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Abstract

Prevalent state-of-the-art instance segmentation methods fall into a query-based
scheme, in which instance masks are derived by querying the image feature using
a set of instance-aware embeddings. In this work, we devise a new training frame-
work that boosts query-based models through discriminative query embedding
learning. It explores two essential properties, namely dataset-level uniqueness
and transformation equivariance, of the relation between queries and instances.
First, our algorithm uses the queries to retrieve the corresponding instances from
the whole training dataset, instead of only searching within individual scenes. As
querying instances across scenes is more challenging, the segmenters are forced to
learn more discriminative queries for effective instance separation. Second, our
algorithm encourages both image (instance) representations and queries to be equiv-
ariant against geometric transformations, leading to more robust, instance-query
matching. On top of four famous, query-based models (i.e., CondInst, SOLOv2,
SOTR, and Mask2Former), our training algorithm provides significant performance
gains (e.g., +1.6 – 3.2 AP) on COCO dataset. In addition, our algorithm promotes
the performance of SOLOv2 by 2.7 AP, on LVISv1 dataset.

1 Introduction

Instance segmentation, i.e., labeling image pixels with classes and instances, plays a critical role in a
wide range of applications, e.g., autonomous driving, medical health, and augmented reality. Modern
instance segmentation solutions are largely built upon three paradigms: top-down (‘detect-then-
segment’) [1–19], bottom-up (‘label-then-cluster’) [20–28], and single-shot (‘directly-predict’) [29–
44]. Among them, the top-leading algorithms [18,34,39–44] typically operate in a query-based mode,
in which a set of instance-aware embeddings is learned and used to query the dense image feature for
instance mask prediction. The key to their triumph is the instance-aware query vectors that are learned
to encode the characteristics (e.g., location, appearance) of instances [34, 43]. By straightforwardly
minimizing the differences between the retrieved and groundtruth instance masks, the query-based
methods, in essence, learn the query vectors for instance discrimination only within individual scenes.

As a result, existing query-based instance segmentation algorithms place a premium on intra-scene
analysis during network training. Since the scenario in one single training scene is simple, i.e., the
diversity and volume of object instances as well as the complexity of the background are typically
limited, learning to distinguish between object instances only within the same training scenes is less
challenging, and inevitably hinders the discrimination potential of the learned instance queries.
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This work brings a paradigm shift in training query-based instance segmenters: it goes beyond the de
facto, within-scene training strategy by further considering the cross-scene level query embedding
separation of different instances – querying instances from the whole training dataset. The underlying
rationale is intuitive yet powerful: an advanced instance segmenter should be able to differentiate all
the instances of the entire dataset, rather than only the ones within single scenes. Concretely, in our
training framework, the queries are not only learned to fire on the pixels of their counterpart instances
in the current training image, but also forced to mismatch the pixels in other training images. By virtue
of intra-and inter-scene instance disambiguation, our framework forces the query-based segmenters
to learn more discriminative query vectors capable of uniquely identifying the corresponding ins-
tances even at the dataset level. To further facilitate the establishment of robust, one-to-one relation
between queries and instances, we complement our training framework with a transformation equi-
variance constraint, accommodating the equivariance property of the instance segmentation task to
geometric transformations. For example, if we crop or flip the input image, we expect the image
(instance) features and query embeddings to change accordingly, so as to appropriately reflect the
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Figure 1:Our training algorithm yields solid
performancegainsover state-of-the-artquery-
based models [34, 39–41] without architec-
tural modification and inference speed delay.

variation of instance patterns (e.g., scale, position,
shape, etc) caused by the input transformation.

Exploring intra-and inter-scene instance uniqueness
as well as transformation equivariance leads to a gen-
eral yet powerful training framework. Our algorithm,
in principle, can be seamlessly incorporated into the
training process of existing query-based instance seg-
menters. For comprehensive evaluation, we apply our
algorithm to four representative, query-based models
(i.e., CondInst [34], SOLOv2 [39], SOTR [41], and
Mask2Former [40]) with various backbones (i.e., Res-
Net [45], Swin [46]). Experiments on COCO [47]
verify our impressive performance, i.e., +2.8 – 3.1,
+2.9 – 3.2, +2.4 – 2.6, and +1.6 – 2.4 AP gains over
CondInst, SOLOv2, SOTR, and Mask2Former, respec-
tively (see Fig. 1). Our algorithm also brings remark-
able improvement, +2.7 AP, on LVISv1 [48] dataset,
on top of SOLOv2 [39]. These results are particularly
impressive considering our training algorithm causes
neither architectural change nor extra computational
load during model deployment.

2 Related Work
This section summarizes the most relevant research on
instance segmentation and equivariant learning.

Instance Segmentation. With the renaissance of connectionism, remarkable progress has been made
in instance segmentation. Existing deep learning based solutions can be broadly classified into three
paradigms: top-down, bottom-up, and single-shot. Following the idea of ‘detect-then-segment’, top-
down methods [1–18] predict a bounding box for each object and then ouput an instance mask for each
box. Though effective, this type of methods is complicated and dependent on the priori detection results.
In contrast, bottom-up methods [20–27] adopt a ‘label-then-cluster’ strategy: learning per-pixel em-
beddings and then grouping them into different instances. Albeit simple, this type of methods relies on
the performance of post-processing and easily suffers from under-segment or over-segment problems.
Inspired by the advance of single-stage object detection [49,50], a few recent efforts approach instance
segmentation in a single-shot fashion, by coalescing detection and segmentation over pre-defined
anchor boxes [29–33], or directly predicting instance masks from feature maps [34–44, 51]. This type
of methods is well recognized and generally demonstrates better speed-accuracy trade-off [52].

