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A Computational complexity

The gains in speed-up and accuracy in RKHS-SHAP come from estimating ν(O)
x,S using Conditional

Mean Embeddings (CMEs). To compare with alternative approaches, it is sufficient to look at
the complexity of estimating ν(O)

x,S (f). For RKHS-SHAP this is O(Nd2m) + O(N2d2) where N
is the number of data, d is the number of Fourier features which could be taken much smaller
than N [21] and m is the number of conjugate gradient solver steps. Previous approaches would
require some form of density estimation and Monte Carlo sampling, for which there are many
methods, so we present a generic decomposition of complexity here: assuming we take L Monte
Carlo samples for each xiS from p(XSc |XS = xiS ) to estimate ν(O)

x,S (f), we have O(L2N2) +

O(sampling NL data from estimated densities) + O(estimating N conditional densities). It is not
clear how to select L nor how fast it should grow with N . Aas et al. [1] considered L = N recovering
a standard Nadaraya-Waston estimator for their empirical conditional mean estimator. In practice, for
nonparametric methods, the computational cost is dominated by density estimation and sampling,
both of which are not needed in our approach.

B Comparison with Frye et al. [13]

As mentioned in the main text, Frye et al. [13]’s approach and ours share a similar regression-like
intuition, thus we believe it is important to emphasize the technical difference between the methods.

• Difference in regression target Frye’s approach regression onto scaler values f(X) for
specific f while RKHS-SHAP regresses onto an infinite dimensional feature map instead.
Our model is aiming to capture representation of the full conditional distribution via the
RKHS embedding, rather than the conditional expectation for a specific f .

• Difference in dependency on f CME estimation depends on the function space that f
belongs to and not on the specific f . This subtle but crucial point allows onto apply Shapley
functionals as attribution priors during the learning of f itself, in order to regularise it.

• Difference in hypothesis space: Frye’s approach uses a scaler-valued parametric neural
network model, while our approach uses an RKHS-valued non-parametric kernel ridge
regression with a ridge penalty to promote smoothness.

C RKHS-SHAP for non-product kernels

When k is not a product kernel, such as the polynomial kernel and Matérn kernel, we can still proceed
with estimating the value function using tools from conditional mean embeddings, and utilise our
interpretability pipeline without the need for solving conditional density estimation tasks. To do so,
we notice that for any f ∈ Hk, we have

νx,S(f) := EX [f(X) | XS = xS ] (4)
= 〈f,EX [ψX | XS = xS ]〉Hk

(5)

=
〈
f, µX|XS=xS

〉
Hk

. (6)

Thus, we can proceed with the following estimator of EX [ψX | XS = xS ] using the standard
conditional mean embedding estimator (with the conditioning variable being the subset of features):
Denote kS : XS × XS → R as a kernel defined on XS , where XS is the subspace of the instance
space of X according to S. Note that in principle, this kernel kS need not be of the same form as the
kernel k defined on the full feature space,

µ̂X|XS=xS
= KxS ,XS

(KXS ,XS
+ nλI)

−1
Ψ>X . (7)

As a result, for f =
∑n
i=1 αik(·, xi), the corresponding non-parametric estimator of the value

function νx,S(f) will be,

ν̄x,S(f) = KxS ,XS
(KXS ,XS

+ nλI)
−1

KX,Xα. (8)

where α = (α1, . . . , αn)>.
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Figure 4: Explaining a Kernel Ridge regression learnt using a Matérn kernel on the Diabetes regression
dataset. In comparison to Figure 8, where the KRR uses a Gaussian kernel, we see both models treat
feature s5, bp, and bmi as top predictors, but having different emphasises on features s3 and s4.

Empirical demonstration In the following, we will demonstrate the above estimation procedure
to explain a kernel ridge regression learnt using Matérn kernel, given by

k(x, x′) =
1

Γ(v)2v−1

(√
2v

l
‖x− x′‖

)v
Kv

(√
2v

l
‖x− x′‖

)
(9)

where v = 0.5, Kv is the modified Bessel function of the second kind, and Γ is the gamma function.
Kernel ridge regression is fitted on the diabetes and housing regression datasets from Appendix E.

Figure 4 and 5 illustrated the explanation results coming from the kernel ridge regression with a
Matérn kernel. We refer the reader to Appendix E for a guide to interpret results from the beeswarm
and bar plots.

