
Learning Equivariant Segmentation with
Instance-Unique Querying

Supplementary Material

Wenguan Wang∗
ReLER, AAII, University of Technology Sydney

James Liang∗

Rochester Institute of Technology

Dongfang Liu†

Rochester Institute of Technology

This document provides additional experimental results, more details of our approach and discussion,
organized as follows:

• §S1: More quantitative results

• §S2: More qualitative results

• §S3: Pseudo code of our algorithm

• §S4: Further discussion

S1 More Quantitative Results

Table S1: More Quantitative Results on COCO [1] test-dev. See §S1 for details.
Method Backbone #Epoch AP AP50 AP75 APS APM APL

SparseInst[CVPR22] [2] ResNet-50
36

34.7 55.3 36.6 14.3 36.2 50.7
+Ours 36.7↑2.0 57.1↑1.8 38.8↑2.2 16.1↑1.8 38.9↑2.7 56.7↑6.0

SparseInst[CVPR22] [2] ResNet-50-DCN 35.4 56.4 37.2 15.7 36.7 53.9
+Ours 37.7↑2.3 58.7↑2.3 39.7↑2.5 17.9↑2.2 39.5↑2.8 58.3↑4.4

SOLQ[NeurIPS21] [3] ResNet-50
50

39.7 63.3 42.6 21.5 42.5 53.1
+Ours 41.9↑2.2 65.3↑2.0 44.9↑2.3 23.0↑1.5 44.8↑2.3 56.3↑3.2

SOLQ[NeurIPS21] [3] Swin-L 46.7 72.7 50.6 29.2 50.1 60.9
+Ours 48.7↑2.0 74.4↑1.7 52.8↑2.2 30.8↑1.6 52.1↑2.0 63.4↑2.5

More Base Instance Segmenters. To further demonstrate the power of our methodology, we apply
our training algorithm to two additional, concurrent query-based instance segmentation models
(i.e., SparseInst [2] and SOLQ [3]), with their default hyperparameter settings. The results on the
COCO test-dev are reported in Table S1. SparseInst [2] is a fast segmenter that learns a sparse
set of instance-aware queries and predicts instances in a one-to-one style without non-maximum
suppression. As seen, with the help of our algorithm, the performance is significantly boosted to
36.7 and 37.7 AP with ResNet-50 [4] and ResNet-50-DCN [5] backbones, which are 2.0 and 2.3
higher than the baseline, respectively. SOLQ [3] is a very recent segmenter that learns a unified
query representation to directly predict the class, location, and mask of the instance. Similarly, our
algorithm greatly promotes the performance by 2.2 AP correspondingly with ResNet-50. On the
top of SOLQ, we also test our algorithm on the strong backbone — Swin [6] backbone. Without
bells and whistles, our algorithm also yields a consistent 2.0 improvement in AP, a strong indication
that the proposed method is also compatible with transformer-based backbone network architecture.
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Table S2: Quantitative results on COCO Panoptic [1] val over Mask2Former [7]. See §S1 for
details.

Method Backbone #Epoch PQ PQth PQst

Mask2Former Swin-B 50 56.1 62.5 46.7
+Ours 57.3↑1.2 64.1↑1.6 47.4↑0.7

Table S3: Ablative study of additional data augmentation on COCO [1] val2017 over CondInst [9]
with ResNet-50. See §S1 for details.

Method Data Augmentation #Epoch AP APS APM APL

CondInst - 12 35.3 16.2 39.2 49.9
CondInst 35.5 16.9 38.9 50.2
+Ours

flip+crop 12
36.5 17.1 39.5 51.6

CondInst 35.6 16.9 39.2 50.5
+Ours

flip+crop+rotation 12
36.9 17.1 39.6 52.4

CondInst 35.9 17.0 39.6 51.4
+Ours

flip+crop+scaling 12
37.3 17.4 40.1 53.3

CondInst 35.9 17.0 39.7 51.7
+Ours

flip+crop+rotation+scaling 12
37.6 17.5 40.3 54.5

The above observations suggest that our algorithm is generic for query-based models regardless
of their specific segmentation architectures and backbones, and consistently provides performance
enhancements.