Despite the blossoming of diverse approaches, the vast majority of recent top-performing algori-
thms [18, 34, 39–44] fall into one grand category – query-based models. The query-based methods
utilize compact, learnable embedding vectors to represent instances of interest and leverage them as
queries to decode masks from image features. Their triumph is founded on comprehensively encoding
instance-specific properties (e.g., location, appearance) into the query vectors, which significantly
increases prediction robustness. For instance, [34, 39] exploit the technique of dynamic filter [53] to

2



generate instance-specific descriptors, which are convolved with image feature maps for instance
mask decoding. Inspired by DETR [54], [40, 42, 43] alternatively leverage a Transformer decoder to
obtain instance-aware query embeddings and cast instance segmentation as a set prediction problem.

Our contribution is orthogonal and these query-based segmenters can benefit. We scaffold a new
training framework that sharpens the instance discriminative capability of the query-based segmenters.
This is achieved by matching query embeddings with instances within and cross training scenes. Such
intra-and inter-scene instance querying strategy is further enhanced by an equivariance regularisation
term, addressing not only the uniqueness but also the robustness of instance-query relations.

Equivariant Representation Learning. Transformations play a critical role in learning expressive
representations by transforming images as a means to reveal the intrinsic patterns from transformed
visual structures [55]. Motivated by the concept of translation equivariance underlying the success of
CNNs, numerous efforts (e.g., capsule nets [56,57], group equivariant convolutions [58], and harmonic
networks [59]) investigate learning more powerful representations equivariant to generic types of
transformations [60, 61]. A representation f is said to be equivariant with a transformation g for
input (say image) I if f(g(I))≈g(f(I)). In other words, the output representation f(I) transforms
in the same manner (or, in a broad sense, a predictable manner) given the input transformation g.
Many recent self-supervised learning methods [62–64] encourage the representations to be invariant
under transformations, i.e., f(g(I))≈f(I). As such, invariance can be viewed as a special case of
equivariance [65] where the output representation f(I) does not vary with the input transformation g.

In our training framework, we fully explore the inherent, transformation-equivariance nature of the
instance segmentation task to pursue reliable, one-to-one correspondence between learnable queries
and object instances. This is accomplished by promoting the equivariance of both query embeddings
and feature representations with respect to spatial transformations, i.e., cropping or flipping of an
input image should result in correspondingly changed feature representation, query embeddings, as
well as instance mask predictions. Note that invariance is not suitable for instance segmentation task,
as it encourages the feature map (and segmentation mask) to not vary with the input transformation.
Our algorithm is also in contrast to the common data augmentation strategy, in which the transformed
images and annotations are used directly as additional individual training examples, without any
constraint about the relation between the representations (and queries) produced from the original
and transformed views. Our experimental results (see §4.3) also evidence the superiority of our
transformation equivariance learning over transformation-based data augmentation.

3 Methodology

Next, we first formulate instance segmentation from a classical view of mask prediction and classifi-
cation (§3.1). Then we describe our new training framework (§3.2) and implementation details (§3.3).

3.1 Problem Formulation

Instance segmentation seeks a partition of an observed image I∈RH×W×3 into K instance regions:

{Yk}Kk=1 = {(Mk, ck)}Kk=1, where Mk∈{0, 1}H×W, ck ∈{1, · · · , C}. (1)

Here the instances of interest are represented by a total of K non-overlap, binary masks {Mk}Kk=1 as
well as corresponding class labels {ck}Kk=1 (e.g., table, chair, etc). For a pixel i∈I , its counterpart
value in the k-th groundtruth mask, i.e., Mk(i), denotes whether i belongs to instance k (1) or not (0).
Note that the number of instances, K, varies across different images. Existing mainstream (or, more
precisely, most top-down and one-shot) solutions approach the task by decomposing the image I into
a fixed-size set of soft masks. In this setting, each mask is associated with a probability distribution
over all the C categories. The output can thus be represented as a set of N mask-probability pairs:

{Ŷn}Nn=1 = {(M̂n, p̂n)}Nn=1, where M̂n∈ [0, 1]H×W, p̂n ∈△C . (2)

Here △C stands for the C-dimensional probability simplex. The size of the prediction set, N , is
usually set as a constant and much larger than the typical number of object instances in an image.
Hence the training objective penalizes the errors of both label prediction and mask estimation:

L({Ŷn}Nn=1, {Yk}Kk=1) =
∑N

n=1
Lcls(p̂n, cσ(n)) + Lmask(M̂n,Mσ(n)), (3)
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Figure 2: Overview of our new training framework for query-based instance segmentation. Rather than
current intra-scene training paradigm, our framework addresses inter-scene instance discrimination
and transformation equivariance for discriminative instance query embedding learning (see §3.2). To
improve readability, for image I , we only plot one extra image I ′ for cross-scene training.

where σ refers to the matching between the prediction and groundtruth sets (established by certain
rules [6, 54]). The classification loss Lcls is typically the cross-entropy loss or focal loss [66]; the
mask prediction loss Lmask can be the cross-entropy loss in [40], dice loss [67] in [34, 39], or focal
loss in [54]. While many approaches supplement L with various extra losses (e.g., bounding box
loss [6, 32, 34, 54, 68], ranking loss [69], semantic segmentation loss [13, 32]), later we will show
our cross-scene training scheme is fundamentally different from (yet complementary to) current
scene-wise training paradigm.

