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Abstract

Feature attribution for kernel methods is often heuristic and not individualised for
each prediction. To address this, we turn to the concept of Shapley values (SV), a
coalition game theoretical framework that has previously been applied to different
machine learning model interpretation tasks, such as linear models, tree ensembles
and deep networks. By analysing SVs from a functional perspective, we propose
RKHS-SHAP, an attribution method for kernel machines that can efficiently
compute both Interventional and Observational Shapley values using kernel mean
embeddings of distributions. We show theoretically that our method is robust with
respect to local perturbations - a key yet often overlooked desideratum for consistent
model interpretation. Further, we propose Shapley regulariser, applicable to a
general empirical risk minimisation framework, allowing learning while controlling
the level of specific feature’s contributions to the model. We demonstrate that the
Shapley regulariser enables learning which is robust to covariate shift of a given
feature and fair learning which controls the SVs of sensitive features.

1 Introduction

Machine learning model interpretability is critical for researchers, data scientists, and devel-
opers to explain, debug and trust their models and understand the value of their findings.

Figure 1: An example of RKHS-SHAP pro-
viding local explanations to why a kernel logis-
tic model predicts this patient to be diabetic. [11].
RKHS-SHAP provides a more granular level of
explanation than studying lengthscales across di-
mensions.

A typical way to understand model performance
is to attribute importance scores to each input fea-
ture [5]. These scores can be computed either for
an entire dataset to explain the model’s overall be-
haviour (global) or compute individually for each
single prediction (local).

Understanding feature importances in reproducing
kernel Hilbert space (RKHS) methods such as kernel
ridge regression and support vector machines often
require the study of kernel lengthscales across dimen-
sions [44, Chapter 5]. The larger the value, the less
relevant the feature is to the model. Albeit straightfor-
ward, this approach comes with three shortcomings:
(1) It only provides global feature importances and
cannot be individualised to each single prediction.
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This explanation is limited as global importance does
not necessarily imply local importance [33]). In safety critical domain such as medicine, understand-
ing individual prediction is arguably more important than capturing the general model performance.
See Fig 1 for an example of local explanation. (2) The tuning of lengthscales often requires a user-
specified grid of possible configurations and is selected using cross-validations. This pre-specification
thus injects substantial amount of human bias to the explanation task. (3) Lengthscales across kernels
acting on different data types, such as binary and continuous variables, are difficult to compare and
interpret.

To address this problem we turn to the Shapley value (SV) [35] literature, which has become central
to many model explanation methods in recent years. The Shapley value was originally a concept used
in game theory that involves fairly distributing credits to players working in coalition. Štrumbelj and
Kononenko [40] were one of the first to connect SV with machine learning explanations by casting
predictions as coalition games, and features as players. Since then, a variety of SV based explanation
models were proposed. For example, LINEARSHAP [40] for linear models, TREESHAP [24] for
tree ensembles and DEEPSHAP [23] for deep networks. Model agnostic methods such as DATA-
SHAPLEY [15], SAGE [9] and KERNELSHAP 2 [23] were also proposed. However, to the best of
our knowledge, an SV-based local feature attribution framework suited for kernel methods has not
been proposed.

While one could still apply model-agnostic KERNELSHAP on kernel machines, we show that by
representing distributions as elements in the RKHS through kernel mean embeddings [38, 27], we
can compute Shapley values more efficiently by circumventing the need to sample and estimate
an exponential amount of densities required to compute the value functions, an essential compo-
nent for Shapley value computation. We call this approach RKHS-SHAP to distinguish it from
KERNELSHAP. Through the lens of RKHS, we study Shapley values from a functional perspective
and prove that our method is robust with respect to local perturbations under mild assumptions,
which is an important yet often neglected criteria for explanation models as discussed in Hancox-Li
[17]. In addition, a Shapley regulariser based on RKHS-SHAP is proposed for the empirical risk
minimisation framework, allowing the modeller to control the degree of feature contribution during
the learning. We also discuss its application to robust learning to covariate shift of a given feature and
fair learning while controlling contributions from sensitive features. We summarise our contributions
below:

1. We propose RKHS-SHAP, a model specific algorithm to compute Shapley values efficiently for
kernel methods by circumventing the need to sample and fit from an exponential number of densities.
2. We prove that the corresponding Shapley values are robust to local perturbations under mild
assumptions, thus providing consistent explanations for the kernel model.
3. We propose a Shapley regulariser for the empirical risk minimisation framework, allowing the
modeller to control the degree of feature contribution during the learning.

The paper is outlined as follows: In section 2 we provide an overview of Shapley values and kernel
methods. In section 3 we introduce RKHS-SHAP and show robustness of the algorithm. Shapley
regulariser is introduced in section 4. Section 5 provides extensive experiments. We conclude our
work in section 6.

