
Supplementary Materials for “ZARTS: On Zero-order
Optimization for Neural Architecture Search”

1 Appendix

1.1 Estimation for Second-order Partial Derivative in DARTS

[10] introduce second-order approximation to estimate optimal network weights, i.e.,
ω∗ ≈ ω′ = ω − ξ∇ωLtrain(ω,α), so that ∇αLval(ω

∗(α),α) ≈ ∇αLval(ω
′,α) −

ξ∇2
α,ωLtrain(ω,α)∇ω′Lval(ω

′,α). However, the second-order partial derivative is hard to com-
pute, so the authors estimate it as follows:

∇2
α,ωLtrain(ω,α)∇ω′Lval(ω

′,α) ≈ ∇αLtrain(ω
+,α)−∇αLtrain(ω

−,α)

2ϵ
, (1)

where ω± = ω ± ϵ∇ω′Lval(ω
′,α), and ϵ = 0.01

∥∇ω′Lval(ω′,α)∥2
. Here, we prove that the above

approximation in Eq. 1 is difference method.

Proof. First of all, to simplify the writing, we make the following definitions:

f(ω,α) = ∇αLtrain(ω,α), g(ω,α) = Lval(ω,α). (2)

Then the left term in Eq. 1 can be simplified as:

∇2
α,ωLtrain(ω,α)∇ω′Lval(ω

′,α) = ∇ωf(ω,α) · ∇ω′g(ω′,α) (3)

= ∇ωf(ω,α) · ∇ω′g(ω′,α)

∥∇ω′g(ω′,α)∥2
· ∥∇ω′g(ω′,α)∥2 = ∇ωf(ω,α) · l · ∥∇ω′g(ω′,α)∥2, (4)

where l = ∇ω′g(ω′,α)
∥∇ω′g(ω′,α)∥2

is a unit vector. We notice ∇ωf(ω,α) · l is the directional derivative of
f(ω,α) along direction l, which can be estimated by difference method with a small perturbation
ϵ′ = 0.01:

∇ωf(ω,α) · l · ∥∇ω′g(ω′,α)∥2 ≈ f(ω + ϵ′l,α)− f(ω − ϵ′l,α)

2ϵ′
· ∥∇ω′g(ω′,α)∥2 (5)

Moreover, we define ϵ = ϵ′

∥∇ω′g(ω′,α)∥2
. Then ω ± ϵ′l = ω ± ϵ∇ω′g(ω′,α) ≜ ω±, so Eq. 5 can be

simplified as:

f(ω + ϵ′l,α)− f(ω − ϵ′l,α)

2ϵ′
· ∥∇ω′g(ω′,α)∥2 =

f(ω+,α)− f(ω−,α)

2ϵ
. (6)

Substituting f(ω,α) in Eq. 2 with Eq. 6 results in Eq. 1. Therefore second-order approximation in
DARTS utilizes difference method, which is also a zero-order optimization algorithm.

1.2 Loss Landscape w.r.t. Architecture Parameters

To draw loss landscapes w.r.t. α, we train a supernet for 50 epochs and randomly select two
orthonormal vectors as the directions to perturb α. The same group of perturbation directions is
used to draw landscapes for a fair comparison. Landscapes are plotted by evaluating L at grid points
ranged from -1 to 1 at an interval of 0.02 in both directions. Fig. 1 illustrates landscapes (contours)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

w.r.t. α under different order of approximation for optimal network weights, showing that both first-
and second-order approximation sharpen the landscape and in turn lead to incorrect global minimum.
In this work, we obtain ω∗(α) by fixing α and fine-tuning network weights for M iterations (Fig. 1
(c)). Selection of M is also analyzed in Appendix 2.3, showing that M = 10 iterations is accurate
enough to estimate optimal network weights.

1.3 Details of ZARTS-MGS Algorithm

Selection of the Proposal Distribution q(u|α)q(u|α)q(u|α). Since the probability function of distribution p
is intractable, we sample from a proposal distribution q and approximate the optimal update of
architecture parameters by Eq. 7.

û∗ =

N∑
i=1

[
c̃(ui|α)∑N
j=1 c̃(uj |α)

ui

]
=

N∑
i=1

 exp(−[L(α+ui)−L(α)]/τ)
q(ui|α)∑N

j=1
exp(−[L(α+uj)−L(α)]/τ)

q(uj |α)

ui

 . (7)

The proposal distribution q affects the efficiency of sampling. Specifically, an ideal q should be as
close to p as possible when the sampling number is limited. Following [14], we set the proposal
distribution q to a mixture of two Gaussian distributions, one of which is centered at the negative
gradient of the loss function with current weights:

q(u|α) = (1− λ)N (−∇αLval(ω,α), σ2) + λN (0, σ2), (8)

where σ is the standard deviation. Intuitively, first-order DARTS [10] gives a hint: it updates the
architecture parameters α in the direction of −∇αLval(ω,α). The gradient is an imperfect but
workable direction with easy access.