Additional Panoptic Segmentation Task. To reveal the power of our idea and further demonstrate
the high versatility of our algorithm, we run experiments on the panoptic segmentation task. In
particular, panoptic segmentation includes the extraction of both things (i.e., instance segmentation)
and stuffs (i.e., semantic segmentation). To accommodate the algorithmic setting, the only modi-
fication that needs to be made is for the stuff classes. Since the segmentation of the stuff classes
is instance-agnostic, the training objectives for cross-scene querying (cf. Eq. 5) of the stuff classes
should be the ground-truth stuff masks, instead of all-zero matrices used for thing classes/instance seg-
mentation. In Table S2, we report the results on MS COCO Panoptic [1], on top of Mask2Former [8].
Empirically, our margins over the baseline are significant, i.e., 1.2, 1.6, and 0.7 on PQ, PQth, and
PQst, respectively.

More Ablation Studies. To further test the efficacy of our transformation equivariant learning
strategy, we run experiments on an enlarged transformation family, namely {horizontal flipping,
random cropping between 0.6 and 1.0, random rotation between 0◦ to 60◦, random scaling between
0.5 to 2.0}. Note that rotation and scale transformations are not included in our main experiments,
as they are not the default data augmentation operations in MMDetection. Table S3 provides a
point-to-point comparison, where the first three baselines correspond to the first, second, and last
rows of Table 3d, respectively, while the last six baselines are newly added. All the experiments are
conducted with the equivariance loss Lequi (cf. Eq. 8) only. As seen, our transformation equivariant
learning strategy further promotes the performance with more transformation operations, and is much
more effective than the classic, transformation-based data augmentation strategy, i.e., simply treating
transformed images as new training samples. Moreover, we also report the training speed and GPU
memory cost for different sizes of the external memory capacity in Table S4. As seen, the optimal
configuration of the memory capacity, i.e., 100k pixels, only causes marginal training speed delay
(∼ 5%) as a trade-off but achieves a significant gain of 2.1 on mask AP.

S2 More Qualitative Results

In Fig. S1 and Fig. S2, we show more qualitative results on COCO val2017 over CondInst [9]
and Mask2Former [8], respectively. As has been observed, our approach consistently produces
more accurate predictions than the baseline. For instance, in the bus example (Fig. S1 row 4), the
baseline model wrongly divides the center bus into two instances; in the giraffe example (Fig. S2
row 5), the baseline model fails to separate the two giraffes. However, our algorithm works well in
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Table S4: Ablative study of memory capacity. See §S1 for details.

capacity AP APS APM APL
Training speed

(minutes/epoch)
GPU memory cost

(GB)
- 35.5 16.9 38.9 50.2 90 19.68

mini-batch 36.9 17.8 40.1 53.1 106 19.68(w/o memory)

10k pixels 37.0 17.9 40.3 53.2 91 20.24
50k pixels 37.3 18.1 40.4 53.6 93 22.37
70k pixels 37.5 18.5 40.4 53.7 93 23.72

100k pixels 37.6 18.6 40.6 54.0 94 25.37

these challenging scenarios, confirming its ability of learning more discriminative instance query
embeddings.

Failure Case Analysis. Though greatly promoting the instance segmentation performance, our
algorithm also struggles with some extremely challenging scenarios. Fig. S3 summarizes the most
representative failure cases and concludes their characteristic patterns that may cause the inferior
results. Specifically, we observe that the failure cases are mostly found in the following cases: i)
highly similar and occluded object instances; ii) object instances with complex topologies; iii) small
and blurry instances; iv) highly deformed object instances; and v) transparent object instances. We
argue that one critical reason for the erroneous prediction is that the object query would be confused
under these conditions. In particular, for highly occluded objects in query-based models, objects
with the same labels and high occlusion may share very similar queries. Though our algorithm faces
difficulties in these scenarios, it has led to a significant improvement compared with the baseline
model. In the meanwhile, the patterns of these failure cases also shed light on the possible direction
of our future efforts.