In summary, the product kernel assumption is not required for the benefits of RKHS-SHAP to be
brought to bear. Our proposed framework can thus be applied to essentially any kernel appropriate
for the problem at hand. It is however, required to specify the form of the said kernel for any subset
of features in the case of a non-product kernel, e.g. whether it again takes a Matérn form like the
original kernel, or something else. Kernel hyperparameter learning will be more challenging than the
product case as well, since e.g. lengthscale parameters typically vary with dimension and one would
essentially require one lengthscale per subset of the features we are conditioning on, in contrast to the
product case, where one lengthscale per feature dimension suffices. We might incur extra estimation
error compared to the product kernel case as well. This is because one must fit the conditional mean
embedding for any subset of features individually by regressing to the original RKHS defined on a
higher-dimensional space (on all features d rather than on the subset |Sc|). As an example, if d = 100,
in the non-product case we always perform estimation on the space of functions of 100 arguments,
whereas in the product case, if one is conditioning on a |S| = 99 dimensional subset, this simplifies
to estimation on the space of functions of a scaler argument. Not only is the learning problem harder,
the non-product approach has to ignore the fact that the conditioning variable here is simply the
subset of features – i.e. standard CME proceeds with regressing from features of XS to features of X ,
while in the product case it is possible to simply isolate the features we condition on, and set them to
the values of interests. As a result, the product kernel assumption allows us to circumvent potential
statistical errors, and thus we chose to focus on the product kernel in the main text.

D Proofs

D.1 Proof for Proposition 2.

Proposition 2 (Riesz representations of value functionals). Denote k as the product kernel of D
bounded kernels kd : X (d)×X (d) → R, whereX (d) is the dth feature space. The Riesz representations
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Figure 5: Explaining a Kernel Ridge regression learnt using a Matérn kernel on the House price
regression dataset. In comparison to Figure 6, we see that ZN is no longer the top predictor. This
illustrated that the models emphasised the feature ZN very differently.

of the Interventional value functional and Observational value functional exist and have the following
forms inHk,

ν
(I)
x,S = ψxS

⊗ µXSc (10)

ν
(O)
x,S = ψxS

⊗ µXSc |XS=xS
(11)

where ψxS
:=
⊗

i∈S ψx(i) , µXSc := E[
⊗

i∈Sc ψx(i) ] and µXSc |XS=xS
:= E[

⊗
i∈Sc ψx(i) |XS =

xS ].

Proof. Since ν(I)
x,S and ν(O)

x,S are bounded linear functionals on all f ∈ Hk with ||f ||Hk
bounded, Riesz

representation theorem [30] tells us there exist r
ν

(I)
x,S

and r
ν

(O)
x,S

living in Hk such that ν(I)
x,S(f) =

〈f, r
ν

(I)
x,S

〉 and ν(O)
x,S (f) = 〈f, r

ν
(O)
x,S

〉. If fact, if we set r
ν

(I)
x,S

to be ψxS
⊗ µXSc and r

ν
(O)
x,S

to be

ψxS
⊗ µXSc |XS=xS

, then for the former, we have,

〈f, ψxS
⊗ µXSc 〉 = E[〈f, ψxS

⊗ ψXSc 〉] (12)
= E[f({xS , XSc}] (13)

Similarly,

〈f, ψxS
⊗ µXSc |XS=xS

〉 = E[〈f, ψxS
⊗ ψXSc 〉|XS = xS ] (14)

= E[f({xS , XSc}|XS = xS ] (15)

D.2 Proof of Proposition 3.

Proposition 3. Given x′ ∈ Rn′
a vector of instances and f = Ψxα, the empirical estimates of

ν
(I)
x′,S(f) and ν(O)

x′,S(f) can be computed as,

ν̂
(I)
x′,S(f) = α>K(I)

x′,S ν̂
(O)
x′,S(f) = α>K(O)

x′,S (16)

where K(I)
x′,S =

(
KxSx′

S
� 1

n diag(K>xScx′
Sc
1n)1n1n

>
)

and K(O)
x′,S =

(
KxSx′

S
� ΞSKxSx′

S

)
, 1n

is the all-one vector with length n, � the Hadamard product and ΞS = KxScxSc (KxSxS
+ nηI)−1
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Proof. Consider x a single observation. Recall f = Ψxα and Ψx = [ψx1 ...ψxn ] = [ψx1S
⊗

ψx1Sc ...ψxnS
⊗ ψxnSc ]. To compute ν̂(I)

x,S(f), we have:

ν̂
(I)
x,S(f) = 〈f, ψxS

⊗ µ̂XSc 〉 (17)

= 〈Ψxα, ψxS
⊗ 1

n

n∑
i=1

ψxiSc 〉 (18)

= α>
(
KxSxS

× 1

n
K>xScxSc1n

)
(19)

Similarly, for ν(O)
x,S (f),

ν̂
(O)
x,S (f) = 〈f, ψxS

⊗ µ̂XSc |XS=xS
〉 (20)

= 〈Ψxα, ψxS
⊗ΨxSc (KxSxS

+ ηI)−1KxSxS
〉 (21)

= α>
(
KxSxS

�KxScxSc (KxSxS
+ nηI)−1KxSxS

)
(22)

Extension to a vector of instance x′ is then straight forward.

D.3 Proof of Proposition 4.

Proposition 4 (RKHS-SHAP). Given f ∈ Hk and a value functional ν, Shapley values for all d
features and all input x can be computed as follows:

B = (Z>WZ)−1Z>W V̂ (23)

where V̂i,: = 〈f, ν̂x,Si〉.

Proof Since we now have a compact way to estimate the conditional estimations for a vector of
observations using mean embeddings, we can restate the KernelSHAP objective, which essentially is
a weighted least regression, into a multi-output weighted least square formulation.

D.4 Proof of Proposition 5.

Proposition 5 (Shapley functional). Given a value functional ν indexed by input x and coalition
S, the Shapley functional φx,i : Hk → R such that φx,i(f) is the ith Shapley values for model f on
input x, has the following Reisz representation in the RKHS,

φx,i =
1

d

∑
S⊆D\{i}

(
d− 1

|S|

)−1(
νx,S∪i − νx,S

)
(24)

Proof Since the Shapley functional is a linear combination of bounded linear functionals (value
functionals), it admits a Riesz representer in the RKHS.

D.5 Proof of Theorem 6.

Theorem 6 (Bounding Shapley functionals). Let k be a product kernel with d bounded kernels
|k(i)(x, x)| ≤M for all i ∈ D. Denote Mµ := supS⊆DM

|S|,MΓ := supS⊆D ||µXSc |XS
||2ΓXS

and

Lδ = supS⊆D ||ψxS
− ψx′

S
||2Hk

. Let δ > 0, assume |x(i) − x(i)′ |2 ≤ δ for all features i ∈ D, then
differences of the Interventional and Observational Shapley functionals for feature i at observation
x, x′ can be bounded as ||φ(I)

x,i − φ
(I)
x′,i||2Hk

≤ 2MµLδ and ||φ(O)
x,i − φ

(O)
x′,i||2Hk

≤ 4MΓMµLδ. If k is
the RBF kernel with lengthscale l, then

||φ(I)
x,i − φ

(I)
x′,i||

2
Hk
≤ 4
(

1− exp
(−dδ

2l2

))
(25)

||φ(O)
x,i − φ

(O)
x′,i||

2
Hk
≤ 8MΓ

(
1− exp

(−dδ
2l2

))
(26)
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Proof To prove that Shapley functionals between two observations x and x′ are δ close when the
two points are closed, we proceed as follows: (1) We show that when one pick the usual product RBF
kernel, we can bound the distance of the feature maps as a function of δ. (2) We then upper bound
the value functionals and show that this bound can be relaxed so that it is independent with the choice
of coalition. (3) Since Shapley values is an expectation of differences of value functions, by devising
a coalition independent bound for the difference in value functionals, the expectation disappears in
our bound.
Proposition A.1 (Bounding feature maps). For the simplest 1 dimensional case with |x− x′|2 ≤ δ,
if we pick k the standard RBF kernel with lengthscale l, we have,

||ψx − ψx′ ||2Hk
≤ 2− 2 exp

(
− δ

2l2

)
(27)

When we pick x, x′ ∈ Rd and with a product RBF kernel i.e k(x, x′) =
∏d
j=1 k

j(x(j), x′(j)), where
k(j) themselves RBF kernels. For simplicity, we assume they all share the same lengthscale l. If
|x(j) − x′(j)| ≤ δ for all j ∈ D, then we can bound the difference in feature maps as follows,

||ψx − ψx′ ||2Hk
≤ 2− 2 exp

(
− dδ

2l2

)
(28)

Proof. Since ||ψx − ψx′ ||2Hk
= k(x, x) + k(x, x′)− 2k(x, x′). Therefore the first 2 terms are 1 and

we can bound the last term since,

k(x, x′) = exp
(
− |x− x

′|2

2l2

)
≥ exp

(
− δ

2l2

)
(29)

Multiply this lower bound d times to obtain the bound for the d dimensional case.