Importance Sampling Diagnostics. To demonstrate that importance sampling and our choice of the
proposal distribution is indeed appropriate in our case, we evaluate the effectiveness of q (the proposal
distribution) quantitatively by the following experiments. According to [12], effective sample size
(ESS) Ne is a popular indicator defined as Ne = 1∑N

i=1 c2i
. For N samples, a larger Ne ∈ [1, N]

(a) Landscape w.r.t. 𝛼 with 𝜔!"#∗ (b) Landscape w.r.t. 𝛼 with 𝜔%&'∗ (c) Landscape w.r.t. 𝛼 with 𝜔∗

Figure 1: Loss landscapes w.r.t. architecture parameters α. In (a), we illustrate the landscape with
first-order approximation. In (b), we illustrate the landscape with second-order approximation. In (c),
we obtain ω∗ by training network weights ω for 10 iterations, and illustrate the landscape w.r.t. α
with ω∗. To fairly compare the landscapes, we utilize the same model and candidate α points. We
observe the first/second-order approximations both sharpen the landscape.

10 15 20 25 30 35 40 45 50
Epoch

0

2

4

6

8

10

Ef
fe

ct
iv

e
Sa

m
pl

in
g

Si
ze

 (N
e) N=2

N=4
N=6

N=8
N=10

(a) ESS Ne versus epochs over sampling number N .

10 15 20 25 30 35 40 45 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
Sa

m
pl

in
g

Ra
tio

 (R
e) N=2

N=4
N=6

N=8
N=10

(b) ESR Re versus epochs over sampling number N .
Figure 2: ESS Ne and ESR Re versus epochs with different sampling numbers N in the search stage
on CIFAR-10. We fix iteration number M = 10 for all settings.

2

usually indicates a more effective sampling. On the contrary, small Ne implies imbalanced sample
weights and therefore is unreliable [12].

To evaluate the effectiveness of sampling in ZARTS-MGS, we set the sampling number N to various
values and plot Ne versus epochs in each case. As is shown in Fig. 2(a), Ne gradually approaches N
in all settings, indicating that different sampling numbers in our setting are meaningful, including
larger ones (otherwise Ne may “saturate").

As a further exploration, we define effective sample ratio (ESR) Re as the ratio of effective sampling
to all samples:

Re =
Ne

N
. (9)

The value of Re denotes the bias between the target distribution p and proposal distribution q, and a
smaller value indicates a greater difference. Re is plotted against epochs for various N in Fig. 2(b).
On the one hand, Re at epoch 50 stabilizes at 0.7 as N increases, which is an acceptable level of bias
between p and q and supports our choice of q; on the other hand, we notice Re has already converged
when N ≥ 4. Considering the trade-off between estimation accuracy and speed, we set N = 4 as
default, which is further discussed in Appendix 2.3.

2 Supplementary Experiments

2.1 Details of Search Spaces

DARTS’s Standard Search Space. The operation set O contains 7 basic operations: skip connection,
max pooling, average pooling, 3 × 3 separable convolution, 5 × 5 separable convolution, 3 × 3
dilated separable convolution, and 5 × 5 dilated separable convolution. Though zero operation
is included in the origin search space of DARTS [10], it will never be selected in the searched
architecture. Therefore, we remove zero operation from the search space. We search and evaluate on
the CIFAR-10 [9] dataset in this search space, and then transfer the searched model to ImageNet [6].
Additionally, in our convergence analysis, we search by DARTS and ZARTS in this search space for
200 epochs.

RDARTS’s Search Spaces S1-S4. To evaluate the stability of search algorithm, RDARTS [17]
designs four search spaces where DARTS suffers from instability severely, i.e. normal cells are
dominated by parameter-less operations (such as identity and max pooling) after searching for 50
epochs. In S1, each edge in the supernet only has two candidate operations, but the candidate operation
set for each edge differs; in S2, the operation set O only contains 3× 3 separable convolution and
identity for all edges; in S3, O contains 3× 3 separable convolution, identity, and zero for all edges;
in S4, O contains 3× 3 separable convolution and noise operation for all edges. Please refer to [17]
for more details of the search spaces.

2.2 Experiment Settings

Search Settings. Similar to DARTS, we construct a supernet by stacking 8 cells with 16 initial
channels. We apply Alg. 1 to train architecture parameters α for 50 epochs. Two hyper-parameters
of ZARTS, sampling number N and iteration number M , are set to 4 and 10 respectively. Ablation
studies of the two hyper-parameters are analyzed in Appendix 2.3. The setup for training ω follows
DARTS: SGD optimizer with a momentum of 0.9 and a base learning rate of 0.025. Our experiments
are conducted on NVIDIA 2080Ti. ZARTS-MGS algorithm is used in supplementary experiments by
default.

Evaluation Settings. We follow DARTS [10] and construct models by stacking 20 cells with 36
initial channels. Models are trained for 600 epochs by SGD with a batch size of 96. Cutout and
auxiliary classifiers are used as introduced by DARTS.