3.2 Equivariant Learning with Intra-and Inter-Scene Instance Uniqueness

Query-based Instance Segmentation. As clearly indicated by Eq. 2, the prediction masks {M̂n}Nn=1
are the means of separating instances at the pixel level. Current top-performing instance segmen-
ters [18, 34, 39–43] typically generate mask predictions in a query-based fashion (see the middle part
of Fig. 2). Let f be a dense feature extractor (e.g., an encoder-decoder fully convolutional
network [70]) that produces D-dimensional dense embedding I for image I , i.e., I=f(I)∈RH×W×D.
Then a query creator h is adopted to produce a set of N instance-aware embedding vectors
{qn∈Rd}Nn=1, which are used to query the image representation I for instance mask decoding:

{M̂n}Nn=1 = {⟨qn, I⟩}Nn=1, where {qn}Nn=1 = h(I⇓). (4)

Here ⟨·, ·⟩ is a certain similarity measure performed pixel-wise, and I⇓ (typically) refers to a low-
resolution feature representation of image I . Note that position information is integrated to either or
both of I and I⇓, to make the model location-sensitive. The query creator h is implemented as a
dynamic network [34,39], or a Transformer decoder [40,42]. For dynamic network based h, it predicts
N convolution filters {qn}Nn=1 dynamically conditioned on the input I⇓, and hence ⟨·, ·⟩ refers to
convolution (d ̸=D). For Transformer decoder based h, it additionally leverages a set of N learnable
positional embeddings (omitted for brevity) to gather instance-related context from I⇓; the collected
context is stored in {qn}Nn=1 and ⟨·, ·⟩ is computed as dot product for instance mask decoding (d=D).
Eq. 4 informs that, query-based segmenters in essence learn N compact descriptors {qn}Nn=1 to grasp
critical characteristics (e.g., appearance and location) of potentially interested instances, and use
these instance descriptors as queries to retrieve corresponding pixels from I . It is thus reasonable to
assume the discriminative ability of the learned query embeddings is crucial for the performance of
query-based methods. Viewed in this light, a question naturally arises: ? how to learn discriminative
instance query embeddings? Yet, this fundamental question is largely ignored in the literature so far.

To respond ? , we exploit two crucial properties of instance-query matching, namely uniqueness and
robustness. This is achieved by addressing dataset-level uniqueness and transformation equivariance
during the learning of query-based segmenters, leading to a powerful training scheme eventually.

Learning with Intra-and Inter-Scene Instance Uniqueness. If we closely scrutinize at the current
de facto training regime (cf. Eq. 3) and the work mode of query-based segmenters (cf. Eq. 4), we can
find: the mask prediction loss Lmask forces each query qn to match the pixels i∈I of its counterpart
instance k=σ(n), i.e., Mσ(n)(i)=1, and mismatch the pixels i′∈I of other instances k ̸=σ(n), i.e.,
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Mσ(n)(i
′)=0, within image I . That means, the segmenters are only taught to differentiate instances

within individual scenes. Evidently, individual scenes are unable to cover diverse instance patterns;
the scarcity of negative instances — an intrinsic limitation of the current scene-wise training regime
— inevitably impairs query embedding learning. This analysis motivates us to design a cross-scene
training strategy, where the segmenters are forced to learn to query the target instances from the whole
training dataset, instead of only matching queries and instance pixels within the same scenes. Thus
we take a step further by simultaneously leveraging the intra-and inter-scene context to promote query
embedding learning. Query-based segmenters are encouraged to develop dataset-level, cross-instance
discriminativeness and perform reliable mask prediction using instance uniqueness.

Let I be the training set of |I| images and {qn}Nn=1 the instance queries generated from image I∈I.
During training, rather than only applying {qn}Nn=1 for the counterpart image I to get N intra-image
instance prediction masks {M̂n}Nn=1 (cf. Eq. 4), we further use {qn}Nn=1 to query other training images
I ′∈I for cross-scene instance disambiguation. This will result in N inter-image instance prediction
masks {ÔI′

n ∈ [0, 1]H×W }Nn=1 for each I ′, i.e., {ÔI′

n }Nn=1={⟨qn, I ′⟩}Nn=1, where I ′∈RH×W×D is the
feature map of I ′, i.e., I ′=f(I ′). For each query qn of image I , given its corresponding intra-image
instance prediction map M̂n, a total of |I|−1 inter-image instance prediction maps {ÔI′

n }I′ ̸=I , and
the original groundtruth maskMσ(n), we improve the mask prediction lossLmask in Eq. 3 as a form of:∑N

n=1

(
Lintra_mask(M̂n,Mσ(n)) +

1

|I|−1

∑
I′ ̸=I

Linter_mask(Ô
I′

n , 0)
)
, (5)

where the first term Lintra_mask is exactly the same as Lmask in Eq. 3, which is renamed for address-
ing its nature of inspiring intra-scene instance uniqueness. The newly added term Linter_mask is to
eliminate the instance ambiguity through inter-scene querying. Thus its training target is an all-zero
query-pixel matching matrix 0 of size H×W , i.e., each query qn of image I is forced to mismatch
the instances in other images I ′. Among the several choices for Linter_mask, e.g., ℓ1 loss, ℓ2 loss,
and cross-entropy loss, we find focal loss [66] is more favored (cf. §4.3). We speculate this is due to
the advantage of focal loss in preventing the influence of massive trivial examples, as in our case. To
further boost the effectiveness and efficiency of our algorithm, the following strategies are adopted:

• External memory: As the capacity of training batch is limited, we follow the recent practice in unsu-
pervised representation learning [62, 71–75] to build an external memory to enable large-scale
query-instance matching. The memory gathers instance pixel embeddings from several batches.
Note that we drop background pixels, as we find their contribution is negligible (sometimes even
negative). This also implies that cross-instance discrimination is the core challenge of this task.

• Sparse sampling: As local image contents are highly correlated, storing all the pixel samples will
bring a lot of redundant information, which is useless for discriminative representation learning.
With a similar spirit of some dense prediction methods [15, 73], only a small set of instance pixels
are randomly sampled from each image and fed into the memory. In practice, we find this strategy
greatly improves the diversity of the instance samples and eventually benefits the final performance.

• Instance-balanced sampling: Though effective, the sparse sampling strategy has a side-effect: it hurts
the performance on small instances. This is because larger instances have more chance of being
sampled for loss computation, enabling our training algorithm to give less priority towards smaller
instance. We therefore opt to randomly sample a fixed number of pixels from each instance region.
As a result, the performance is further improved. All the related experiments can be found in §4.3.

These designs together form a cross-scene training framework, whose power lies in the query embed-
ding uniqueness among plentiful instances. Our framework is elegant and principled: as suggested by
Eq. 5, it can complement and integrate with current training paradigm of query-based methods.

Learning with Transformation Equivariance. So far, we have addressed ? from a fresh perspective
of dataset-level instance-unique querying. Next, we complete our response from another essential
viewpoint: robustness. That is, we expect the segmenters to build robust instance-query correspon-
dences that are equivariant against input imagery transformations (e.g., cropping, flipping, etc).

Our key insight for robustness is derived from the transformation equivariance nature of the task: flip-
ping or cropping the image should result in an exact change in the instance segmentation mask. At the
first glimpse, this character seems to have been already captured by the widely-used, transformation-
based data augmentation technique. Under scrutiny, this view however is erroneous because: the
representations (and instance queries) ought to be transformation equivariant first, then it is natural
to achieve correctly transformed predictions. Yet, the current training strategy puts the cart before
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the horses: with input transformations, the segmenter is only trained to produce correspondingly
transformed predictions, but without any reasonable constraints on the representations (and queries).

Given the analysis above, we supplement our framework with an equivariance based training objective,
encouraging the segmenters to precisely and reliably anchor queries on instances. Let G be a group
of transformations (e.g., cropping, flipping, etc). For a query-based instance segmenter, we encourage
its feature representation to be “equivariant against input imagery transformations”, which states:

∀g ∈ G : f(g(I)) ≈ g(f(I)) = g(I). (6)

Intuitively, the output representation of f is encouraged to change in the same way to the transfor-
mation g applied to the input I . Similarly, the instance queries are also desired to be transformation
equivariant, i.e., they should be able to properly describe the transformation applied to their counter-
part instances. For example, after cropping or flipping an input image, the queries are expected to
still robustly capture the changed instance patterns (e.g., shape, location, scale). We formulate this
property as:

∀g ∈ G : {⟨qg
n, I

g⟩}Nn=1 ≈ {g(Mσ(n))}Nn=1, (7)

where Ig denotes the feature embedding of transformed image (instances) g(I), i.e., Ig=f(g(I));
analogously, {qg

n}Nn=1 indicates the query embeddings derived from g(I). Eq. 7 states that, with
a transformed input image g(I), the queries should be properly changed so as to correctly match
the embeddings of transformed instances Ig. This also explains the rationale behind the popular
transformation-based augmentation technique from a view of equivariant query embedding learning.

Considering both Eq. 6 and 7, we can easily have ∀g∈G : {⟨qg
n, g(I)⟩}Nn=1≈{g(Mσ(n))}Nn=1, and

hence our equivariance based training objective is formulated as (see the bottom part of Fig. 2):∑N

n=1
Lequi(Ŵ

g
n , g(Mσ(n))), where Ŵ g

n = ⟨qg
n, g(I)⟩. (8)

As such, the desired equivariance property of both feature representations and instance query embed-
dings to input transformations are formulated in a unified training objective. For Eq. 8, the queries
{qg

n}Nn=1, created for transformed image g(I), are first applied for the transformed representation
g(I) of I; then the training target is to minimize the difference between the retrieved instance masks
{Ŵ g

n∈[0, 1]H×W}Nn=1 and the transformed groundtruth masks{g(Mσ(n))}Nn=1. Therefore,Lequi can be
easily implemented as any existing mask prediction loss, and effortless incorporated into our training
framework. For the sake of simplicity, we set Lequi as the same form of Lmask in Eq. 3. In our
experiments (cf. §4.3), we will demonstrate that our equivariance constraint can bring significantly
larger performance gains than the conventional, transformation-based data augmentation technique.

