is also prohibitive when
the size of training data D is large, even when the “predictive” formulation Eq. (5) is used. We address
this issue by a first-order Taylor series approximation of r(C). Let us re-write the log density ratio as

r(C)=F(1,p(θ|D,F))−F(1,p(θ|D)), where F(ϵ,g(θ)):=log

∫
g(θ)e−ϵlogp(C|θ)dθ. (6)

Note that F(0,g(θ))=0 for any well-defined distribution g(θ). We now perform a Taylor expansion of
F(ϵ,g(θ)) around ϵ=0: F(ϵ,g(θ))=−ϵEg(θ)[logp(C|θ)]+O(ϵ2). Finally we obtain an approximate
log-density ratio r̂(C)≈r(C) by plugging the first term of the Taylor expansion into the RHS of Eq. (6):

r̂(C):=Ep(θ|D)[logp(C|θ)]−Ep(θ|D,F)[logp(C|θ)]. (7)

Assuming that data are i.i.d., and defining z=(x,y), the above approximation can be expressed as the
sum of individual log density ratios, r̂(C)=

∑
z∈Cr̂(z), where each term is given by

r̂(z)=Ep(θ|D)[logp(z|θ)]−Ep(θ|D,F)[logp(z|θ)], p(z|θ)=p(y|x,θ). (8)

Critically, with this approximation, in order to find a subset C of cardinality K that leads to the maximal
r̂(C), it suffices to compute r̂(z) for every training example z ∈D and find the top K examples with
largest r̂(z) values, thereby reducing the search space from O(|D|!) choices to only O(|D|) choices.

The per-instance formulation Eq. (8) has similar interpretation as the “predictive” formula Eq. (5), in that
r̂(z) measures how much the predictive moments of z changes when the model is further trained on F,
i.e., computation of p(θ|D,F). If the difference is positive, i.e., r̂(z)>0, it means the example z∈D
is a conflicting evidence against the test examples in F; conversely, if r̂(z)<0, then z and F are aligned.
In practice, the failure causes correspond to examples z with r̂(z)>0.

Lastly, for non-linear models (e.g. neural networks), approximate posteriors q(θ) ≈ p(θ | D) and
q+F(θ)≈ p(θ |D,F) are needed due to intractability of the exact posteriors. We assume that q(θ) is
available after training, and suffers from the prediction failures F. As recomputing the posterior q+F(θ)
from scratch can be expensive, we propose to use a continual learning technique [12] and obtain this
quantity by updating the original posterior q(θ). Finally, we use the following metric r̃(z) in practice
to calculate the detrimental impact of each training datapoint on the failure set, F, by replacing the exact
posteriors in Eq. (8) with their corresponding approximations:

r̃(z):=Eq(θ)[logp(z|θ)]−Eq+F(θ)[logp(z|θ)], (9)
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and the top K entries according to r̃(z) are selected to approximate the failure causes C. This metric is
generic, and its implementation depends on the specifics in which both q(θ) and q+F(θ) are computed, e.g.,
MLE/MAP point estimates, Laplace approximation [13], variational inference [14, 15], etc. Two concrete
examples are provided: the first shows that the well-known linear influence function [8] is a specific instance
of Eq. (9); and the second is derived by extending a continual learning method, known as Elastic Weight
Consolidation (EWC) [10] to cause identification, and is a key methodological development in our work.

Example 1 (Linear Influence Function): Our proposed metric in Eq. (9) recovers the linear influence
function from Koh & Liang [8] when point estimates are used for θ. Assume that the model is trained
on data D with parameters θ̂, which corresponds to an approximation of MLE/MAP estimates, i.e.,
q(θ)=δ(θ−θ̂)≈p(θ|D). After observing the set of failures F, a point estimate of p(θ|D,F) is obtained
by performing a single update of natural gradient ascent [16] on the log likelihood ofF with step size γ>0:

q+F(θ)=δ(θ−θ̂+F)≈p(θ|D,F), θ̂+F≈θ̂+γF̂−1

θ̂
∇θ̂logp(F|θ̂), (10)

where F̂θ̂ is the empirical Fisher information matrix. This means

r̃(z)=−γ∇θ̂logp(F|θ̂)⊤F̂−1

θ̂
∇θ̂logp(z|θ̂), (11)

if defining the updated posterior as q+F(θ)=δ(θ−θ̂+F). The negation of the above equation coincides
with the linear influence function (Eq. (2) in [8]) when the failure set is assumed to be a singleton
F={ztest} and γ=1. Note that the sign difference arises since our work aims to quantify the “negative”
influence rather than the "positive" one in contrast with the work of Koh and Liang [8].