2.3 Ablation Studies

There are two hyper-parameters in our method: sampling number N and iteration number M . As
introduced in Section 4, N samples of update step of architecture parameters ui are drawn to estimate
the optimal update u∗. For each sampled ui, we approximate the optimal weights ω∗(α+ ui) for

3

each sample by training ω for M iterations. To evaluate the sensitivity of our method to the two
hyper-parameters above, we conduct ablation studies on the standard search space of DARTS on
CIFAR-10 dataset.

Sensitivity to the Sampling Number NNN . For various sampling numbers N , the average performance
of three parallel searches with different random seeds is reported in Table 1 (left). In this experiment,
iteration number M is fixed to 10. When N = 2, ZARTS achieves 97.37% accuracy with 2.87M
parameters. The number of parameters of searched network increases as N increases, and the
performance of searched network gets stable when N ≥ 4. Our method performs better than DARTS
when N = 4, with similar search cost (1.0 GPU days). When N = 6, ZARTS achieves its best
accuracy (97.49%) and costs 1.1 GPU days. When N continues to increase, our method attempts to
find more complex architectures (with 4.31M and 4.26M parameters).

Sensitivity to the Iteration Number MMM . DARTS and its variants [16, 18] assume that the optimal
operation weights ω∗(α) is differentiable w.r.t. architecture parameters α, which has not been
theoretically proved. In this work, we relax the above assumption and adopt zero-order optimization
to update α. As introduced in Section 4, we perform multiple iterations of gradient descent on
operation weights to accurately estimate ω∗(α). To further confirm our analysis on the impact of
iteration number M , we search with various values of M and report the average performance of
three parallel searches with different random seeds in Table 1 (right). In this experiment, we set
the sampling number N to 4. The results reveal that the performance of searched model improves
as M increases and the highest accuracy is achieved at M = 10, which supports our analysis that
inaccurate estimation for optimal operation weights ω∗(α) can mislead the search procedure.

2.4 Comparision with Peer Methods on S1-S4

Unlike R-DARTS [18] that constructs models by stacking 8 cells and 16 inital channels, SDARTS [3]
builds models by stacking 20 cells and 36 initial channels. To compare with SDARTS for fair, we
follow its settings and report our results in Table 2. Specifically, we conduct four parallel tests on
each benchmark by searching with different random seeds. Tabel 2 reports the best and average
performance of our method. Note that other methods in Tabel 2 only report the best performance of
four parallel tests. According to the results, we observe our ZARTS achieves state-of-the-art on 7
benchmarks and SDARTS-ADV slightly outperforms our ZARTS on 5 benchmarks.

2.5 Convergence Analysis

The convergence ability of NAS methods describes whether a search method can stably discover
effective architectures along the search process. A robust and effective NAS method should be
able to converge to exemplary architectures with high performance. This work follows Amended-
DARTS [1] and evaluates the convergence ability by searching for an extended period (200 epochs).
However, since it is time-consuming to train every derived architecture along the search process,
we illustrate the trend of number of parameterless operations (pooling and identity operations) in
each normal cell to represent the performance of architectures (Fig. 3). Recent works [4, 1, 18]
show that architecture with more than 4 parameterless operations (especially identity operations)
usually has a bad performance, which is a typical phenomenon of the instability issue. Here, we
show the number of parameterless operations of our ZARTS in Fig. 3 and compare with another three
methods, including DARTS, PC-DARTS and S-DARTS. We observe that the architectures discovered
by DARTS, PC-DARTS and S-DARTS will be gradually dominated by parameterless operations

Table 1: Comparison of different sampling numbers (left) and iteration numbers (right) to approximate
the optimal update for architecture parameters on the standard search space of DARTS on CIFAR-10
dataset. For each setting, three parallel tests are conducted by searching on different random seeds
and the mean and standard deviation of top-1 accuracy are reported.

Sampling number N=2 N=4 N=6 N=8

Error (%)
STD

2.63
±0.12

2.54
±0.07

2.51
±0.09

2.57
±0.11

Params (M) 2.87 3.71 3.53 4.31
Cost (GPU days) 0.5 1.0 1.1 1.5

Iteration number M=2 M=5 M=8 M=10

Error (%)
STD

2.62
±0.15

2.60
±0.09

2.57
±0.03

2.54
±0.07

Params (M) 2.91 3.40 3.52 3.71
Cost (GPU-days) 0.3 0.6 0.8 1.0

4

Table 2: Comparison with peer methods under the settings of SDARTS. (left) Test error of other
methods are obtained from SDARTS [3], indicating the best performance among four replicate
experiments with different random seeds. Note that ‘RS’ in SDARTS indicates random smoothing
technique, while ‘RS’ in ZARTS indicates random search, a zero-order optimization algorithm.
The best and second best is underlined in boldface and in boldface, respectively. (right) We report
the average error and standard deviation of our method among four replicate experiments. Since
PC-DARTS and SDARTS do not provide the average performance, we only compare the three
implementations of our ZARTS.