Proposition A.1 tells us how the distance in feature maps ||kx − kx′ ||Hk
can be expressed by the

distance between x and x′ in the RBF kernel. Different bounds can be derived for different kernels
and we only show the special RBF case for illustration purpose.

Now we shall prove a bound for the value functionals. We shall first proceed with the interventional
case and move on to observational afterwards.
Proposition A.2 (Bounding Interventional value functionals). For a fix coalition S, denote D(I)

S =

||ν(I)
x,S − ν

(I)
x′,S ||2Hk

. Then D(I)
S ≤ ||ψxS

− ψx′
S
||2HkS

||µXSc ||2HkSc
. Let Lδ := supS⊆D ||ψxS

−
ψx′

S
||2HkS

and assume kernels are all bounded per dimension by M , i.e k(j)(x, x′) ≤ M for all

j ∈ D. Denote Mµ := supS⊆DM
|S|. Then the bound can be further loosen up,

D
(I)
S ≤MµLδ (30)

Proof.

D
(I)
S = ||ν(I)

x,S − ν
(I)
x′,S ||

2
Hk

(31)

= ||ψxS
⊗ µXSc − ψx′

S
⊗ µXSc ||2Hk

(32)

≤ ||ψxS
− ψx′

S
||2HkS

||µXSc ||2HkSc
(33)

Note that ||µXSc ||2 = ||E[k(XSc , X ′Sc)]||2 ≤M2|Sc|, therefore,

≤ LδMµ (34)

Before we proof the main theorem, we will illustrate the following bounds for conditional mean
embeddings, which will be used to bound the observational shapley functionals.
Proposition A.3 (Bounding conditional mean embeddings). If we take on the vector-valued function
perspective of conditional mean embeddings as in Grünewälder et al. [16], then we could assume, in
general for random variable Y and X , there exits a function µY |X ∈ HΓx

where Γx : X × X 7→
L(H`) with L(H`) being the space of self-adjoint operators from the RKHS H` to itself, is the
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vector-valued kernel Γx(x, x′) = k(x, x′)1, such that µY |X(x) = µY |X=x. If we assume such
function exists, then by definition of vector-valued RKHSs as in Park and Muandet [29], ||µY |X ||HΓx

has finite norm. Therefore the following is defined if the base kernel k is bounded,

||µY |X=x||H`
≤ ||µY |X ||HΓx

||ψx||Hk
(35)

and correspondingly,

||µY |X=x − µY |X=x′ ||H`
≤ ||µY |X ||HΓx

||ψx − ψx′ || (36)

Proof. For the first claim, using the result from Micchelli and Pontil [26, Prop.1 ], we have,

||µY |X(x)||H`
≤ ||µY |X ||HΓx

||Γx(x, x)||
1
2
op (37)

however, we have,

||Γx(x, x)||op = sup
g∈H`

||k(x, x)g||H`

||g||H`

= |k(x, x)| = ||ψx||2 (38)

For the second part, we start with,

||µY |X=x − µY |X=x′ ||H`
≤ ||µY |X ||HΓx

||Γx(·, x)− Γx(·, x′)||op (39)

Using the result from Micchelli and Pontil [26, Prop.1] again, we have

||Γx(·, x)− Γx(·, x′)||op = ||
(
Γx(·, x)− Γx(·, x′)

)∗(
Γx(·, x)− Γx(·, x′)

)
||

1
2
op (40)

where the ∗ denotes the adjoint of the operator,

= ||Γx(·, x)∗Γx(·, x)− 2Γx(·, x)∗Γx(·, x′) + Γx(·, x′)∗Γx(·, x′)||
1
2
op

(41)

= ||Γx(x, x)− 2Γx(x, x′) + Γx(x′, x′)||
1
2
op (42)

= ||
(
k(x, x)− 2k(x, x′) + k(x′, x′)

)
1||

1
2
op (43)

= ||ψx − ψx′ ||Hk
(44)

therefore we have as a result,

||µY |X=x − µY |X=x′ ||H`
≤ ||µY |X ||HΓx

||ψx − ψx′ ||Hk
(45)