3.3 Implementation Detail

External Memory and Sampling. For large-scale query-instance matching (cf. Eq. 5), we build an
external memory. Due to the limited capacity of our GPU, we afford to maintain a queue of 100K
pixel samples in the memory. We adopt sparse, instance-balanced sampling, i.e., randomly selecting
50 (if possible) pixels from each instance. Note that the samples stored in the memory are only used
for the computation of the inter-scene instance discrimination loss Linter_mask in Eq. 5. The external
memory is directly discarded after training, causing no extra computation budget during inference.

Training Objective. Ordinarily, our training framework is applicable for existing query-based models,
and complementary to their training objectives. In our experiments, we approach our algorithm on four
representative query-based methods [34,39–41] by adding our inter-scene instance discrimination loss
Linter_mask (cf. Eq. 5) and equivariance loss Lequi (cf. Eq. 8) into their training targets. As mentioned
before, we implement Linter_mask (cf. Eq. 5) as the focal loss [66], whose hyper-parameters are set
to α=0.1 and γ=2.5. As for Lequi, it is directly set as the same form of the loss used for mask
prediction in the base segmenter, i.e., dice loss [67] for [34, 39, 41], and a linear combination of the
focal loss and dice loss for [40]. For far comparison, the set of transformations G, which is used for
the computation ofLequi, is {horizontal flipping, random cropping between 0.6 and 1.0}. This is con-
sistent with the standard data augmentation setup adopted by existing instance segmentation networks.
To balance the impacts of our two new training targets, i.e., Linter_mask and Lequi, we multiply
Lequi by a coefficient λ, which is empirically set as 3 (see related experiments in Table 4e & §4.3).
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4 Experiments

4.1 Experimental Setup

Datasets. We conduct our main experiments on the gold-standard benchmark dataset, i.e., COCO[47],
in this field. There are 80 target classes for instance segmentation. As normal, we use train2017
split (115k images) for training and val2017 (5k images) for validation used in our ablation study.
The main results are reported on test-dev (20k images). For thorough evaluation, we perform
additional experiments on LVISv1 [48] on top of SOLOv2 [39]. LVIS is a large vocabulary instance
segmentation dataset collected by re-annotating COCO images with 1,203 categories. Thus it is
considerably more challenging; it contains a total of 100k images of a train set under a significant
long-tailed distribution, and relatively balanced val (20k images) and test sets (20k images).

Base Instance Segmenters, Backbones, and Competitors. To demonstrate the broad applicability
and wide benefit of our algorithm, we approach our method on four widely recognized query-based
instance segmentation models, i.e., CondInst [34], SOLOv2 [39], SOTR [41], and Mask2Former [40],
with diverse backbone networks, i.e., ResNet-50/-101 [45] and Swin-Small/-Base/-Large [46]. For
fair comparison, all these models and results are based on our reproduction, following the default
hyper-parameter and augmentation recipes in AdelaiDet [76] and MMDetection [77]. In addition
to focusing on the comparison with these four base segmentation models, we include a group of
famous segmenters [6, 11, 12, 15, 18, 43, 44] for comprehensive evaluation. In our supplementary
material, we report more experiments on two instance segmentation models, i.e., SparseInst [44]
and SOLQ [43], as well as performance of Mask2Former on panoptic segmentation.

Training. Our implementation is based on AdelaiDet [76] and MMDetection [77], following default
training configurations for both COCO and LVISv1 datasets. In particular, all the backbones are
initialized using corresponding weights pre-trained on ImageNet-1K [78], while remaining layers are
randomly initialized. We train models using SGD with initial learning rate of 0.01 for ResNet [45]
backboned models and Adam with initial learning rate of 1e−5 for Swin [46] backboned models.
The learning rate is scheduled following the polynomial annealing policy with batch size 16. We
use multi-scale training [12, 16, 34, 44]: for ResNet backboned models, the short side of input is
randomly chosen within [400, 1200] and long side is set to 1333; for Swin backboned models, we opt
random scaling with a factor in [0.1, 2.0] followed by a fixed size to 1024×1024. ResNet backboned
models are trained for 12 epochs, while Swin backboned models are trained for 50 epochs. Note that,
compared with the standard, scene-wise training strategy, our algorithm only slows the training speed
slightly (∼5%; see Table 3 & §4.3).

Testing. All our experimental results are reported with 1333×800 input resolution. For the sake of
fairness, we do not apply any test-time data augmentation. Note that, during model deployment, our
training algorithm does not bring any change to network architecture or additional computation cost.

Evaluation Metric. The evaluation metric is the standard segmentation mask AP.

Reproducibility. Our algorithm is implemented in PyTorch. For all our experiments, the training
and testing are conducted on eight NVIDIA Tesla A100 GPUs with a 80GB memory per-card. To
guarantee the reproducibility of our algorithm, our full implementations are made publicly available
at https://github.com/JamesLiang819/Instance_Unique_Querying.