PC-DARTS SDARTS ZARTS

RS ADV RS MGS GLD

C
IF

A
R

-1
0 S1 3.11 2.78 2.73 2.83 2.65 2.50

S2 3.02 2.75 2.65 2.41 2.39 2.60
S3 2.51 2.53 2.49 2.59 2.56 2.56
S4 3.02 2.93 2.87 3.35 2.74 2.63

C
IF

A
R

-1
00 S1 18.87 17.02 16.88 17.38 17.62 17.40

S2 18.23 17.56 17.24 16.05 16.41 16.69
S3 18.05 17.73 17.12 17.22 17.03 16.58
S4 17.16 17.17 15.46 18.23 16.57 15.97

SV
H

N

S1 2.28 2.26 2.16 2.09 2.13 2.14
S2 2.39 2.37 2.07 2.06 2.06 2.15
S3 2.27 2.21 2.05 2.17 2.20 2.07
S4 2.37 2.35 1.98 2.49 2.04 2.15

ZARTS (avg.±std)

RS MGS GLD

C
IF

A
R

-1
0 S1 3.10±0.20 2.79±0.14 2.73±0.07

S2 2.60±0.14 2.65±0.17 2.67±0.08
S3 2.89±0.30 2.74±0.10 2.70±0.09
S4 4.11±1.07 2.99±0.21 3.35±0.93

C
IF

A
R

-1
00 S1 18.07±0.55 18.20±0.48 17.83±0.44

S2 17.04±0.70 17.35±0.75 17.14±0.39
S3 18.14±0.72 17.72±0.46 16.99±0.38
S4 19.08±1.01 17.33±0.73 16.63±0.75

SV
H

N

S1 2.21±0.10 2.17±0.03 2.20±0.04
S2 2.16±0.10 2.10±0.03 2.22±0.07
S3 2.27±0.14 2.25±0.05 2.13±0.07
S4 2.56±0.09 2.20±0.11 2.26±0.09

25 50 75 100 125 150 175 200

Epoch

0

2

4

6

8

N
u

m
.

of
P

ar
am

et
er

le
ss

O
p

DARTS

PC-DARTS

S-DARTS (ADV)

S-DARTS (RS)

ZARTS-RS

ZARTS-MGS

ZARTS-GLD

(a) Trend of Number of Parameterless Operations

25 50 75 100 125 150 175 200

Epoch

0

2

4

6

8

N
u

m
.

of
Id

en
ti

ty
O

p DARTS

PC-DARTS

S-DARTS (ADV)

S-DARTS (RS)

ZARTS-RS

ZARTS-MGS

ZARTS-GLD

(b) Trend of Number of Identity Operations

Figure 3: Trends of number of parameterless operations and identity operations in each normal cell
searched by different NAS methods on CIFAR-10 for 200 epochs. The parameterless operations
include max pooling, average pooling, and identity operation.

(especially identity operation), implying that the instability issue occurs. In contrast, our ZARTS can
stably control the number of parameterless operations.

2.6 Implementation Details of the Variants of ZARTS

Based on the variants of DARTS, we derive three variants of ZARTS: GZAS based on GDAS [7],
P-ZARTS based on P-DARTS [4], and MergeZARTS based on MergeNAS [13]. We adopt MGS
as the default zero-order optimizer. Here, we introduce the implementation details of these three
variants.

GZAS: We sample and activate only one candidate operation for each super-edge using the Gumbel
reparameterization technique. Since only a sub-network of the supernet is activated, GZAS has low
GPU memory requirements and fast inference speed during the search process. Table 5 shows that
GZAS significantly outperforms GDAS, showing the advantage of our ZARTS framework against
the DARTS framework.

P-ZARTS: We prune 3/2/1 redundant operations for each super-edge at 20/30/40 epoch during the
search process. Also, our P-ZARTS follows the handcrafted criteria of P-DARTS, i.e., fixing the
number of skip-connection operations as 2 for normal cells. Table 5 shows that P-ZARTS outperforms
P-DARTS by 0.15% accuracy on CIFAR-10 and even slightly surpasses ZARTS, which results from
the handcrafted constraint on the number of skip-connection operations in P-DART. Experimental
results in the prior work [5] show that the performance of P-DARTS decreases to 96.48% on CIFAR-
10 if the handcrafted constraint is removed. The performance of P-ZARTS decreases to 97.20% if the

5

Table 3: Comparison with prior works that directly search on ImageNet.

Methods Params Top-1 Err. Cost
(M) ↓ (%) ↓ (GPU-days) ↓

SPOS [8] 3.5 25.6 12
ProxylessNAS [2] 7.1 24.9 8.3
FBNet-C [15] 5.5 25.1 9
ZARTS 5.2 24.4 2.6
MergeZARTS 5.5 24.3 0.7

handcrafted constraint is removed, which still outperforms P-DARTS, demonstrating the effectiveness
of our ZARTS framework.