2 Background Materials

Notation. We denote X,Y as random variables (rv) with distribution p(X,Y ) taking values in the
d-dimensional instance space X ⊆ Rd and the label space Y (could be in R or discrete) respectively.
We use D = {1, ..., d} to denote the feature index set of X and S ⊆ D to denote the subset of
features of interests. Lower case letters are used to denote observations from corresponding rvs.

2.1 The Shapley Value

The Shapley value was first proposed by Shapley [35] to allocate performance credit across coalition
game players in the following sense: Let ν : {0, 1}d → R be a coalition game that returns a score
for each coalition S ⊆ Dg, where Dg = {1, ..., d} represents a set of players. Assuming the grand

2The kernel in KERNELSHAP refers to the estimation procedure is not related to RKHS kernel methods.
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coalition Dg is participating and one wished to provide the ith player with a fair allocation of the
total profit ν(Dg), how should one do it? Surely this is related to each player’s marginal contribution
to the profit with respect to a coalition S, i.e. ν(S ∪ i) − ν(S). Shapley [35] proved that there
exists a unique combination of marginal contributions that satisfies a set of favourable and fair game
theoretical axioms, commonly known as efficiency, null player, symmetry and additivity. This unique
combination of contributions is later denoted as the Shapley value. Formally, given a coalition game
ν, the Shapley value for player i is computed as the following,

φi(ν) =
1

d

∑
S⊆Dg\{i}

(
d− 1

|S|

)−1(
ν(S ∪ i)− ν(S)

)
. (1)

Choosing ν for ML explanation In recent years, the Shapley value concept has become popular for
feature attribution in machine learning. SHAP [23], SHAPLEY EFFECT [37], DATA-SHAPLEY [15]
and SAGE [9] are all examples that cast model explanations as coalition games by choosing problem-
specific value functions ν. Denote f : X → Y as the machine learning model of interest. Value
functions for local attribution on observation x often take the form of the expectation of f with respect
to some reference distribution r(XSc | XS = xS), where S ⊆ D is some coalition of features in
analogous to the game theory setting, such that:

νx,S(f) = Er(XSc |XS=xS)[f({xS , XSc}], (2)

where {xS , XSc} denotes the concatenation of the arguments. We wrote f as the main argument of ν
to highlight its interpretation as a functional indexed by local observation x and coalition S. When r
is set to be marginal distribution, i.e r(XSc | XS = xS) = p(XSc), the value function is denoted as
the Interventional value function by Janzing et al. [20]. Observational value function [13], on the
other hand, set the reference distribution to be a conditional distribution p(XSc | XS = xS). Other
choices of reference distributions will lead to Shapley values with specific properties, e.g., better
locality of explanations [14] or incorporating causal knowledge [18]. In this work we shall restrict
our attention to marginal and conditional cases as they are the two most commonly adopted choices
in the literature.
Definition 1. Given model f , local observation x and a coalition set S ⊆ D, the Interventional and
Observational value functions are denoted by ν(I)

x,S(f) := EXSc [(f({xS , XSc})] and ν(O)
x,S (f) :=

EXSc [f({xS , XSc}) | XS = xS ].

The right choice of ν has been a long-standing debate in the community. While Janzing et al. [20]
argued from a causal perspective that ν(I)

x,f is the correct notion to represent missingness of features
in an explanation task, Frye et al. [13] argued that computing marginal expectation ignores feature
correlation and leads to unrealistic results since one would be evaluating the value function outside
the data-manifold. This controversy was further investigated by Chen et al. [6], where they argued
that the choice of ν is application dependent and the two approaches each lead to an explanation that
is either true to the model (marginal expectation) or true to the data (conditional expectation). When
the context is clear, we denote the Shapley value of the ith feature of observation x at f as φx,i(f)

and use a superscript to indicate whether it is Interventional φ(I)
x,i(f) or Observational φ(O)

x,i (f).

Computing Shapley values. While Shapley values can be estimated directly from Eq. (1) us-
ing a sampling approach [40], Lundberg and Lee [23] proposed KERNELSHAP, a more effi-
cient algorithm for estimating Shapley values in high dimensional feature spaces by casting Eq.
(1) as a weighted least square problem. Similar to LIME [33], for each data x, model f , and
feature coalition S, KERNELSHAP places a linear model ux(S) = βx,0 +

∑
i∈S βx,i to ex-

plain the value function νx,S(f), which corresponds to solving the following regression problem:
minβx,0,...,βx,d

∑
S⊆D w(S)(ux(S)− νx,S(f))2, where w(S) = d−1

( d
|S|)|S|(d−|S|)

is a carefully chosen

weighting such that the regression coefficients recover Shapley values. In particular, one set w(∅) =
w(D) =∞ to effectively enforce constraints βx,0 = νx,∅(f) and

∑
i∈D βx,i = νx,D(f)− νx,∅(f).