Example 2 (Elastic Weight Consolidation): The generality of Eq. (9) permits any continual learning
method of one’s choice for estimating the updated posterior q+F(θ)≈p(θ|D,F) after observing failure
samples F . Here we illustrate how EWC [10] as a continual learning method can be adopted in the context
of cause identification. EWC approximates p(θ|D,F) by first performing Laplace approximation of the
original posterior p(θ|D) around the point estimate θ̂, and subsequently finding the MAP solution of θ. For-
mally, θ̂+F is obtained by maximising the objective below w.r.t. θ via SGD (see Appendix A.3 for details):

logp(F|θ)−N

2
(θ−θ̂)⊤F̂θ̂(θ−θ̂)−λ

2
||θ−θ̂||22, (12)

where the off-diagonal elements of F̂θ̂ are dropped for memory reason in practice. Intuitively, the first term
encourages high accuracy on the failure set F whilst the second/third terms ensures the model parameters
do not deviate too much in distribution. Defining q(θ)=δ(θ−θ̂) and q+F(θ)=δ(θ−θ̂+F), we have that

r̃(z)=logp(z|θ̂)−logp(z|θ̂+F). (13)

To compute the above for each datapoint z∈D, we only need to solve the optimisation problem of Eq. (12)
by SGD once. We refer to this version of r̃(z) as EWC-influence function.

Comparison: The EWC-influence function generalises the linear influence approach. To see this, we
derive the fixed point of the EWC objective Eq. (12) w.r.t. θ (where we set λ=0):

θ=θ̂+N−1F̂−1

θ̂
∇θlogp(F|θ). (14)

Then the update in Eq. (10) that is implicitly used by linear influence function can be viewed as (damped)
one-step fixed-point iteration update initialised at θ̂ for solving the fixed-point equation. As EWC-influence
update (Eq. (13)) is obtained by using the optimum of Eq. (12), it is arguably more accurate than linear
influence function (Eq. (11)) for measuring the (detrimental) effect of a datum z to the model failures F.

2.2 Step II: Treatment

Once the causes C of the failures F are identified among the training data D, we seek to repair the
model q(θ) by erasing the memories of C. We formalise this problem as the computation of the posterior
p(θ|D\C), i.e., C is absent from the training data D. A naive approach would re-run approximate inference
on the whole “corrected” dataset D\C to obtain an approximate posterior q−C(θ)≈p(θ|D\C) which can
be time consuming. But more fundamentally, by doing so, the obtained q−C(θ) may be unrelated to the
original q(θ) based on which C were identified, due to, e.g. non-convex SGD optimisation issues. Moreover,
this “model replacement” approach may not maintain other good properties of the original model q(θ).
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Analogous to cause identification (Sec. 2.1), we propose to employ the continual learning approach to esti-
mate efficiently the modified posterior p(θ|D\C). Applying Bayes’ rule and some algebraic manipulations
yield p(θ|D\C)∝p(θ|D)/p(C|θ) (see Appendix A.4). Therefore the information about C can be removed
by scaling the current posterior p(θ|D) by the inverse of p(C|θ) and re-normalising. In other words, we
can treat the approximation of p(θ|D\C) as a continual learning task, where the task is to “unlearn” the
datapoints in C while using the posterior distribution p(θ|D) as the prior. In practice, the target model to be
fixed corresponds to the approximate posterior q(θ)≈p(θ|D). Therefore continual (un)learning is done by

q−C(θ)∝q(θ)/p(C|θ)≈p(θ|D\C). (15)

The above approximation can be carried out with different approximate inference techniques such as
MLE/MAP point estimate, Laplace approximation [10] and variational inference [7]. Again we provide
a few examples to concretise this process as follows.