MergeZARTS: We adopt the weight merge technique in MergeNAS by sharing weights among
the convolutions on one super-edge and merging them into one. Such a strategy can reduce the
GPU memory requirements and save the computation resource. Unlike P-ZARTS, which adopts
a handcrafted constraint on the number of skip-connection, MergeNAS and MergeZARTS have
no specific constraints. Table 5 shows that MergeZARTS significantly outperforms MergeNAS,
demonstrating the effectiveness of our ZARTS framework. Moreover, we observe MergeZARTS
also surpasses ZARTS by nearly 0.3% accuracy on CIFAR-10, which can result from the fewer
redundant network weights ω in the supernet. [13] analyze that the supernet is an over-parameterized
network, whose weights ω is hard to converge after only training for 50 epochs. The weight merge
technique can reduce the redundant weights, alleviating the difficulty to train weights in the supernet,
which can also benefit our ZARTS framework: Faster convergence ability make it easier and more
accurate to approximate the optimal network weights ω∗(α) by gradient descent (M iterations in our
experiments).

2.7 Directly Search on ImageNet

ZARTS has the same memory cost as DARTS and it can be reduced by combining ZARTS with other
orthogonal variants, such as MergeNAS (please see Table 5 in the submission). ZARTS can also
directly search on ImageNet on a single NVIDIA 3090 GPU with 24G memory. Specifically, we train
a supernet with 8 cells and 16 initial channels for 50 epochs with batch size 128. For MergeZARTS,
the memory-efficient variants of ZARTS introduced in Sec. 5.3, we can train the supernet with batch
size 256. To reduce search time, we randomly sample 25% samples from the training set of ImageNet
and divided it into two subsets to train weights and architecture parameters respectively. Performance
of the discovered architectures and the search cost is shown in Table 3.

2.8 Experiments on NAS-Bench-201

we also search on NAS-Bench-201 and report the results in Table 4. We adopt the hyperparameters
in NAS-Bench-201 for fair comparison. The results are averaged over three independent runs. Our
method outperforms ENAS, DARTS, and ENAS on three datasets. The accuracy curve is also plotted
in Fig. 4, showing that the search process of ZARTS is pretty stable.

2.9 Visualization of Architectures

Note that in all our experiments, we directly utilize the architecture at the final epoch (epoch 50) as
the inferred network. No model selection procedure is needed.

We visualize the architectures of normal and reduction cells searched by ZARTS in DARTS’s search
space on CIFAR-10, as is shown in Fig. 5. The architecture searched on CIFAR-100 dataset is
illustrated in Fig. 6. We also conduct experiments in the four difficult search spaces of RDARTS [17]
on CIFAR-10 [9], CIFAR-100 [9], and SVHN [11]. The searched architectures are illustrated in
Fig. 7, Fig. 8, and Fig. 9.

Moreover, we plot the architectures of normal and reduction cells derived every 25 epochs in Fig. 10
and Fig. 11. The discovered architectures vary during the first 100 epochs, and become stable after
that, and the topology remains unchanged after 150 epochs.

6

Table 4: Top-1 test accuracy (%) for classification on NAS-Bench-201. The results of other architec-
tures are obtained from the paper of NAS-Bench-201. The performance of our method is averaged
over three independent runs.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120
valid test valid test valid test

RSPS 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
DARTS-V1 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-V2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
ENAS 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
ZARTS 91.23±0.24 93.98±0.27 71.64±1.31 71.67±1.30 44.46±1.36 45.06±0.97

ResNet 90.83 93.97 70.42 70.86 44.53 43.63
Optimal 91.61 94.37 73.49 73.51 46.77 47.31

0 10 20 30 40 50
Epoch

88

90

92

94

To
p-

1
Ac

cu
ra

cy
 (%

)

cifar10-valid
cifar10

Figure 4: Accuracy curve of the searched architecture during the search process on NAS-Bench-201.

References
[1] Kaifeng Bi, Changping Hu, Lingxi Xie, Xin Chen, Longhui Wei, and Qi Tian. Stabilizing darts with

amended gradient estimation on architectural parameters. arXiv preprint arXiv:1910.11831, 2019.

[2] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on Target Task
and Hardware. In ICLR, 2019.

[3] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-based
regularization. In ICML, 2020.

[4] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive Differentiable Architecture Search: Bridging the
Depth Gap between Search and Evaluation. In ICCV, 2019.

c_{k-2}

0

sep_conv_3x3
2skip_connect

c_{k-1} sep_conv_3x3

1
dil_conv_5x5

3
sep_conv_3x3

sep_conv_3x3

skip_connect
c_{k}

sep_conv_3x3

(a) The normal cell searched by ZARTS

c_{k-2}

0avg_pool_3x3

1
max_pool_3x3

2

skip_connect

3sep_conv_3x3

c_{k-1}
max_pool_3x3

skip_connect

sep_conv_5x5 c_{k}

avg_pool_3x3

(b) The reduction cell searched by ZARTS
Figure 5: The architectures of normal and reduction cell searched by ZARTS on CIFAR-10 in
DARTS’s search space. Model constructed by the above cells achieves 97.54% accuracy on the
CIFAR-10 dataset with 3.5M parameters.