Denoting each subset S ⊆ D using the corresponding binary vector z ∈ {0, 1}d, and with an abuse
of notation by setting ν·,z := ν·,S and w(z) := w(S) for S = {j : z[j] = 1}, we can express
the Shapley values βx := [βx,0, ..., βx,d] as βx = (Z>WZ)−1Z>Wvx where Z ∈ R2d×d is the
binary matrices with columns {zi}2

d

i=1, W is the diagonal matrix with entries wii = w(zi) and
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vx := {νx,zi
(f)}2d

i=1 ∈ R2d×1 the vector of evaluated value functions, which is often estimated
using sampling and data imputations. We shall explain the pathology of this approach in detail later
in Section 3. In practice, instead of evaluating at all 2d combinations, one would subsample the
coalitions z ∼ w(z) for computational efficiency [8].

Model specific Shapley methods. KERNELSHAP provides efficient model-agnostic estimations
of Shapley values. However, by leveraging additional structural knowledge about specific models, one
could further improve computational performance. This leads to a variety of model-specific approxi-
mations, most of which relies on utilising their specific structure to speed up computation of value
functions. For example, LINEARSHAP [40] explain linear models using model coefficients directly.
TREESHAP [24] provides an exponential reduction in complexity compared to KERNELSHAP by
exploiting the tree structure. DEEPSHAP [23], on the other hand, combines DEEPLIFT [36] with
Shapley values and uses the compositional nature of deep networks to improve efficiencies. However,
to the best of our knowledge, a kernel method specific Shapley value approximation has not been
studied. Later in Section 3, we will show that, under a mild structural assumption on the RKHS,
kernel methods can be used to speed up the computation in KERNELSHAP by estimating value
functions analytically, thus circumventing the need for estimating and sampling from an exponential
number of densities.

Related work on kernel-based Shapley methods. Da Veiga [10]’s work on tackling global sen-
sitive analysis by proposing the kernel-based maximum mean discrepancy as value function, is
conceptually most similar to ours. However, there are multiple key differences in our contributions.
Firstly, their method is designed for global explanation, while ours is for local. Secondly, similar
to interventional SV, they do not consider any conditional distributions, thus leading to completely
different estimation procedures and thus novelty. Lastly, their method is on understanding the
input/outputs relationship of a numerical simulation model, while ours focuses on understanding
specific RKHS models learnt from a machine learning task, e.g. kernel ridge regression and kernel
logistic regression.

2.2 Kernel Methods

Kernel methods are one of the pillars of machine learning, as they provide flexible yet principled
ways to model complex functional relationships and come with well-established statistical properties
and theoretical guarantees.

Empirical Risk Minimisation. Recall in the supervised learning framework, we are learning a
function f : X → Y from a hypothesis spaceH, such that given a training set (x,y) = {(xi, yi)}ni=1
sampled identically and independently from p, the following empirical risk is minimised: f∗ =
arg minf∈H

1
n

∑n
i=1 `(yi, f(xi))+λfΩ(f), where ` : Y×Y → R is the loss function, Ω : H → R a

regularisation function and λf a scalar controlling the level of regularisation. Denote k : X ×X → R
a positive definite kernel with feature map ψx for input x ∈ X andHk the corresponding RKHS. If we
pickHk as our hypothesis space, then the Representer theorem [39] tells us that the optimal solution
takes the form of f∗ =

∑n
i=1 αik(·, xi) = Ψxα, where Ψx = [ψx1 . . . ψxn ] is the feature matrix

defined by stacking feature maps along columns. If ` is the squared loss then the above optimisation
is known as kernel ridge regression and α can be recovered in closed form α = (Kxx + λfI)−1y,
where Kxx = Ψ>x Ψx is the kernel matrix. If ` is the logistic loss, then the problem is known as
kernel logistic regression, and α can be obtained using gradient descent.

Kernel embedding of distributions. An essential component for RKHS-SHAP is the embedding
of both marginal and conditional distribution of features into the RKHS [38, 27], thus allowing one to
estimate the value function analytically. Formally, the kernel mean embedding (KME) of a marginal
distribution PX is defined as µX := EX [ψX ] =

∫
X ψxdPX(x) and the empirical estimate can be

obtained as µ̂ := 1
n

∑n
i=1 ψxi

. Furthermore, given another kernel g : Y × Y → R with feature map
ψY of RKHSHg , the conditional mean embedding (CME) of the conditional distribution PY |X=x is
defined as µY |X=x := E[ψY |X = x] =

∫
Y ψydPY |X=x(y).