Example 1 (Fine-tuning on Corrected Data): Given a point estimate of model parameters θ̂, i.e.,
q(θ)= δ(θ−θ̂), a simple way to approximate p(θ|D\C) is to fine-tune on the corrected dataset D\C
and update the point estimate. The new θ̂−C of the repaired model are obtained by maximising the
log-likelihood logp(D\C|θ) via SGD, starting from θ̂.

Example 2 (Newton Update Removal): Guo et al.[9] proposed a Newton update based method for data
deletion. This method reduces to a specific form of Eq. (15) when using log-likelihood as its loss:

θ̂−C≈θ̂−γF̂−1

θ̂
∇θ̂logp(C|θ̂). (16)

Here information about C gets deleted by performing a single-step natural gradient descent on their log
likelihood [16]. Also, notice the similarity with the way linear influence [8] is computed in Eq. (10),
illuminating the relation between cause identification and treatment steps.

Example 3 (EWC for data deletion): The update rule in Eq. (15) for data deletion is amenable to any
continual learning approaches. For example, given model parameters θ̂, EWC-based deletion obtains
new parameters θ̂−C by maximising the following objective (see Appendix A.4):

−logp(C|θ)−N

2
(θ−θ̂)⊤F̂θ̂(θ−θ̂)−λ

2
||θ−θ̂||22 (17)

where the first term seeks to remove information about C while the remaining terms discourage parameters
from deviating from the original values. Contrasting this with Eq. (12) again reveals the connection
between EWC methods for cause identification and treatment steps.

Comparison: Similar to the comparison made in the cause identification part, EWC for data deletion also
generalises the Newton update removal (Eq. (16)). This can again be shown by deriving (damped) one-step
fixed point iterative update starting from θ̂ to approximate the fixed point of Eq. (17) when λ=0. As EWC
for deletion uses SGD to approximate optimum of Eq. (17), it is arguably better than Newton update removal
for erasing the effects of detrimental examples C, while better maintaining performance on other cases.

Connecting the two steps: We highlight the deep connection between the “predictive approach” for cause
identification (Sec. 2.1), and the continual (un)learning for data deletion in the treatment step. They share
the key idea of editing the approximate posterior q(θ)≈p(θ|D) via continual learning, which corresponds
to editing the factor graph [17] of p(θ|D), e.g., insertion of p(F|θ) in cause identification, and deletion
of p(C|θ) in treatment. This unified view enables ones to take any continual learning method and extend it
to both steps of model repairment. Indeed in our experiments, EWC as a better continual learning approach
than e.g., one-step Newton update leads to improvement in both tasks over the prior works.

3 Related work

Model Editing. There is a recent surge of interest in developing targeted updates to correct model’s unde-
sirable behaviours, while leaving other desired properties intact. As naive fine-tuning methods often lead to
overfitting to the failure examples and accuracy degradation on others, various strategies have been proposed.
For example, Zhu et al.[18] employ a simple regularization technique to minimize parameter changes during
the fine-tuning phase. Subsequent works [19, 20] advocate for a functional regularisation instead, e.g. KL
divergence in the output space, to achieve better regularisation. These lines of work, additionally, propose to
use meta-learning [21] to learn to edit the target model, where the latest meta-learning approach is proposed

6



by Mitchell et al.[22]. Another promising approach [23] performs weight editing so that features of a spe-
cific concept (e.g. snow) map to the features of another (e.g. road). A commonality among these approaches
is the focus on direct model edits for correction. Our work takes an orthogonal and under-explored angle
where the aim is to “edit” the data instead, by identifying and removing harmful examples which cause
failures — in turn, this difference makes our framework complementary to these model-editing approaches.

Continual learning. Continual learning is an active research area with a related but broader scope than
model repairment, which aims to develop methods that adapt the model for future tasks while maintaining
model performance on previously learned tasks [12]. We focus on a more targeted problem in this work,
yet introduce a framework that allows the use of any continual learning approach for model repairment.
Our experiments presents EWC [10] as a practical instantiation of the framework. One can also leverage
improvements over EWC such as online EWC [24], or other regularisation-based methods that are
motivated by Bayesian learning principles, such as variational continual learning [7, 25, 26], synaptic
intelligence [27], and orthogonal gradient descent [28]. As approximations to r(C) rely on accurate
posterior approximations, advances in Bayesian continual learning methods are expected to improve the
practical effectiveness of model repairment under our framework.