4.2 Comparison to State-of-the-Arts

Quantitative Results on COCO test-dev. Table 1 reports comparison results with our four base
models, i.e., CondInst [34], SOLOv2 [39], SOTR [41], and Mask2Former [40], as well as several repre-
sentative instance segmentation methods [6,11,12,15,18,43,44,79] on COCO [47]test-dev. Without
bells and whistles, our training framework provides remarkable performance improvements over the
four query-based segmenters [34, 39–41] with different backbones. In particular, for CondInst [34]
and SOLOv2 [39] — the two famous query-based approaches that adopt the CNN architecture and
dynamic neural network, with ResNet-50 [45] backbone, our algorithm brings 3.1 and 3.2 AP gains,
respectively. Similar improvements, i.e., 2.8 and 2.9 in terms of AP, are obtained with ResNet-101.
As for SOTR [41] — a very recent method that adopts a hybrid structure of Transformer [80] structure
and dynamic convolution for query creation, our algorithm also greatly promotes its performance, e.g.,
39.6→42.2 with ResNet-50 and 40.2→42.6 with ResNet-101, in terms of AP. Moreover, when directly
applying our algorithm to the newest query-based model — Mask2Former [40], we observe powerful
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Table 1: Quantitative results on COCO [47] test-dev. See §4.2 for details.
Method Backbone #Epoch AP AP50 AP75 APS APM APL

Mask R-CNN[ICCV17] [6] ResNet-101 12 36.1 57.5 38.6 18.8 39.7 49.5
Cascade Mask R-CNN[PAMI19] [11] ResNet-101 12 37.3 58.2 40.1 19.7 40.6 51.5

HTC[CVPR19] [12] ResNet-101 20 39.6 61.0 42.8 21.3 42.9 55.0
Point Rend[CVPR20] [15] ResNet-50 12 36.3 56.9 38.7 19.8 39.4 48.5

QueryInst[ICCV21] [18] ResNet-101 36 41.0 63.3 44.5 21.7 44.4 60.7
K-Net[NeurIPS21] [79] ResNet-101 36 40.1 62.8 43.1 18.7 42.7 58.8
SOLQ[NeurIPS21] [43] Swin-L 50 46.7 72.7 50.6 29.2 50.1 60.9

SparseInst[CVPR22] [44] ResNet-50 36 37.9 59.2 40.2 15.7 39.4 56.9
CondInst[ECCV20] [34] ResNet-50

12

35.5 55.8 37.7 16.8 39.2 50.6
+Ours 38.6↑3.1 61.1↑5.3 41.2↑3.5 19.7↑2.9 41.1↑1.9 54.7↑4.1

CondInst[ECCV20] [34] ResNet-101 37.1 58.6 39.3 18.2 40.3 52.9
+Ours 39.9↑2.8 62.7↑4.1 42.4↑3.1 20.8↑2.6 42.3↑2.0 55.7↑2.8

SOLOv2[NeurIPS20] [39] ResNet-50
12

35.1 55.5 37.0 13.9 38.4 53.7
+Ours 38.3↑3.2 59.6↑4.1 40.6↑3.6 17.8↑3.9 41.8↑3.4 56.2↑2.5

SOLOv2[NeurIPS20] [39] ResNet-101 36.7 57.5 39.3 16.2 40.2 54.2
+Ours 39.6↑2.9 60.6↑3.1 43.1↑3.8 20.0↑3.8 43.3↑3.1 56.9↑2.7

SOTR[ICCV21] [41] ResNet-50
24

39.6 60.7 42.6 10.3 58.7 72.1
+Ours 42.2↑2.6 61.9↑3.1 43.9↑2.3 11.0↑0.7 60.5↑2.8 73.5↑2.4

SOTR[ICCV21] [41] ResNet-101 40.2 61.2 43.4 10.2 59.0 73.1
+Ours 42.6↑2.4 64.1↑2.9 45.8↑2.4 11.2↑1.0 61.2↑2.2 75.3↑2.2

Mask2Former[CVPR22] [40] Swin-S
50

44.5 68.2 47.7 24.3 49.0 66.6
+Ours 46.7↑2.2 70.7↑2.5 50.1↑2.4 27.0↑2.7 50.9↑1.9 68.8↑2.2

Mask2Former[CVPR22] [40] Swin-B 44.9 68.5 48.5 24.6 48.7 67.4
+Ours 47.3↑2.4 71.3↑2.8 51.0↑2.5 28.3↑2.7 50.9↑2.2 69.4↑2.0

Mask2Former[CVPR22] [40] Swin-L 100 50.2 74.8 54.7 29.2 53.8 71.1
+Ours 51.8↑1.6 76.0↑1.2 56.8↑2.1 29.9↑0.7 55.1↑1.3 73.3↑2.2

Table 2: Quantitative results on LVISv1 [48] val over SOLOv2 [39]. See §4.2 for details.