One way to understand CME is to view it as an evaluation of a vector-valued(VV) function
µY |X : X → Hg such that µY |X(x) = µY |X=x, which minimises the following risk function
Ep(X,Y )[||ψY −µY |X(X)||2Hg

] [16]. Let L(Hg) be the space of bounded linear operators fromHg to
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itself. Denote Γx : X × X → L(Hg) as the operator-valued kernel such that Γx(x, x′) = k(x, x′)1
with 1 the identity operator onHg. We denoteHΓx as the corresponding vector-valued RKHS. By
utilising the VV-Representer theorem [26], we could minimises the following empirical risk:

µ̂Y |X = arg min
µY |X∈HΓx

n∑
i=1

||ψyi − µY |X(xi)||2Hg
+ nη||µY |X ||2Γx

where η > 0 is a regularisation parameter. This leads to the following empirical estimate of the CME,
i.e., µ̂Y |X = Ψy

(
Kxx + nηI)−1Ψ>x , where Ψy := [ψy1 ...ψyn ] and Ψx := [ψx1 ...ψxn ] are feature

matrices. Intuitively, this essential turns CME estimation to a regression problem from X to the
vector-valued labels ψY . Please see Micchelli and Pontil [26] and Grünewälder et al. [16] for further
discussions on vector-valued RKHSs and CMEs. In fact, when using finite-dimensional feature
maps, such as in the case with running Random Fourier Features [32] and Nyström methods [45] for
scalability, one could reduce the computational complexity of evaluating empirical CME from O(n3)
to O(b3) +O(b2n) [27] where b is the dimension of the feature map and often can be chosen much
smaller than n [21].

3 RKHS-SHAP

While KERNELSHAP is model agnostic, by restricting our attention to the class of kernel methods,
faster Shapley value estimation can be derived. We assume our RKHS takes a tensor product
structure, i.e,Hk =

⊗d
i=1Hk(i) , where k(i) is the kernel for each dimension i ∈ D. This structural

assumption allows us to decompose the value functionals into tensor products of embeddings and
feature maps, thus we can estimate them analytically, as later shown in Prop. 2. Tensor product
RKHSs are commonly used in practice, as they preserve universalities of kernels from individual
dimension [42], thus providing a rich function space. Note that this assumption is not essential within
our framework. Namely, for a non-product kernel, one can still evaluate the value functions using
tools from conditional mean embeddings and utilise our interpretability pipeline without conditional
density estimation. We show this in Appendix C. In the following, we will lay out the disadvantage
of existing sampling and data imputation approach and show that by estimating the value functionals
as elements in the RKHS, we can circumvent the need for learning and sampling from an exponential
number of conditionals densities – thus improving the computational efficiency in the estimation.

Estimating value functions by sampling. Estimating the Observational value function ν(O)
x,S (f) is

typically much harder than the Interventional value function ν(I)
x,S(f) as it requires integration with

respect to the unknown conditional density p(XSc | XS). Therefore, estimating OSVs often boils
down to a two-stage approach: (1) Conditional density estimation and (2) Monte Carlo averaging
over imputed data, as shown in Aas et al. [1], where they considered using multivariate Gaussian
and Gaussian Copula for density estimation. Recently, an alternate way to estimate observational
value functions is proposed by Frye et al. [13], where they formulate the estimation as a regression
problem and compute the value function using a masked neural network directly without making any
distributional assumption. This method shares conceptual similarities to ours but uses very different
tools for the estimation. We highlight such differences in the appendix B.

Once the conditional density function p(XSc | XS) for each S ⊆ D is estimated, the observational
value function at the ith observation xi can then be computed by taking averages of m Monte Carlo
samples from the estimated conditional density, i.e. 1

m

∑m
j=1 f({xiS , xjSc}) where {xiS , xjSc}

is the concatenation of xiS with the jth sample xjSc from p(XSc |XS = xiS). Note further that
the Monte Carlo samples cannot be reused for another observation xk as their conditional densities
are different. In other words, n×m Monte Carlo samples are required for each coalition S if one
wishes to compute Shapley values for all n observations. This is clearly not desirable. In the spirit of
Vapnik’s principle3, as our goal is to estimate conditional expectations that lead to Shapley values,
we are not going to solve a harder and more general problem of conditional density estimation as
an intermediate step, but instead utilise the arsenal of kernel methods to estimate the conditional
expectations directly. Further discussion on comparing complexity of RKHS-SHAP with density
estimation methods can be found in Appendix A.

3When solving a problem, try to avoid solving a more general one as an intermediate step. [43, Section 1.9]
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Estimating value functions using mean embeddings. If our model f lives in Hk, both the
marginal and conditional expectation can be estimated analytically without any sampling or density
estimation. We first show that the Riesz representations [30] of both Interventional and Observational
value functionals exist and are well-defined inHk. In the following, for simplicity, we will denote
the functional and its corresponding Riesz representer using the same notation. For example, we will
write νx,S(f) = 〈f, νx,S〉Hk

when the context is clear. Given a vector of n instances x, we denote
the corresponding vector of value functions as νx,S(f) = {νxi,S(f)}ni=1 . All proofs of this paper
can be found in the Appendix D.
Proposition 2 (Riesz representations of value functionals). Denote k as the product kernel of d
bounded kernels k(i) : X (i) × X (i) → R, where X (i) is the domain of the ith feature for i ∈ D.
Riesz representations of the Interventional and Observational value functionals then exist and can
be written as ν(I)

x,S = ψxS
⊗ µXSc and ν(O)

x,S = ψxS
⊗ µXSc |XS=xS

, where ψxS
:=
⊗

i∈S ψx(i) ,
µXSc := E[

⊗
i∈Sc ψx(i) ] and µXSc |XS=xS

:= E[
⊗

i∈Sc ψx(i) |XS = xS ].