Data Selection and Valuation. Multiple techniques have been introduced for selecting “influential” training
examples on a chosen metric (e.g. test accuracy), such as influence functions [8, 29, 30, 31, 32, 33, 34], Shap-
ley value-based approaches [35, 36, 37] and probability of sufficiency [38]. Within the category of influence
functions, two representative approaches include linear influence function [8] and SGD-influence [32]. The
former approach performs one-step update only, thus, while efficient, it may be less accurate in reflecting the
influence of a datum z. The latter approach computes a projected difference between θ̂ and θ̂+F but with
θ̂+F obtained by running SGD fine-tuning on training data without z. Thus SGD-influence is computation-
ally inefficient. Compared to both baselines, our EWC-influence approach achieve the best in both worlds:
it produces more accurate influence estimates than linear influence due to better optimisation, while it is
more efficient than SGD-influence as it requires only one optimisation procedure on the given failure set F .

Data Deletion. The detrimental data removal in the treatment step is related to data deletion, a rapidly devel-
oping field of machine learning research [39, 9, 40, 41, 42, 43]. Closest to our work is variational Bayesian
unlearning [44] which extends variational Bayes to data deletion settings. But the connection to continual
learning is not explicitly made, and it is limited to applications in logistic regression and sparse Gaussian
processes. In general, the main focus of existing data deletion research is to preserve data privacy, and
datapoints to be removed are assumed provided. On the contrary, in this work, we focus on the repairment
of models and propose a unified procedure not only to remove data but also to identify which ones to do so.

4 Experiments

We evaluate the efficacy of the proposed framework in a) identifying the causes of target prediction failures
in Sec. 4.1, and b) repairing the original model by erasing the memories of such causes in Sec. 4.2. We
use augmented versions of MNIST and CIFAR-10 datasets with simulated annotation and input noise.
Such controlled experiments are performed for creating "ground truths” of failure causes – necessary for
validating the quality of identification methods – and for testing the method in a variety of settings.

Baselines. For the cause identification task, we compare our approach (EWC-influence) against the linear
influence function [8] and SGD-influence [32]. To avoid expensive computation of F̂−1

θ̂
, Koh & Liang

[8] introduced two efficient approximations to the Hessian-vector product F̂−1

θ̂
∇θ logp(F|θ); the first

solves arg minv{vT F̂
−1

θ̂
∇θv− logp(F|θ)Tv} with gradient descent (GD), while the second uses an

iterative algorithm for stochastic approximation (SA) from [45]. We implement these two variants (GD
& SA) of linear influence in Pytorch, and use the original implementation for SGD-influence. For the
model treatment task, we compare our method (EWC-deletion) against Newton update removal [9]. This
method again requires computing a Hessian-vector product for which we employ the same stochastic
approximation technique [45]. To isolate the evaluation of cause identification and treatment, we further
consider in Section 4.1 fine-tuning on D\C as another repairment strategy, which would return the best
repairment result if the set C correctly captures the detrimental datapoints. Lastly, we set the prior term λ
to zero in eq.(12) and eq. (17) to ensure fair comparison with linear influence and Newton update removal.

Common Set-up. We train the base classification models on the training split of the “augmented” MNIST
and CIFAR-10 datasets. For MNIST, we use 6% (3000 samples) of the original training set to make the task
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Figure 2: Results on cause identification in the presence of annotation noise. (a) shows the confusion matrices used
to simulate class-dependent label noise on MNIST and CIFAR-10. (b) shows the class distribution of the misclassified
examples for a single run. (c) plots how much of the identified causes match the samples with incorrect labels for
different approaches. The shade represents the standard deviation computed from 5 different runs. (d) shows the
top 16 causes of the failures as ranked by EWC-influence. An enlarged version can be found in Appendix D.