S3 Pseudo Code

The pseudo-code of our algorithm is given in Alg. 1.

S4 Discussion

Broader Impact. This work proposes a new training scheme for discriminating between instances
across scenes and against geometric transformations, so as to achieve effective instance separation.
Our algorithm has demonstrated its effectiveness over a variety of modern query-based instance
segmenters. On the positive side, the research may have a wide range of real-world applications,
including self-driving cars, robot navigation, and medical imaging. On the negative side, any
inaccurate prediction in real-world applications (e.g., autonomous driving tasks and medical imaging
analysis) raises concerns about human safety. To avoid this potential negative societal impact, we
suggest proposing an extremely strict security protocol in case of dysfunction of our method in
real-world applications.

Limitation Analysis. One limitation of our algorithm arises from the restriction of equivariant trans-
formations that have to be elements from a group of linear transformation operators. Therefore, we
can only apply ordinary linear transformation (i.e., flipping and cropping) while arbitrary photometric
transformation (i.e., color jittering and blur) is not suitable for our algorithm. We will put more effort
into finding appropriate candidates for transformation operators and evaluating their performance
with them for instance segmentation. In addition, we aim to explore a more effective equivariance
training strategy by utilizing the most recent developments in equivariance representation learning.
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Algorithm 1 Pseudo-code of our method in a PyTorch-like style.

# img: input image in shape (batch_size, c, h, w)
# query: query from decoder in shape (num_queries, batch_size, c)
# external_feats: external features from the upstream external memory bank,

each is a 4D-tensor
# lambda: hyper-parameter for the equivariance loss

# Inter_mask prediction loss (Eq.5) #
def Inter_mask_Loss(query, external_feats):

# Feature embedding
mask_embed = mask_embed(query)

# Loss calculation
mask_pred = torch.einsum(’bqc,nchw->bnqhw’,
mask_embed, external_feats.clone().detach())
inter_mask_loss = Focal_Loss(mask_pred, torch.zeros_like(mask_pred))

return inter_mask_loss

# Equivariance loss (Eq.8) #
def Equivariance_Loss(img, lambda = 3)

# Get feats from images
feats = encoder(img)

# Apply randomly from a list of transformations
transforms = torch.nn.ModuleList([torchvision.transforms.

RandomHorizontalFlip, torchvision.transforms.RandomCrop])
transform = torchvision.transforms.RandomChoice(transforms)

# Get transformed feats and query
transformed_feats = transform(feats)
transformed_query = decoder(encoder(transform(img)))

# Get ground truth from transformed image
transformed_gt_mask = transform(GetGroundtruth(img))

# Get mask prediction from the model
transformed_mask_embed = mask_embed(transformed_query)
transformed_mask_pred = torch.einsum(’bqc,bchw->bqhw’,
mask_embed, transformed_feats)

# Loss calculation
equivariance_loss = criterion(transformed_mask_pred,transformed_gt_mask)

return lambda*equivariance_loss
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CondInst Ours GroundtruthImage

Figure S1: More qualitative results on COCO [1] val2017 over CondInst [9]. See §S2 for details.
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Mask2former Ours GroundtruthImage

Figure S2: More qualitative results on COCO [1] val2017 over Mask2Former [7]. See §S2 for
details.
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Highly Similar and Occluded Object Instances

Image Mask2former Ours Groundtruth

Object Instances with Complex Topologies

Image Mask2former Ours Groundtruth

Small and Blurry Object Instances

Mask2former Ours GroundtruthImage

Highly Deformed Object Instances

Mask2former Ours GroundtruthImage

Transparent Object Instances

Mask2former Ours GroundtruthImage

Figure S3: Representative failure cases on COCO [1] val2017. See §S2 for details.
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