The corresponding finite sample estimators ν̂(I)
x,S and ν̂(O)

x,S are then obtained by replacing the corre-
sponding KME and CME components with their empirical estimators. As a result, given f∗ = Ψxα
trained on dataset (x,y), Prop. 2 allows us to estimate the value functionals analytically since
ν̂

(I)
x,S(f∗) = 〈f∗, ψxS

⊗ µ̂XSc 〉 and ν̂(O)
x,S (f∗) = 〈f∗, ψxS

⊗ µ̂XSc |XS=xS
〉. This corresponds to

the direct non-parametric estimators of value functions given in the following proposition, which
circumvent the need for sampling or density estimation.

Proposition 3. Given x′ ∈ Rn′
a vector of instances and f = Ψxα, the empirical estimates of the

functionals can be computed as, ν̂(I)
x′,S(f) = α>K(I)

x′,S , ν̂
(O)
x′,S(f) = α>K(O)

x′,S , respectively, where

K(I)
x′,S = KxSx′

S
� 1
n diag(K>xScxSc1n)1n1n′

> andK(O)
x′,S = KxSx′

S
�ΞSKxSx′

S
, 1n is the all-one

vector with length n, � the Hadamard product and ΞS = KxScxSc (KxSxS
+ nηI)−1.

Finally, to obtain the Shapley values with these value functions, we deploy the same least square
approach as KERNELSHAP.
Proposition 4 (RKHS-SHAP). Given f ∈ Hk and ν, Shapley values B ∈ Rd×n for all d features
and all n input x can be computed as B = (Z>WZ)−1Z>W V̂ where V̂i,: = ν̂x,Si

(f).

Estimating value functions with specific models. To the best of our knowledge, TreeSHAP [24]
was the only machine learning model-specific SV algorithm computing conditional expectations
using the properties of the model (tree in this case) directly, rather than relying on some sort of
sampling procedure and density estimation. However, it is unclear how to validate the assumptions
about feature distribution in TreeSHAP, which are specified as “the distribution generated by the
tree”, as discussed by Sundararajan and Najmi [41]. In comparison, RKHS-SHAP does not pose
assumptions on the underlying feature distribution and computes the corresponding conditional
expectations via mean embeddings analytically. However, one should note that each of these model
specific algorithm are only designed to explain specific models, therefore it is not informative to
compare, e.g. TreeSHAP values with RKHS-SHAP values, as they are explaining different models.

3.1 Robustness of RKHS-SHAP

Robustness of interpretability methods is important from both an epistemic and ethical perspective, as
discussed in Hancox-Li [17]. On the other hand, Alvarez-Melis and Jaakkola [2] showed empirically
that Shapley methods when used with complex non-linear black-box models such as neural networks,
yield explanations that vary considerably for some neighbouring inputs, even if the deep network
gives similar predictions at those neighbourhoods. In light of this, we analyse the Shapley values
obtained from our proposed RKHS-SHAP and show that they are robust. To illustrate this, we first
formally define the Shapley functional,
Proposition 5 (Shapley functional). Given a value functional ν indexed by input x and coalition S,
the Shapley functional φx,i : Hk → R such that φx,i(f) gives the ith Shapley values of x on f , has

the following Riesz representation in the RKHS: φx,i = 1
d

∑
S⊆D\{i}

(
d−1
|S|
)−1(

νx,S∪i − νx,S
)

Analogously, we denote φ(I)
x,i and φ(O)

x,i as the Interventional Shapley functional (ISF) and Observa-
tional Shapley functional respectively (OSF). Using the functional formalism, we now show that
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given f ∈ Hk, when ||x− x′||2 ≤ δ for δ > 0, the difference in Shapley values at x and x′ will be
arbitrarily small for all features i.e. |φx,i(f) − φx′,i(f)| is small ∀i ∈ D. This corresponds to the
following,

|φx,i(f)− φx′,i(f)|2 = |〈f, φx,i − φx′,i〉|2 ≤ ||f ||2Hk
||φx,i − φx′,i||2Hk

(3)