7

c_{k-2}

0

sep_conv_3x3

1

sep_conv_3x3

2
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 3

skip_connect

c_{k}

sep_conv_3x3

(a) The normal cell searched by ZARTS

c_{k-2}

0

avg_pool_3x3

3avg_pool_3x3

c_{k-1} max_pool_3x3 1

avg_pool_3x3

2

skip_connect

skip_connect

skip_connect

skip_connect
c_{k}

(b) The reduction cell searched by ZARTS

Figure 6: The architectures of normal and reduction cell searched by ZARTS on CIFAR-100 in
DARTS’s search space. Model constructed by the above cells achieves 84.54% accuracy on the
CIFAR-100 dataset with 4.0M parameters.

[5] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan. DARTS-: robustly
stepping out of performance collapse without indicators. In ICLR, 2021.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 2009.

[7] Xuanyi Dong and Yi Yang. Searching for a Robust Neural Architecture in Four GPU Hours. In CVPR,
2019.

[8] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single Path
One-Shot Neural Architecture Search with Uniform Sampling. arXiv preprint. arXiv:1904.00420, 2019.

[9] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of Features from Tiny Images. Technical
report, Citeseer, 2009.

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search. In ICLR,
2019.

[11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits
in natural images with unsupervised feature learning. In NIPSW, 2011.

[12] Art B. Owen. Monte Carlo theory, methods and examples. 2013.

[13] Xiaoxing Wang, Chao Xue, Junchi Yan, Xiaokang Yang, Yonggang Hu, and Kewei Sun. Mergenas: Merge
operations into one for differentiable architecture search. In IJCAI, 2020.

[14] Sean Welleck and Kyunghyun Cho. Mle-guided parameter search for task loss minimization in neural
sequence modeling. arXiv preprint arXiv:2006.03158, 2020.

[15] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-Aware Efficient ConvNet Design via
Differentiable Neural Architecture Search. In CVPR, 2019.

[16] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. PC-DARTS:
Partial Channel Connections for Memory-Efficient Architecture Search. In ICLR, 2020.

[17] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter. Under-
standing and Robustifying Differentiable Architecture Search. In ICLR, 2020.

[18] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter. Under-
standing and robustifying differentiable architecture search. In ICLR, 2020.

8

c_{k-2}

0

skip_connect

1

dil_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

2sep_conv_3x3

3skip_connect

c_{k}dil_conv_3x3

dil_conv_3x3

c_{k-2}
0avg_pool_3x3

1

max_pool_3x3

c_{k-1}

max_pool_3x3

max_pool_3x3 2
sep_conv_3x3

3avg_pool_3x3
skip_connect

c_{k}

dil_conv_5x5

(a) S1

c_{k-2}

0

sep_conv_3x3
1skip_connect

c_{k-1} sep_conv_3x3

sep_conv_3x3

2sep_conv_3x3

3skip_connect
c_{k}

sep_conv_3x3

sep_conv_3x3

c_{k-2}

0
skip_connect

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

1skip_connect

2

sep_conv_3x3

skip_connect

c_{k}
skip_connect

skip_connect

(b) S2

c_{k-2}

0
sep_conv_3x3

1

skip_connect

2skip_connect
3sep_conv_3x3

c_{k-1} skip_connect sep_conv_3x3

sep_conv_3x3
c_{k}

sep_conv_3x3

c_{k-2}

0

sep_conv_3x3 1

sep_conv_3x3

c_{k-1}
sep_conv_3x3

sep_conv_3x3

2
sep_conv_3x3

3skip_connect

sep_conv_3x3 c_{k}

skip_connect

(c) S3

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3

c_{k-1}

sep_conv_3x3

3sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

c_{k-2}

0

sep_conv_3x3

2noise

c_{k-1} sep_conv_3x3
1

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

3sep_conv_3x3

c_{k}

sep_conv_3x3

(d) S4
Figure 7: The architectures of normal and reduction cells searched by ZARTS on CIFAR-10 in the
four difficult search space of RDARTS. The left column shows the normal cells, while the right
column shows the reduction cells.