Proposition A.4 (Bounding Observational value functionals via vector-valued function perspec-
tive of CME). For a fix coalition S, denote D

(O)
S = ||ν(I)

x,S − ν
(I)
x′,S ||2Hk

. Then D
(O)
S ≤

||ψxS
− ψx′

S
||2HkS

||µXSc |XS
||2HΓXS

(
||ψxS

||2HkS
+ ||ψx′

S
||2HkS

)
, where HΓXS

is the HkSc -valued

RKHS. If we denote Lδ = supS⊆D ||ψxS
− ψx′

S
||2HkS

and Mµ = supS⊆DM
|S| and MΓ =

supS⊆D ||µXSc |XS
||2HΓXS

. Then D(O)
S ≤ 2MΓMµLδ for all coalition S.

Proof.

D
(O)
S = ||ν(O)

x,S − ν
(O)
x′,S ||

2
Hk

(46)

= ||ψxS
⊗ µXSc |XS=xS

− ψx′
S
⊗ µXSc |XS=x′

S
||2Hk

(47)

= ||ψxS
⊗ µXSc |XS=xS

− ψx′
S
⊗ µXSc |XS=xS

+ ψx′
S
⊗ µXSc |XS=xS

− ψx′
S
⊗ µXSc |XS=x′

S
||2Hk

(48)

≤ ||ψxS
− ψx′

S
||2HkS

||µXSc |XS=xs
||2HkSc

+ ||ψx′
S
||2HkS

||µXSc |XS=xS
− µXSc |XS=x′

S
||2HkSc

(49)

≤ ||ψxS
− ψx′

S
||2HkS

||µXSc |XS
||2HΓXS

||ψxS
||2HkS

+ ||ψx′
S
||2HkS

||µXSc |XS
||2HΓXS

||ψxS
− ψx′

S
||2HkS

(50)

= ||ψxS
− ψx′

S
||2HkS

||µXSc |XS
||2HΓXS

(
||ψxS

||2HkS
+ ||ψx′

S
||2HkS

)
(51)

≤ 2MΓMµLδ (52)
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Finally, we note that,

||φx,i − φx′,i||2Hk
= ||1

d

∑
S⊆D\{i}

(
d− 1

|S|

)−1

νx,S∪i − νx,S − (νx′,S∪i − νx′,S)||2Hk
(53)

≤ 1

d

∑
S⊆D\{i}

(
d− 1

|S|

)−1

DS +DS∪i (54)

= ES [DS +DS∪i] (55)

Since we have proven bounds for D(O)
S and D(I)

S that is coalition independent, we can directly
substitute the bound inside the expectation. Therefore

||φ(I)
x,i − φ

(I)
x′,i||

2
Hk
≤ 2LδMµ (56)

||φ(O)
x,i − φ

(O)
x′,i||

2
Hk
≤ 4MΓLδMµ (57)

In the case when we pick k as a product RBF kernel, we have Lδ = 2− 2 exp
(
dδ
2l2

)
and Mµ = 1,

therefore,

||φ(I)
x,i − φ

(I)
x′,i||

2
Hk
≤ 4

(
1− exp

(
−dδ
2l2

))
(58)

||φ(O)
x,i − φ

(O)
x′,i||

2
Hk
≤ 8MΓ

(
1− exp

(
−dδ
2l2

))
(59)

Proposition 7. The above optimisation can be rewritten as, minα∈Rn

∑n
i=1 `(yi,Kxixα) +

λfα
>Kxxα + λS

n α>ζAζ
>
Aα. To regularise the Interventional SVs (ISV-REG) of A, we set

ζA = 1
J

∑J
j=1K

(I)
x,Sj∪A − K

(I)
x,Sj

where Sj’s are coalitions sampled from pSV (S) = 1
d

(
d−1
|S|
)−1

.

For regularising Observational SVs (OSV-REG), we set ζA = 1
J

∑J
j=1K

(O)
x,Sj∪A −K

(O)
x,Sj

.