where we use Cauchy-Schwarz for the last line. Therefore, for a given f with fix RKHS norm, the
key to show robustness lies into bounding the Shapley functionals. In the following theorem, we
make two assumptions: (1) the base kernels k(i) for each dimension i ∈ D are bounded, and (2) the
(population) conditional mean embedding functions µXSc |XS

belong to the vector-valued RKHSs
HΓXS

for all coalitions S ⊆ D, therefore have finite norms. This assumption is also adopted in Park
and Muandet [29, Theorem 4.5].
Theorem 6 (Bounding Shapley functionals). Let k be a product kernel with d bounded kernels
|k(i)(x, x)| ≤M for all i ∈ D. Denote Mµ := supS⊆DM

|S|,MΓ := supS⊆D ||µXSc |XS
||2ΓXS

and

Lδ = supS⊆D ||ψxS
− ψx′

S
||2Hk

. Let δ > 0, assume |x(i) − x(i)′ |2 ≤ δ for all features i ∈ D, then
differences of the Interventional and Observational Shapley functionals for feature i at observation
x, x′ can be bounded as ||φ(I)

x,i − φ
(I)
x′,i||2Hk

≤ 2MµLδ and ||φ(O)
x,i − φ

(O)
x′,i||2Hk

≤ 4MΓMµLδ. If k is
the RBF kernel with lengthscale l, then

||φ(I)
x,i − φ

(I)
x′,i||

2
Hk
≤ 4(1− exp(−dδ/2l2)), ||φ(O)

x,i − φ
(O)
x′,i||

2
Hk
≤ 8MΓ(1− exp(−dδ/2l2))

Therefore, as long as ||f ||Hk
is small, RKHS-SHAP will return robust Shapley values with respect

to small perturbations. Notice the Shapley functionals do not depend on f and can be estimated
separately purely based on data. We will show in the next section how this key property allows us
to use the functional itself to aid in learning of f . This enables us to enforce particular structural
constraints on f via an additional regularisation term.

4 Shapley regularisation

Regularisation is popular in machine learning because it allows inductive bias to be injected to learn
functions with specific properties. For example, classical L1 and L2 regularisers are used to control
the sparsity and smoothness of model parameters. Manifold regularisation [4], on the other hand,
exploits the geometry of the distribution of unlabelled data to improve learning in a semi-supervised
setting, whereas Pérez-Suay et al. [31] and Li et al. [22] adopted a kernel dependence regulariser to
learn functions for fair regression and fair dimensionality reduction. In the following, we propose a
new Shapley regulariser based on the Shapley functionals, which allows learning while controlling
the level of specific feature’s contributions to the model.

Formulation Let A be a specific feature whose contribution we wish to regularise, f the function
we wish to learn, and φxi,A(f) the Shapley value of A at a given observation xi. Our goal is to
penalise the mean squared magnitude of {φxi,A(f)}ni=1 in the ERM framework, which corresponds
to minf∈Hk

∑n
i=1 `(yi, f(xi)) + λf ||f ||2Hk

+ λS

n

∑n
i=1 |φxi,A(f)|2, where ` is some loss function

and λf and λS control the level of regularisations. If we replace the population Shapley functional
with the finite sample estimate from Prop. 2, and utilise the Representer theorem, we can rewrite the
optimisation in terms of α,
Proposition 7. The above optimisation can be rewritten as, minα∈Rn

∑n
i=1 `(yi,Kxixα) +

λfα
>Kxxα + λS

n α>ζAζ
>
Aα. To regularise the Interventional SVs (ISV-REG) of A, we set

ζA = 1
J

∑J
j=1K

(I)
x,Sj∪A − K

(I)
x,Sj

where Sj’s are coalitions sampled from pSV (S) = 1
d

(
d−1
|S|
)−1

.

For regularising Observational SVs (OSV-REG), we set ζA = 1
J

∑J
j=1K

(O)
x,Sj∪A −K

(O)
x,Sj

.

In particular, closed form optimal dual weights α = (K2
xx + λfKxx + λS

n ζAζ
>
A )−1Kxxy can be

recovered when ` is the squared loss.

Choice of regularisation. Similar to the feature attribution problem, the choice of regularising
against ISVs or OSVs is application dependent and boils down to whether one wants to take the
correlation of A with other features into account or not.
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 (iii) Run time analysis
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(b) ISV-REG experiments
Figure 2: (a) RKHS-SHAP: Estimation of Shapley values using data from the Banana distribution. Run time
analysis in log scale is also reported. (b) ISV-REG: RMSEs of freg on noisy test data at different noise level σ′.
All scores are averaged over 10 runs and 1 sd is reported.

ISV-REG ISV-REG can be used to protect the model when covariate shift of variableA is expected
to happen at test time and one wishes to downscale A’s contribution during training instead of
completely removing this (potentially useful) feature. Such situation may arise if, e.g., a different
measurement equipment or process is used for collecting observations of A during test time. ISV is
well suited for this problem as dependencies across features will be broken by the covariate shift at
test time.