9

c_{k-2}

0
dil_conv_3x3

2skip_connect

3
sep_conv_3x3

c_{k-1}

skip_connect

1sep_conv_3x3

dil_conv_3x3

c_{k}skip_connect

dil_conv_5x5

c_{k-2}
0max_pool_3x3

1

max_pool_3x3

c_{k-1}

dil_conv_3x3

avg_pool_3x3 2
max_pool_3x3

3avg_pool_3x3
skip_connect

c_{k}

dil_conv_5x5

(a) S1

c_{k-2}

0

sep_conv_3x3
1

sep_conv_3x3

2

skip_connect

c_{k-1} sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

3sep_conv_3x3
c_{k}

sep_conv_3x3

c_{k-2}

0
sep_conv_3x3

1
skip_connect

2sep_conv_3x3

3
skip_connect

c_{k-1}
sep_conv_3x3

sep_conv_3x3

skip_connect

c_{k}

sep_conv_3x3

(b) S2

c_{k-2}
0sep_conv_3x3

1

skip_connect

c_{k-1}

skip_connect

sep_conv_3x3

2sep_conv_3x3

3
sep_conv_3x3

skip_connect

c_{k}

sep_conv_3x3

c_{k-2}

0

skip_connect 1
sep_conv_3x3

3

sep_conv_3x3

c_{k-1} skip_connect

skip_connect 2sep_conv_3x3 c_{k}

skip_connect
sep_conv_3x3

(c) S3

c_{k-2}

0

sep_conv_3x3
1

sep_conv_3x3

2

sep_conv_3x3

3

sep_conv_3x3

c_{k-1}
sep_conv_3x3
sep_conv_3x3

sep_conv_3x3
sep_conv_3x3 c_{k} c_{k-2}

0

sep_conv_3x3
1

sep_conv_3x3

3

sep_conv_3x3

c_{k-1}

noise

2sep_conv_3x3

sep_conv_3x3

noise

c_{k}

noise

(d) S4
Figure 8: The architectures of normal and reduction cells searched by ZARTS on CIFAR-100 in
the four difficult search space of RDARTS. The left column shows the normal cells, while the right
column shows the reduction cells.

10

c_{k-2}

0
dil_conv_3x3

1skip_connect 2

skip_connect
3

skip_connect

c_{k-1} dil_conv_5x5
dil_conv_3x3

c_{k}dil_conv_3x3

dil_conv_5x5

c_{k-2}

0

avg_pool_3x3 1

max_pool_3x3

2

max_pool_3x3

c_{k-1}

max_pool_3x3

sep_conv_3x3

3

max_pool_3x3

skip_connect

c_{k}
dil_conv_5x5

(a) S1

c_{k-2}

0

sep_conv_3x3 2

skip_connect

c_{k-1}

sep_conv_3x3

1sep_conv_3x3

3sep_conv_3x3

skip_connect

sep_conv_3x3

c_{k}

sep_conv_3x3

c_{k-2}

0

sep_conv_3x3 1
sep_conv_3x3

3

skip_connect

c_{k-1} skip_connect

skip_connect 2skip_connect c_{k}

skip_connect
sep_conv_3x3

(b) S2

c_{k-2}

0

skip_connect

1

sep_conv_3x3

3

sep_conv_3x3

c_{k-1}

skip_connect

sep_conv_3x3

2sep_conv_3x3

skip_connect

c_{k}

sep_conv_3x3

c_{k-2}

0

skip_connect 3

skip_connect

c_{k-1}

skip_connect
1skip_connect

2
skip_connect

skip_connect

sep_conv_3x3

skip_connect

c_{k}

(c) S3

c_{k-2}

0

sep_conv_3x3 1

sep_conv_3x3 2
sep_conv_3x3

c_{k-1} sep_conv_3x3

sep_conv_3x3 3
sep_conv_3x3

c_{k}

noise

sep_conv_3x3

c_{k-2}

0

sep_conv_3x3
2sep_conv_3x3

c_{k-1} sep_conv_3x3
1noise

sep_conv_3x3

noise

3sep_conv_3x3
c_{k}

noise

(d) S4
Figure 9: The architectures of normal and reduction cells searched by ZARTS on SVHN in the four
difficult search space of RDARTS. The left column shows the normal cells, while the right column
shows the reduction cells.