Sketch proof. To express

min
f∈Hk

n∑
i=1

`(yi, f(xi)) + λf ||f ||2Hk
+
λS
n

n∑
i=1

|φxi,A(f)|2

as

min
α∈Rn

n∑
i=1

`(yi,Kxixα) + λfα
>Kxxα +

λS
n

α>ζAζ
>
Aα,

it suffices to show that λS

n

∑n
i=1 |φxi,A(f)|2 = λS

n α>ζAζ
>
Aα. However, note that

n∑
i=1

|φxi,A(f)|2 = φx,A(f)>φx,A(f) (60)

= f>φx,Aφ
>
x,Af (61)

Now we can estimate the Shapley functional φx,A defined in Proposition 5, by applying the finite
sample estimator of the value functions from Proposition 2, we can compute the finite sample estimate
of φ>x,Af as ζ>Aα.
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E Further experiment details

E.1 Banana Distribution B(b−1, v)

Recall the Banana distribution B(b−1, v) is defined as follows: Let Z ∼ N(0,diag(v, 1))and set
X1 = Z1 and X2 = b−1(Z2

1 − v) + Z2. We define f(x) = b−1(x2
1 − v) + x2. Now then we have,

E[f(X)] = 0 (62)

E[f(X)|X1 = x1] = 2b−1(x2
1 − v) (63)

E[f(X)|X2 = x2] = 2x2 (64)

E[f(X)|do(X1) = x1] = b−1(x2
1 − v) (65)

E[f(X)|do(X2) = x2] = x2 (66)

This corresponds to the following Observational Shapley values,

φ
(O)
x,1 (f) =

1

2

[(
1

0

)−1

(Ef (X|X1 = x1)− Ef (X)) +

(
1

1

)−1

(Ef (X|X1 = x1, X2 = x2)− Ef (X|X2 = x2))

]

=
1

2

(
3b−1

(
x2

1 − v
)
− x2

)
.

φ
(O)
x,2 (f) =

1

2

[(
1

0

)−1

(Ef (X|X2 = x2)− Ef (X)) +

(
1

1

)−1

(Ef (X|X1 = x1, X2 = x2)− Ef (X|X1 = x1))

]

=
1

2

(
3x2 − b−1

(
x2

1 − v
))

Similarly, for Interventional Shapley values we have,

φ
(I)
x,1(f) = b−1(x2

1 − v)

φ
(I)
x,2(f) = x2

E.2 RKHS-SHAP on real-world examples

We demonstrate the result of running RKHS-SHAP on 6 real-world datasets and showcase their
RKHS-SHAP Observational Shapley values in Beeswarm summary plots. Interventional SVs are
omitted because we have shown in the main text that running KernelSHAP-ISV and RKHS-SHAP-
ISV gives you the same SVs, and they only differ in computational run time.

These results are not included in the main text because we do not observe the actual data distri-
bution, thus there are no groundtruth observational SVs that our algorithm can be compared
to measure and verify how well it is performing. In the following, all models are fitted with the
Gaussian kernel. We first fit a Kernel Ridge Regression or Kernel Logistic Regression to learn the
function f , and apply RKHS-SHAP to f to recover the corresponding observational Shapley values.

We present our results using Beeswarm plot and bar plot. According to the shap package, the
beeswarm plot is designed to display an information-dense summary of how the top features in the
dataset impact the model’s output. Each instance the given explanation is represented by a single
dot on each feature row. The x position of the dot is determined by the RKHS-SHAP value of that
feature, and dots “pile up” along each feature row to show density. Colour is used to display the
original value of a feature, which is scaled with red indicating high, and blue indicating low values.
On the other hand, the bar plot shows the mean absolute value of the Shapley values per feature, thus
providing some global summary based on recovered local importances.

We summarise our real-world explanation tasks in table 1.

Boston Housing The Boston house price dataset4 contains 506 instances and 12 numerical features.
Below is the description of its features:

4https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
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Table 1: Real-world explanation tasks
Dataset ninstances nfeatures Downstream task
Boston

Housing 506 12 Predict Boston House Price
(Regression)

Diabetes
Progression 442 10 Predict diabetes progression

(Regression)
Diabetes for
Pima Indian

Heritage
768 8 Predict whether a patient has diabetes

(Classification)

Breast Cancer 569 30 Predict whether a patient might have
breast cancer or not (Classification)

Census Income 48,842 14 Predict whether an individual is making
over $50k a year (Classification)

League of Legends
Win Prediction 1,800,000 71 Predict the winning probability of a player

(Classification)

CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25k sq.ft

INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town
LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in $1000’s

We fit a Kernel Ridge Regression to predict the Boston house price. The results are shown in Fig. 6.
We see that RKHS-SHAP does capture several intuitive explanations, e.g. Higher crime rate (red dots
in feature CRIM) corresponds to negative impact on the house price. We also recover explanations
such as lower percentage of lower status of the population (LSTAT) will increase the house price.