OSV-REG On the other hand, OSV-REG can find its application in fair learning – learning a
function that is fair with respect to some sensitive feature A. There exist a variety of fairness notions
one could consider, such as, e.g. Statistical Parity, Equality of Opportunity and Equalised Odds
[7]. In particular, we consider the fairness notion recently explored in the literature [19, 25] that
uses Shapley values, which are becoming a bridge between Explainable AI and fairness, given that
they can detect biased explanations from biased models. In particular, Jain et al. [19] illustrated
that if a model is fair against a sensitive feature A, A should have neither a positive nor negative
contribution towards the prediction. This corresponds to A having SVs with negligible magnitudes.
Simply removing A from the training doesn’t make the model fair, as contributions of A might enter
the model via correlated features, therefore it is important to take feature correlations into account
while regularising. Hence, it is natural to deploy OSV-REG for fair learning.

5 Experiments

We demonstrate specific properties of RKHS-SHAP and Shapley regularisers using four synthetic
experiments, because these properties are best illustrated under a fully controlled environment. For
example, to highlight the merit of distributional-assumption-free value function estimation in RKHS-
SHAP, we need groundtruth conditional expectations of value functions for verification, but they
are not available in real-world data because we do not observe the true data generating distribution.
Nonetheless, as model interpretability is a practical problem, we have also ran several larger scales
(n = 50000, 1.8× 106) real-world explanation tasks using RKHS-SHAP and reported our findings
in Appendix E for a complete empirical demonstration. All code and implementations are made
publicly available [3].

In the first two experiments, we evaluate RKHS-SHAP methods against benchmarks on estimating
Interventional and Observational SVs on a Banana-shaped distribution with nonlinear dependen-
cies [34]. The setup allows us to obtain closed-form expressions for the ground truth ISVs and
OSVs, yet the conditional distributions among features are challenging to estimate using any stan-
dard parametric density estimation methods. We also present a run time analysis to demonstrate
empirically that mean embedding based approaches are significantly more efficient than sampling
based approaches. Finally, the last two experiments are applications of Shapley regularisers in robust
modelling to covariate shifts and fair learning with respect to a sensitive feature.

In the following, we denote RKHS-OSV and RKHS-ISV as the OSV and ISV obtained from RKHS-
SHAP. As benchmark, we implement the model agnostic sampling-based algorithm KERNELSHAP
from the Python package shap [23]. We denote the ISV obtained from KERNELSHAP as KSHAP-ISV.
As shap does not offer model-agnostic OSV algorithm, we implement the approach from Aas et al.
[1] (described in Section 3), where OSVs are estimated using Monte Carlo samples from fitted
multivariate Gaussians. We denote this approach as GSHAP-OSV. We fit a kernel ridge regression
on each of our experiments. Lengthscales of the kernel are selected using median heuristic [12] and
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regularisation parameters are selected using cross-validation. Further implementation details and real
world data illustrations are included in Appendix E.

5.1 RKHS-SHAP experiments

Experiment 1: Estimating Shapley values from Banana data. We consider the following 2d-
Banana distribution B(b−1, v) from Sejdinovic et al. [34]: Sample Z ∼ N(0,diag(v, 1)) and
transform the data by setting X1 = Z1 and X2 = b−1(Z2

1 − v) + Z2. Regression labels are
obtained from ftruth(X) = b−1(X2

1 − v) + X2. This formulation allows us to compute the true
ISVs and OSVs in closed forms, i.e φ(I)

X,1(ftruth) = b−1(X2
1 − v), φ(I)

X,2(ftruth) = X2, φ(O)
X,1(ftruth) =

1
2 (3b−1(X2

1−v)−X2) and φ(O)
X,2(ftruth) = 1

2 (3X2−b−1(X2
1−v)). In the following we will simulate

3000 data points from B(b−1, 10) with b ∈ [1, 10, 20, 50, 100], where smaller values of b correspond
to more nonlinearly elongated distributions. We choose R2 as our metric since the true Shapley
values for each experiment are scaled according to b. Figure 2a(i) and 2a(ii) demonstrate R2 scores
of estimated ISVs and OSVs in contrast with groundtruths SVs across different configurations. We
see that RKHS-ISV and KSHAP-ISV give exactly the same R2 scores across configurations. This is not
surprising as the two methods are mathematically equivalent. While in KSHAP-ISV one averages over
evaluated {f(x′j)} with x′j being the imputed data, RKHS-ISV aggregated feature maps of the imputed
data first before evaluating at f , i.e

∑
j=1 f(x′j) = 〈f,

∑
j=1 φ(x′j)〉Hk

= 〈f, µ̂X〉Hk
. However, it

is this subtle difference in the order of operations contribute to a significant computational speed
difference as we later show in Experiment 2. In the case of estimating OSVs, we see RKHS-OSV is
consistently better than GSHAP-OSV at all configurations. This highlights the merit of RKHS-OSV
as no density estimation is needed, thus avoiding any potential distribution model misspecification
which happens in GSHAP-OSV.