(b) Maintaining Accuracy(a) Fixing Failures

Figure 3: Comparison of the quality of identified causes in the presence of annotation noise. The impact of gradually
removing samples in MNIST and CIFAR-10 datasets in the order of influence values r(z) are measured on the failure
sets (holdout and query) in (a), and on the remaining test set in (b). We note that in (b), accuracy values start at 1.0 as
they are calculated on the set of test samples on which the original model makes correct predictions. We also plot the
performance of another reference (“semi-oracle”) that is the original model fine-tuned on the training data without the la-
bel noise instances. The means/stds of all quantities are calculated over 5 runs. See Appendix D for an enlarged version.

more challenging. We use instances of CNNs throughout and train them using the Adam optimiser [46]. The
architecture and training details can be found in Appendix C. For evaluation, we separate the test set T into
the set of misclassified examples, F (“failure set”) and the others, T \F which are correctly classified (“re-
maining set”). We further split the failure set into query, Fq and holdout, Fh sets, where we only use the for-
mer to identify failure causes C, and use the latter to quantify how generalisably the removal of C can amend
the failure cases. We stress that Fq is used for cause identification only, but not for further model adaptation.

4.1 Identifying Failure Causes

Annotation Noise. To induce test prediction failures, we randomly flip labels in the training set between
semantically similar classes (e.g. 1 and 7 for MNIST, and cats and dogs for CIFAR-10) according to the
confusion matrices in Fig. 2(a). As a result, the classes of miss-classified test examples are concentrated
on those classes with label noise as depicted in Fig. 2(b).

To measure the accuracy of identifying incorrectly labelled examples, we inspect the training examples
z∈D in the descending order of r̃(z) computed with Fq which contains 50% of the miss-classified test
cases, and calculate the fraction of incorrectly labelled datapoints in inspected examples. Fig. 2(c) shows
that EWC-influence identifies more failure causes earlier on compare to other methods, and is the closest
match to the “Oracle” baseline which has full knowledge of samples with wrong labels. Fig. 2(d) shows
that the top few causes according to EWC-influence are the samples with incorrect labels, while the least
harmful ones are the images of the same classes but with the correct labels as shown in Fig. 7 in Appendix B.
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    (a) MNIST 
+ Random Noise

  (b) CIFAR-10 
+ Random Noise

Label: 0 Label: 1 Label: 4 plane cat bird 1 => 7 3 => 9 0 => 6 
      (c) MNIST  
+ Adversarial Attacks

     (d) CIFAR-10
+ Adversarial Attacks

cat => deer  dog => bird  plane => deer  

Figure 4: Results on cause identification in the presence of different input noises. From top to bottom, we show
i) examples of corrupted samples (synthetic proxy for potential causes of failure), ii) how many of the identified causes
correspond to samples corrupted with input noise, iii) and iv) performance in failure holdout setFh and remaining test
set when removing the top 1000/20000 identified causes in MNIST/CIFAR-10. The influence values are calculated
with respect to 50% of test-time failure cases that belong to the classes that suffer from input noise. EWC-Influence
identifies “harmful” (adversarial) input noise better than random while avoiding “harmless” (random) input noise.
An enlarged version is available in Appendix D.

As stipulated in Sec. 2, a set of identified causes C is of higher quality if removing them leads to a larger
gain in accuracy on the failure set while maintaining performance on others. To measure such quality
of causes, we fine-tune the base model on D\C and report the accuracy on the failure query set Fq, the
holdout failure set Fh as well as the remaining test set, T \F. Results in Fig. 3 suggest that removing
failure causes according to EWC-influence yields the highest increase in accuracy on the failure set F
without hurting performance in the remaining test set T \F. We also note that all of the methods are able
to fix the failures better than randomly removing datapoints, and more interestingly, for MNIST, when
enough causes are erased (≈ 103), all methods even surpass the case in which all label noise instances
are removed. This result implies that, while annotation noise is a major detrimental factor, the prediction
failures also arise from other types of harmful examples.

Lastly, we evaluate the sample efficiency of cause identification by reducing the size of the query set Fq.
Fig. 6 in Appendix B shows that all approaches degrade gracefully in repairment performance as the query
size gets smaller, but overall EWC-influence still remains the best in terms of label noise detection and
repairment accuracy on the failure set and the remaining set.

Random Input Noise. In this experiment, we inject synthetic outliers into MNIST and CIFAR-10 and
test the quality of cause identification. We select a set of target classes — 1, 7, 6, 9 for MNIST and
plane, bird, cat, dog for CIFAR-10 — and randomly corrupt 30% of the images in those classes by adding
salt-and-pepper noise (i.e. replacing pixels with extreme values 0 and 255) in MNIST and Gaussian noise
in CIFAR-10. The top row in Fig. 4 shows examples, and those corrupted images constitute roughly 12%
of the whole training set. Sec. C in the appendix provides details.

