
A Environment Details

DeepMind control suite. DMControl Suite [70] is a widely used benchmark, which contains a
variety of continuous control tasks. For generalization evaluation, we test methods on the DMControl
Generalization Benchmark (DMC-GB) [26] that is developed based on DMControl Suite. DMC-GB
provides different levels of difficulty in terms of generalization performance for visual RL. Visualized
observations are in the Setting column of Table 1 (Top) and Table 2.

DeepMind control manipulation tasks. DeepMind Control [72] contains dexterous manipulation
tasks with a multi-joint Jaco arm and snap-together bricks. In this paper, we modify the colors and
shapes of the arms and the bricks in the task of Reach Duplo to test the agents’ generalization ability.
Visualized observations are shown in the Setting column of Table 1 (Bottom).

Drawer world benchmarks. Meta-world [82] contains a series of vision-based robotic manipulation
tasks. Wang et al. [75] propose a variant of Meta-world, Drawer World, with a variety of realistic
textures to evaluate the generalization ability of the agent. These tasks require a Sawyer robot arm to
open or close a drawer, respectively. The visualizations of the environment are shown in Figure 4a.

CARLA autonomous driving. CARLA [13] is a realistic simulator for autonomous driving. Many
recent works utilize this challenging benchmark in visual RL setting. The trained agents are evaluated
on different weather and road conditions.

B Implementation Details

In this section, we provide PIE-G’s detailed settings. As shown in Table 8, we set up our hyper-
parmeters and environmental details in three benchmarks. Our method is trained for 500k interaction
steps (1000k environment steps with 2 action repeat). All experiments are run with a single GeForce
GTX 3090 GPU and AMD EPYC 7H12 64-Core Processor CPU. All code assets used for this project
came with MIT licenses. Code: https://anonymous.4open.science/r/PIE-G-EF75/

Table 8: Hyperparameter of PIE-G in 4 benchmarks.

Hyperparameter DMControl-GB Drawer World Manipulation Tasks CARLA
Input size 84 × 84 84 × 84 84 × 84 84 × 84

Discount factor γ 0.99 0.99 0.99 0.99
Action repeat 8 (cartpole) 2 (otherwise) 4 2 2
Frame stack 3 3 3 3
Learning rate 1e-4 5e-5 1e-4 1e-4

Random shifting padding 4 4 4 4
Training step 500k 250k 500k 500k

Evaluation episodes 100 100 100 50
Optimizer Adam Adam Adam Adam

Vision models. In this paper, we use the ready-made models from the follow-
ing link: ResNet: https://github.com/pytorch/vision; Moco: https://github.com/
facebookresearch/moco (v2 version trained with 800 epochs); CLIP: https://github.com/
OpenAI/CLIP; R3M: https://github.com/facebookresearch/r3m.

In terms of implementing data augmentation, We choose random overlay (integrate a distract image
I with the observation o linearly, o′ = αo+ (1− α)I) as our augmentation method. Similar to the
previous works [58, 28] we add a regularization term Rθ to the critic objective Fθ without introducing
extra hyperparameters and other techniques. Our critic loss Jθ is as follows, where D is the replay
buffer, staug is the augmented observation, Q̂ (st,at) = r (st,at) + γEst+1∼P [V (st+1)]:

JQ(θ) = FQ(θ) +RQ(θ), (3)

with
FQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st,at)− Q̂ (st,at)

)2
]

RQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st

aug ,at)− Q̂ (st,at)
)2

]
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Figure 10: Other pre-trained models. PIE-G with MoCo-v2 also achieves competitive sample
efficiency.

Drawer World. For the Drawer World task, we use a small learning rate in order to maintain the
training stability. The episode lengths in Drawer World tasks are 200 steps with 4 action repeat.
Random Conv is applied as the data augmentation method. Meanwhile, the original reward setting in
the Drawer World is prone to the Q-value divergence. Therefore, we scale the reward by 0.01.

Manipulation tasks. The episode lengths in Manipulation tasks are 1000 steps with 2 action repeat.
Since for generalization the data augmentation will degrade the training efficiency, we do not apply
random overlay on this benchmark. We change the physical parameters of geom size to deform shape.
All methods are evaluated with 100 episodes on different settings.

CARLA. We adopt the setting from Zhang et al. [85] (e.g., the reward function and training weather
conditions). The maximum episode length in CARLA tasks is 1000 steps with 2 action repeat.

C Additional Results

In this section, we provide additional experimental results about PIE-G in various aspects.

C.1 Comparison with RRL

Task RRL PIE-G

Walker Walk 46±15 600±28

Cheetah Run 29±10 154±17

Walker Stand 154±12 856±51

Table 9: Compare with RRL. RRL
barely generalize to the new environ-
ments in the DMC-GB.

RRL [63] is another ResNet pre-trained algorithm that can
achieve comparable sample efficiency with the state-based
algorithms and be robust to the visual distractors. Here we
compare the generalization ability of PIE-G with RRL. To
compare fairly , we re-implement RRL with DrQ-v2 [78]
as the base algorithm which is the state-of-the-art methods
in DMControl Suite. Table 9 shows that RRL cannot adapt
to the environments with distributional shifts while PIE-G
exhibits considerable generalization ability when facing
new visual scenarios. We suggest that the choice of layers and ever-updating BatchNorm are the
crucial factors for bridging domain gaps and boosting agents’ generalization performance.

C.2 Other Pre-trained Models

As shown in Figure 10, PIE-G with the MoCo-v2 pre-trained model also gains a competitive sample
efficiency with the help of the off-the-shelf visual representations.

C.3 Choice of Architectures

Tasks ResNet18 ResNet34 ResNet50

Walker Walk 600 ±28 620 ±38 563 ±57

Cheetah Run 154 ±17 143 ±20 149 ±21

Walker Stand 852 ±56 867 ±24 871 ±22

Table 10: Choice of architectures. PIE-G with different
architectures gains comparable generalization performance.

We further explore the impact of dif-
ferent network architectures. Since
Layer 2 shows better performance,
here we choose this layer to extract
features. As shown in Table 10,
three kinds of network architectures
show comparable generalization per-
formance . Since ResNet18 is less
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Figure 11: Finetune the model. This figure indicates that finetuning the encoder green line will
sharply reduce the sample efficiency during training.

computationally demanding and with faster wall-clock time than the other two architectures, we
choose it as the network backbone.
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Figure 12: Choice of architectures. This figure indicates that PIE-G with various architectures
achieves comparable sample efficiency.

C.4 Finetune Models

As shown in Figure 11, finetuning encoders will significantly reduce sample efficiency. We suggest
that during the finetuning process, the encoders have to adapt to the new data distribution and
unable to inherit the useful representations learned from the ImageNet, thus severely hindering the
improvement in sample efficiency. Additionally, Table 6 and Figure 8 indicate that finetuning the
model will make the agents overfit to the training environment.
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