Experiment 2: Run time analysis. In this experiment we sample n data points from B(1, 10)
where n ∈ [100, 500, 1000, 1500, 3000, 5000] and record the log10 seconds required to complete
each algorithm. In practice, as the software documentation of shap suggests, one is encouraged to
subsample their data before passing to the KERNELSHAP algorithm as the background sampling
distribution to avoid slow run time. As this approach speeds up computation at the expense of
estimation accuracy since less data is used, for fair comparison with our RKHS-SHAP method
which utilises all data, we pass the whole training set to the KERNELSHAP algorithm. Figure
2a(iii) illustrates the run time across methods. We note that the difference in runtime between the
two sampling based methods KSHAP-ISV and GSHAP-OSV can be attributed to a different software
implementation, but we observe that they are both significantly slower than RKHS-ISV and RKHS-OSV.
RKHS-OSV is slower than RKHS-ISV as it involves matrix inversion when computing the empirical
CME. In practice, one can trivially subsample data for RKHS-SHAP to achieve further speedups
like in the shap package, but one can also deploy a range of kernel approximation techniques as
discussed in Section 2.2.

5.2 Shapley regularisation experiments

For the last two experiments we will simulate 3000 samples from X ∼ N(0,Σ) with diag(Σ) = 15

and Σ4,5 = Σ5,4 = 0.9, 0 otherwise, therefore feature X4 and X5 will be highly correlated. We
set our regression labels as ftrue(x) = x>β with β = [1, 2, 3, 4, 10], enforcing X5 to be the most
influential feature. We use 70% of our data for training and 30% for testing.

Experiment 3: Protection against covariate shift using ISV-REG. For this experiment, we
inject extra mean zero Gaussian noise to the most influential feature X5 in the testing set, i.e. X ′5 =
X5 + σ′N(0, 1) for σ′ ∈ [0, 0.1, 0.5, 1, 1.5]. We assume that there is an expectation for covariate
shift in X5 to occur at test time, due to e.g. a change in the measurement precision – hence, we train
our model freg using ISV-REG at different regularisation level λs for λs ∈ [0, 0.5, 1, 1.5, 2, 2.5]. We
then compare RMSEs when no covariate shift is present (σ′ = 0) against RMSEs at different noise
levels. The results are shown in Figure 2b. We see that when no regularisation is applied, RMSEs
increase rapidly as σ′ increases, indicating our standard unprotected kernel ridge regressor is sensitive
to noises from X ′5. As the Shapley regularisation parameter increases, the RMSE of the noiseless
case gradually increases too, but RMSEs of the noisy data are much closer to the noiseless case,
exhibiting robustness to the covariate shift.
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Figure 3: Distributions of SVs of sen-
sitive feature X5 and correlated fea-
ture X4 obtained from ISV-REG and
OSV-REG at different regularisation
parameters. Colour intensity repre-
sents the strength of regularisation.

Experiment 4: Fair learning with OSV-REG At last, we
demonstrate the use of Shapley regulariser to enable fair learning.
In this context, as we will see, OSV-REG is the appropriate reg-
ulariser. Consider X5 as some sensitive feature which we would
like to minimise its contribution during the learning of f . Recall
X4 is highly correlated to X5 so it contains sensitive informa-
tion from X5 as well. Figure 3 demonstrates how distributions
of ISVs and OSVs of X4 and X5 changes as λs increases. As
regularisation increases, the SVs of X5 becomes more centered
at 0, indicating lesser contribution to the model freg. Similar
behavior can be seen from the distribution of φ(O)

X,4(freg) but not

from φ
(I)
X,4. This illustrates how ISV-REG will propagate unfair-

ness through correlated feature X4 while OSV-REG can take
them into account by minimising the contribution of sensitive
information during learning.

6 Conclusion, limitations, and future directions

In this work, we proposed a more accurate and more efficient
algorithm to compute Shapley values for kernel methods, termed
RKHS-SHAP. We proved that the corresponding local attribu-
tions are robust to local perturbations under mild assumptions,
a desirable property for consistent model interpretation. Furthermore, we proposed the Shapley
regulariser which allows learning while controlling specific feature contribution to the model. We
suggested two applications of this regulariser and concluded our work with synthetic experiments
demonstrating specific aspects of our contributions. Extensive real-world data explanations are
provided in Appendix E.2 for empirical demonstration.

While our methods currently only are applicable to functions arising from kernel methods, a fruitful
direction would be to extend the applicability to more general models using the same paradigm.
It would also be interesting to extend our formulation to kernel-based hypothesis testing, and for
example, to interpret results from two-sample tests.
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