Method Backbone #Epoch AP AP50 AP75 APr APc APf

Mask R-CNN[ICCV17] [6] ResNet-50 12 21.7 34.3 23.0 9.6 21.0 27.8
SOLOv2[NeurIPS20] [39] ResNet-50 36 21.4 34.0 22.8 9.5 20.9 27.6

+Ours 24.1↑2.7 37.4↑3.4 25.5↑2.7 13.5↑4.0 22.8↑1.9 29.7↑2.1

performance gains across different Swin [46] backbones. For instance, with Swin-B, our algorithm
surpasses the vanilla Mask2Former at different IoU thresholds, i.e., 71.3 vs 68.5 AP50 and 51.0 vs 48.5
AP75. Notably, with Swin-L as the Mask2Former’s backbone, our approach surpasses all the other
competitors in Table 1 and sets a new state-of-the-art record of 51.8 in AP for instance segmentation
on COCO. Furthermore, in spite of different base segmentation network architectures and backbones,
our training algorithm consistently improves the performance for object instances of different sizes.

Quantitative Results on LVISv1 [48] val. Table 2 lists the overall performance on LVISv1 val, as
well as AP scores on the rare (1∼10 instances), common (11∼100 instances), and frequent (> 100
instances) subsets. It can be observed that, our training algorithm pushes a powerful gain by 2.7 on
AP, and consistently improves the performance of the base model, SOLOv2, on APr, APc, and APf

by 4.0, 1.9 and 2.1, respectively.

The above experimental results are particularly impressive, considering the fact that the performance
gain is purely brought by a new training strategy, without any network architectural modification.
Overall, our extensive experiments manifest the effectiveness and wide benefit of our algorithm.

Qualitative Result. Fig. 3 provides qualitative comparisons of our algorithm against CondInst [34]
(left) and Mask2Former [40] (right) on several challenging examples of COCO val2017. As can
be seen, with the help of our training algorithm, CondInst and Mask2Former can better distinguish
between huddled and similar instances, hence generating higher-quality segmentation maps.
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Figure 3: Qualitative comparison results on COCO val2017. See §4.2 for details.

Table 3: Analysis of essential components on COCO [47] val2017. See §4.3 for details.
Inter-scene

Linter_mask (Eq. 5)
Equivariance
Lequi (Eq. 8) AP AP50 AP75 APS APM APL

Training speed
(hour/epoch)

35.5 55.9 37.4 16.9 38.9 50.2 1.51
✓ 37.6 58.4 40.3 18.2 40.8 54.0 1.57

✓ 36.5 58.0 39.0 17.1 39.5 51.6 1.52
✓ ✓ 38.1↑2.6 60.2↑4.3 40.6↑3.2 18.4↑1.5 40.9↑2.0 54.3↑4.1 1.59

4.3 Diagnostic Experiment

For thorough examination, we conduct a series of ablative studies on COCO [47] val2017. We adopt
CondInst [34] as our base segmentation network with ResNet-50 [45] backbone. To perform extensive
experiments, we train models for 12 epochs while keeping other hyper-parameters unchanged.

Key Component Analysis. First, we study the efficacy of the core components of our algorithm, i.e.,
inter-scene instance discrimination loss Linter_mask (cf. Eq. 5) and equivariance loss Lequi (cf. Eq. 8).
In Table 3, 1st row gives the performance of our base segmenter CondInst. For 2nd and 3rd rows, the
scores are obtained by adopting Linter_mask and Lequi individually. And 4th row reports the scores of
our full algorithm. i) 1st vs 2nd row: Linter_mask leads to notable performance improvements against
the baseline (e.g., 35.5→37.6 AP). This verifies our first core hypothesis, i.e., learning large-scale
instance separation benefits discriminative query embedding learning. ii) 1st vs 3rd row: Lequi greatly
boots the performance of the baseline (e.g., 35.5→36.5 AP), evidencing our second core hypothesis,
i.e., exploiting the transformation equivariance nature of the task facilitates robust query-instance
matching. iii) 1st vs 2nd vs 3rd vs 4th row: combing all contributions together results in the largest
gain over the baseline (e.g., 35.5→38.1 AP). This suggests that Linter_mask and Lequi are able to
work in a collaborative manner, and confirms the effectiveness of our overall algorithmic design.

Training Speed. We also report training speed in Table 3; related statistics are gathered on eight
A100 GPUs with a batch size of 16. We can find that, compared with the current scene-wise training
regime, our cross-scene training algorithm only brings slight delay (∼5%). More specifically, the
computation of our inter-scene instance discrimination loss Linter_mask takes relatively more time,
due to the use of an external memory for large-scale query-instance matching.

Next we study some core designs for inter-scene instance discrimination loss Linter_mask (cf. Eq. 5).
The results in Tables 4a, 4b, and 4c are reported without considering equivariance loss Lequi (cf.Eq.8).

Loss Design for Inter-Scene Instance Uniqueness Learning. In Table 4a, we investigate four
different implementation forms of our inter-scene instance discrimination loss Linter_mask, namely
ℓ1 loss, ℓ2 loss, cross-entropy loss, and focal loss [66]. We can find that focal loss is more favored.
In our case, most instance (pixel) samples from other scenes can be easily recognized as negative,
causing a huge imbalance between hard and easy negative samples. Therefore, training under such
an environment results in ℓ1 loss, ℓ2 loss, and cross-entropy loss focusing more on easy samples. In
contrast, focal loss drives the training more towards the sparse set of hard negative samples, thus
preventing the gradient of Linter_mask from being dominated by the massive, easy negative samples.