11

c_{k-2}

0

sep_conv_5x5 1
sep_conv_3x3

2
max_pool_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

c_{k}

dil_conv_3x3

(a) The normal cell derived at 10 epoch

c_{k-2}

0sep_conv_5x5
1

max_pool_3x3

3
sep_conv_3x3

c_{k-1} sep_conv_3x3
sep_conv_3x3

2max_pool_3x3
c_{k}sep_conv_5x5

dil_conv_5x5

(b) The normal cell derived at 15 epoch

c_{k-2}

0

skip_connect 3
sep_conv_3x3

c_{k-1} sep_conv_3x3 1sep_conv_3x3
skip_connect

2

skip_connect
c_{k}

sep_conv_5x5

sep_conv_3x3

(c) The normal cell derived at 20 epoch

c_{k-2}

0sep_conv_5x5

1max_pool_3x3

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3 2sep_conv_5x5

c_{k}

sep_conv_5x5

sep_conv_3x3

(d) The normal cell derived at 25 epoch

c_{k-2}

0

skip_connect
1

max_pool_3x3

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

2max_pool_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

sep_conv_5x5

(e) The normal cell derived at 50 epoch

c_{k-2}

0

skip_connect
1skip_connect

c_{k-1} sep_conv_3x3

2
sep_conv_5x5

3
sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

c_{k}

sep_conv_5x5

(f) The normal cell derived at 75 epoch

c_{k-2}
0

skip_connect

c_{k-1}

sep_conv_3x3

1sep_conv_3x3

2
sep_conv_5x5

3
sep_conv_3x3

sep_conv_5x5

c_{k}sep_conv_5x5

dil_conv_5x5

(g) The normal cell derived at 100 epoch

c_{k-2}
0

skip_connect

2

dil_conv_3x3

c_{k-1}

sep_conv_3x3

1sep_conv_5x5

3
sep_conv_3x3

sep_conv_5x5

c_{k}
sep_conv_5x5

sep_conv_5x5

(h) The normal cell derived at 125 epoch

c_{k-2}
0sep_conv_3x3

1skip_connect

c_{k-1}

sep_conv_3x3

2sep_conv_3x3
3

sep_conv_3x3

sep_conv_5x5

c_{k}sep_conv_5x5

sep_conv_3x3

(i) The normal cell derived at 150 epoch

c_{k-2}
0

sep_conv_3x3

c_{k-1}

sep_conv_3x3

1sep_conv_3x3

2
sep_conv_3x3

3
sep_conv_3x3

sep_conv_5x5

c_{k}sep_conv_5x5

sep_conv_3x3

(j) The normal cell derived at 175 epoch

c_{k-2}
0

sep_conv_3x3

c_{k-1}

sep_conv_3x3

1sep_conv_3x3

2
sep_conv_3x3

3
sep_conv_3x3

sep_conv_3x3

c_{k}sep_conv_5x5

sep_conv_3x3

(k) The normal cell derived at 200 epoch
Figure 10: The derived architectures of normal cell every 25 epochs, which are searched by ZARTS
on CIFAR-10 for 200 epochs.

12

c_{k-2}

0

avg_pool_3x3
1

skip_connect

c_{k-1}
sep_conv_5x5

2
skip_connect

sep_conv_3x3

3
max_pool_3x3

c_{k}

sep_conv_5x5

dil_conv_3x3

(a) The reduction cell derived at 10 epoch

c_{k-2}

0

max_pool_3x3
2

avg_pool_3x3
3

skip_connect

c_{k-1} sep_conv_5x5 1

sep_conv_5x5

skip_connect

sep_conv_3x3

c_{k}
avg_pool_3x3

(b) The reduction cell derived at 15 epoch

c_{k-2}

0

max_pool_3x3 1

max_pool_3x3

2

dil_conv_3x3

c_{k-1}

sep_conv_5x5

skip_connect
3

sep_conv_3x3

sep_conv_3x3

c_{k}
avg_pool_3x3

(c) The reduction cell derived at 20 epoch

c_{k-2}

0

max_pool_3x3
1max_pool_3x3

c_{k-1} sep_conv_5x5

2
max_pool_3x3

3
sep_conv_3x3

sep_conv_3x3

avg_pool_3x3

c_{k}

sep_conv_5x5

(d) The reduction cell derived at 25 epoch

c_{k-2}

0

max_pool_3x3 1
max_pool_3x3 3

dil_conv_5x5

c_{k-1}

avg_pool_3x3

2max_pool_3x3

dil_conv_5x5

max_pool_3x3

c_{k}

sep_conv_5x5

(e) The reduction cell derived at 50 epoch

c_{k-2}

0

max_pool_3x3 3

dil_conv_5x5

c_{k-1}
max_pool_3x3

1
max_pool_3x3

2max_pool_3x3

sep_conv_5x5
dil_conv_5x5 c_{k}

skip_connect

(f) The reduction cell derived at 75 epoch

c_{k-2} 0max_pool_3x3

1

max_pool_3x3

c_{k-1}

max_pool_3x3

max_pool_3x3
2

max_pool_3x3 3

sep_conv_5x5

c_{k}skip_connect
sep_conv_5x5

(g) The reduction cell derived at 100 epoch

c_{k-2} 0max_pool_3x3

c_{k-1}

max_pool_3x3

1max_pool_3x3 2
max_pool_3x3

dil_conv_5x5 3
skip_connect

c_{k}
skip_connect

sep_conv_5x5

(h) The reduction cell derived at 125 epoch

c_{k-2} 0max_pool_3x3

c_{k-1}

avg_pool_3x3

1max_pool_3x3
2max_pool_3x3

3sep_conv_5x5

sep_conv_3x3

skip_connect

c_{k}skip_connect

(i) The reduction cell derived at 150 epoch

c_{k-2} 0avg_pool_3x3

c_{k-1}

avg_pool_3x3

1max_pool_3x3
2max_pool_3x3

3sep_conv_5x5

skip_connect

skip_connect

c_{k}skip_connect

(j) The reduction cell derived at 175 epoch

c_{k-2} 0avg_pool_3x3

c_{k-1}

avg_pool_3x3

1max_pool_3x3
2max_pool_3x3

3sep_conv_5x5

skip_connect

skip_connect

c_{k}skip_connect

(k) The reduction cell derived at 200 epoch
Figure 11: The derived architectures of reduction cell every 25 epochs, which are searched by ZARTS
on CIFAR-10 for 200 epochs.

13

	Appendix
	Estimation for Second-order Partial Derivative in DARTS
	Loss Landscape w.r.t. Architecture Parameters
	Details of ZARTS-MGS Algorithm

	Supplementary Experiments
	Details of Search Spaces
	Experiment Settings
	Ablation Studies
	Comparision with Peer Methods on S1-S4
	Convergence Analysis
	Implementation Details of the Variants of ZARTS
	Directly Search on ImageNet
	Experiments on NAS-Bench-201
	Visualization of Architectures