Figure 6: Beeswarm and bar plot for the housing dataset.

We can examine specific houses and interpret why the kernel ridge regression predicts their corre-
sponding house prices as well. See Fig 7.

Diabetes progression regression Next we apply RKHS-SHAP to the diabetes5 dataset with 442
samples and 10 features. The machine learning task is to model the disease progression of patients as

5https://www4.stat.ncsu.edu/ boos/var.select/diabetes.html
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Figure 7: (left) The algorithm believes having a high crime rate is the major reason for its low house
price. (Right) Having a high LSTAT increased the house price.

a regression problem. We fit a kernel ridge regression for that. Figure 8 records the results. Feature
s1 to s6 are blood serum measurements. We note that bmi is one of the most influential feature,
which follows our intuition that higher value of bmi (red clusters in the bmi row) should be a strongly
predictive variable to diabetes.

Figure 8: Beeswarm and barplot of the RKHS-SHAP values on the Diabetes dataset

Diabetes for Pima Indian heritage Here we consider another dataset of diabetes study for Pima
Indian heritage women aged 21 over. The data set is collected from here6. There are 768 samples with
8 features. The goal is to predict whether a patient has diabetes and fit a kernel logistic regression.

Figure 9 demonstrated how RKHS-SHAP explains the kernel logistic regression. The top predictor,
"Glucose", which measures the plasma glucose concentration 2 hours in an oral glucose tolerance test,
aligns with the intuition that it should be strongly predictive to whether a person is diabetic. Also,
high BMI leading to someone more likely to be diabetic is also reflected from RKHS-SHAP values.

Breast Cancer Classification Next, we apply RKHS-SHAP to the breast cancer wisconsin
dataset7 to interpret the kernel logistic regression we have fitted to predict whether a patient might
have breast cancer given their attributes. Features are computed from a digitized image of a fine
needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the
medical image. There are 569 data and 30 features. When running RKHS-SHAP, we did not use all
230 coalitions but subsampled 10000 coalitions instead. Convergence analysis of such an approach is
studied extensively by [8], where they empirically show that the algorithm will converge in O(n).
Results are shown in Figure 10. We can see that features such as "worst radius", "worst concave

6https://www.kaggle.com/datasets/mathchi/diabetes-data-set?resource=download
7https://goo.gl/U2Uwz2
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Figure 9: Beeswarm and barplot of the RKHS-SHAP values on the Diabetes for pima indian heritage
dataset

points", "worst perimeter" that describes the cell nuclei present in the breast mass, are most predictive
to whether a patient has cancer or not.

Figure 10: Beeswarm and barplot for the breast cancer prediction problem

Census Income dataset In the following, we will explain the kernel logistic regression deployed
to predict the probability of an individual making over $ 50K a year in annual income using the
standard UCI adult income dataset. There are 48,842 number of instances and 14 attributes. We see

Figure 11: Beeswarm and barplot for the census income data prediction problem

that features such as relationship, education level and capital gain are most predictive of whether a
person earns more $ 50k a year. We see that as a person grows older, it is more likely to earn more,
but the effect is not as impactful as, e.g. Education level or Capital gain.

League of Legends Win Prediction Finally, we use the Kaggle dataset League of Legends Ranked
Mathches which contains 1,800,000 players matches starting from 2014. We follow the preprocessing
steps from [28], and obtained 71 features at the end. We deploy RKHS-SHAP to explain the fitted
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Figure 12: Beeswarm plot for the League of Legends player winning prediction problem obtained
using RKHS-SHAP.

Kernel Logistic regression model and obtain results in Figure 12. We see that features such as "Deaths
per min" and "Assists per min" are most influential to the match outcome. It follows the game
mechanism, as a player is intuitively considered as "strong" if he doesn’t die often in a round of the
game. We would also like to point out we recover similar explanations from [28], where they applied
TreeSHAP to recover the explanations, see Fig. 13. Interestingly, our kernel logistic regression seems
to believe that "Gold earned per min" is less informative to the winning probability compared to
"Deaths per min", which is different to the results obtained from the tree ensembles.
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Figure 13: Beeswarm plot for the League of Legends player winning prediction problem obtained
using TreeSHAP. Similar insights are recovered compared to RKHS-SHAP. However, since the two
methods are explaining different models – an RKHS function and a tree, it is not possible to tell
which one gives more "correct" explanation.
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