Sampling Strategy. We further study the impact of the three sampling strategies (cf. §3.2) for the
computation of Linter_mask, namely dense sampling (storing all the pixels of each image into the
memory), sparse sampling (randomly sampling a small set, e.g., 0.5k or 1.0k, of pixels from each
image), and instance-balanced sampling (randomly sampling a small fixed-size set, e.g., 10 or 50, of
pixels from each instance). Table 4b proves that, sparse sampling works overall better than dense sam-
pling, as it improves the diversity of the stored samples. However, sparse sampling leads to inferior
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Table 4: A set of ablative studies on COCO [47] val2017. The adopted algorithm designs and
hyper-parameter settings are marked in red. See §4.3 for details.

Linter_mask AP APS APM APL

- 35.5 16.9 38.9 50.2
ℓ1 loss 36.0 17.1 39.2 51.7
ℓ2 loss 35.9 17.6 39.1 51.6

cross-entropy 37.3 18.1 40.6 53.3
focal loss 37.6 18.6 40.6 54.0

(a) inter-scene instance discrimi-
nation lossLinter_mask (cf. Eq. 5)

sampling AP APS APM APL

dense 37.1 18.0 40.4 53.0
sparse (0.5k pixel/img.) 37.2 17.8 40.5 53.2
sparse (1.0k pixel/img.) 37.3 17.9 40.5 53.4
instance-balanced 37.4 18.7 40.5 53.6(10 pixel/ins.)

instance-balanced 37.6 18.6 40.6 54.0(50 pixel/ins.)

(b) sampling strategy

capacity AP APS APM APL

- 35.5 16.9 38.9 50.2
mini-batch 36.9 17.8 40.1 53.1(w/o memory)

10k pixels 37.0 17.9 40.3 53.2
50k pixels 37.3 18.1 40.4 53.6
70k pixels 37.5 18.5 40.4 53.7

100k pixels 37.6 18.6 40.6 54.0

(c) memory capacity

transformation equivariance AP APS APM APL

w/o Aug. 35.3 16.2 39.2 49.9
w/ Aug. ({⟨qg

n, I
g⟩}n≈{g(Mσ(n))}n) 35.5 16.9 38.9 50.2

feature only (Ig ≈ g(I)) 36.3 16.5 39.5 51.4
Lequi ({⟨qg

n, g(I)⟩}n≈{g(Mσ(n))}n) 36.5 17.1 39.5 51.6

(d) transformation equivariance modeling

coefficient AP APS APM APL

1 37.0 17.9 40.4 52.1
3 37.6 18.6 40.6 54.0
5 37.5 18.3 40.7 53.6
10 37.3 18.1 40.8 53.3

(e) coefficient betweenLinter_mask andLequi

performance on small instances, e.g., 18.0 vs 17.8 APS for ‘sparse (0.5k pixel/img.)’, as smaller instances
are less likely sampled for loss computation. Fortunately, instance-balanced sampling inherits sparse
sampling’s desired merits but without its defects, hence yielding more impressive results.

Memory Capacity. Table 4c shows the influence of the capacity of the external memory. 1st row gives
the results of the base segmenter. 2nd row lists the scores obtained by computing Linter_mask within
each mini-batch, which are already much better, e.g., 35.5 vs 36.9 AP. 3rd - 5th rows demonstrate
that, i) with the aid of an external memory, the performance can be further boosted; and ii) enlarging
memory is always helpful. These results verify our key idea of learning large-scale query-instance
matching. Note that the optimal configuration, i.e., 100k pixels, does not yet reach the point of
performance saturation, but rather the upper limit of our hardware’s computational budget.

Transformation Equivariant Learning. We next study our equivariance loss design Lequi (cf. Eq. 8).
The results in Table 4d are reported without considering the inter-scene instance discrimination loss
Linter_mask (cf. Eq. 5). The first two rows respectively present the performance of the base segmenter
w/o and w/ transformation-based data augmentation. As we mentioned before, training with current
data augmentation technique can be viewed as learning equivariant query embeddings (cf. Eq. 7). In
3rd row we show the performance by only encouraging equivariant image representation learning
(cf. Eq. 6). Comparing these three baselines with our final equivariance loss Lequi that simultaneously
addresses equivariant image representation and query embedding learning, we can find: i) exploring
the equivariance nature of the task is indeed essential; and ii) our equivariance loss Lequi is much
more effective than current transformation-based data augmentation technique (e.g., 36.5 vs 35.5 AP).

Loss Term Coefficient. For completeness, the results with different coefficients, which control the
balance between our two training objectives, i.e., Linter_mask and Lequi, are reported in Table 4e.

5 Conclusion and Discussion

Aiming at sharpening the instance discrimination ability of query-based segmenters, we devise a novel
framework that formulates two crucial properties of the query-instance relationship, i.e., dataset-
level uniqueness and transformation equivariance, as network training targets. This is achieved by
compelling segmenters to i) build exclusive instance-query matching throughout the entire training
dataset, and ii) learn equivariant instance-query matching with respect to geometric transformations.
Extensive empirical analysis demonstrates that our method is flexible yet powerful, allowing it to
benefit the existing and growing body of query-based instance segmentation methods. We argue
deductively that the proposed training framework has the potential to be applied to broader range
of dense prediction tasks, i.e., query-based detection and panoptic segmentation. These questions
remain open for our future endeavor.

Acknowledgement. This work was partially supported by ARC DECRA DE220101390.
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