We use a subgroup of failures in the target classes as the query Fq to compute influence values. Surprisingly,
the second rows in Fig. 4(a) and (b) show that EWC-influence largely avoids selecting the corrupted images
as the top 1000 causes for MNIST and the top 20000 causes for CIFAR-10. However, the third and the
fourth rows show that removing those causes results in the best treatment performance on failures while
maintaining the performance at a level similar to other baselines. In fact, removing all the input noise and
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(a) (b)

Figure 5: Comparison of deletion-based treatment methods on (a) MNIST and (b) CIFAR-10. For Newton-update-
deletion and EWC-deletion, we plot multiple results for varying hyper-parameters to visualise the trade-off between
the accuracy on the failure set and the remaining set. The closer to the top right corner, the more desirable.

retraining is not able to fix the failures by much, indicating that EWC-influence is able to correctly avoid
these relatively harmless outliers and detect other more harmful causes. Fig. 8 in Appendix B visualises the
most harmful examples identified by EWC-influence. Many of them appear to be ambiguous instances in
non-target classes, e.g. wonky digits, close-up views of vehicles, a real instance with incorrect label [47], etc.

Adversarial Poisoning. To simulate input noise that can induce test-time failures, we introduce
contaminated data by randomly corrupting 30% of the training images in those previously mentioned
target classes. These poisoned datapoints are adversarial images crafted by the fast gradient sign method
(FGSM) [48] on a separate set of victim models trained on the original clean datasets, and they are labelled
by the classes predicted by the victim models. The poisoned datasets are then used to train the base models
that are used for evaluation of cause identification. Fig. 4(c) and (d) show that most of the influence
functions detect the corrupted samples better than the “random” baseline. The dashed lines in the third
row show that removing all of the corrupted inputs lead to a significant gain in accuracy on the holdout
failure set in comparison with the random noise setting, illustrating the larger extent of harms caused by
data poisoning. However, most of the identification methods still outperform this reference by a large
margin. This suggests again for the presence of other influential samples, and EWC-influence is able
to pick up the most important ones, judging by the accuracy on the failure set.

Speed Comparison. Table 1 in Appendix B shows the total run-time of cause identification methods
on a single GPU for their best sets of hyper-parameters selected based on the treatment accuracy on the
failure set. For both datasets, EWC-influence achieves comparable or shorter run time than the baselines.

4.2 Comparison of Treatment Methods

We evaluate the performance of different deletion-based methods for treatment introduced in Sec. 2.2 on
MNIST and CIFAR10 datasets with simulated annotation noise, used in the previous section. We run both
EWC-deletion (ours) and Newton update removal [9] methods with early stopping based on the query set
accuracy, and experiment with different hyper-parameter settings (see Sec. C in Appendix) to achieve dif-
ferent trade-offs between failure set accuracy and remaining set performance. Here EWC-influence is used
to identify the causes, and the top 15% examples were removed by the respective deletion methods. Such
trade-off is shown in Fig. 5, where fine-tuning on D\C is included as an “upper-bound” reference for data
deletion performance. On MNIST, EWC-deletion attains a considerably better trade-off between treatment
and maintenance compared to Newton-update-deletion, and is much closer to the fine-tuning reference.
For CIFAR-10, EWC-deletion beats the Newton-update deletion by 5% in the best failure accuracy while
the order reverses for the best accuracy on the remaining test set but with less than 1% difference.

5 Conclusions

In this work, we develop a generic framework for repairing machine learning models by erasing memories
of detrimental datapoints. The framework consists of two key components, that are, the mechanism for iden-
tifying the “causes” in training data which are responsible for the given failures, and the adaptation method
for fixing the model by removing information about them. The two components are connected under the
Bayesian view of continual (un)learning, which brings forth several practical benefits. Firstly, the framework
subsumes some recent works on influence function and data deletion as specific examples, and elucidate
their limitations. Secondly, the generality of our approach allows leveraging recent advances in continual
learning in this new problem of model repairment. In particular, we extend Elastic Weight Consolidation to
cause identification and data deletion, and demonstrate empirically its competitive performance in both tasks.
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