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Abstract

For predictive models to provide reliable guidance in decision making processes,
they are often required to be accurate and robust to distribution shifts. Shortcut
learning–where a model relies on spurious correlations or shortcuts to predict
the target label–undermines the robustness property, leading to models with poor
out-of-distribution accuracy despite good in-distribution performance. Existing
work on shortcut learning either assumes that the set of possible shortcuts is known
a priori or is discoverable using interpretability methods such as saliency maps,
which might not always be true. Instead, we propose a two step approach to (1)
efficiently identify relevant shortcuts, and (2) leverage the identified shortcuts to
build models that are robust to distribution shifts. Our approach relies on having
access to a (possibly) high dimensional set of auxiliary labels at training time,
some of which correspond to possible shortcuts. We show both theoretically and
empirically that our approach is able to identify a sufficient set of shortcuts leading
to more efficient predictors in finite samples.

1 Introduction

Despite their immense success, predictors constructed from deep neural networks (DNNs) tend to
have poor performance under distribution shift [7, 24, 5, 14]. One reason behind such brittleness is
“shortcut learning”: when a predictor relies on shortcuts, i.e., spurious correlations between the inputs
and the target label that are easy to learn and are predictive of the target label in the training data
[15]. If these spurious correlations no longer exist when the test distribution shifts, the accuracy of
the predictor deteriorates. Here, we study the problem of learning a performant predictor whose risk
is invariant to interventions that change the association between shortcuts and the target label. Our
work tackles two limitations in previous literature on addressing shortcut learning. First, previous
work often assumes that the set of shortcuts are known in advance, or is easily identifiable using
interpretability methods such as saliency maps. Second, much of the existing work assumes that there
are a few (often one) shortcuts.

To tackle these limitations, we study methods to identify shortcuts, and build models that are robust
(i.e., invariant) to possibly many shortcuts. Throughout, we will use the example of detecting the
presence and severity of diabetic retionpathy (DR) using images taken using a funduscope. We focus
on a setting where we are also given multiple auxiliary labels (e.g., the type of funduscope, patient
age, sex and previous medical history) at training but not test time. A subset of these auxiliary data
label factors of variation (i.e., shortcuts) that we want to be invariant to but the rest might be redundant
for the purpose of shortcut removal. We propose a method to identify this subset of relevant auxiliary
labels for shortcut removal, and then exploit the identified subset to construct a predictor whose risk
is approximately invariant across a well-defined family of test-distributions.

⇤Corresponding author, email: mmakar@umich.edu

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Our approach can be viewed as a continuation of a line of recent work on leveraging the causal
structure of a problem to build robust predictors [41, 30]. Unlike previous work, we do not assume
that the relevant shortcuts are known a priori but instead leverage causal ideas to both identify the
shortcuts and build models that are robust to these shortcuts. In addition, unlike previous work,
we do not make any assumptions about the type or dimension of the auxiliary labels and the target
label. Our contributions can be summarized as follows. (1) We leverage ideas from causality to
show that robustness to a large set of distribution shifts is possible through ensuring invariance to a
small set of shortcuts. (2) We develop a method for identifying these shortcuts, provide theoretical
arguments about validity of our approach and show that it leads to more efficient predictors. (3) We
extend previous work on single shortcut removal to a more general formulation that allows for
high dimensional shortcuts of arbitrary types (4) We empirically validate our theoretical findings
using a semi-simulated benchmark and a medical task, showing our approach has favorable in- and
out-of-distribution generalization properties.

2 Related work

Existing work tackling out-of-distribution generalization tends to fall into two categories: those which
assume access to some (usually unlabeled) examples from the target domain (e.g., [17, 20, 27, 8])
and those which do not (e.g., [39, 38, 30, 41, 36]). Our work falls into the latter category.

Robustness to known shortcuts. Similar to our work, a number of authors adapt causal ideas for the
purpose of out-of-distribution generalization when samples from the target domain are unavailable.
By contrast to our work, this line of work tends to assume that the sources of bias (or shortcuts) are
known a priori. For example, Subbaswamy et al. [39] assume the availability of a “selection diagram”
that specifies which variables have a unstable relationship with the target label, and hence could be
shortcuts. Absent prior knowledge, the authors suggest constructing this selection diagrams using
conditional independence tests. We show here that such tests are unreliable when the variables are
high dimensional, and present an solution to this limitation. The assumption of known shortcuts is
implicit in other work (e.g., [25, 36, 4, 33]) where the authors aim to find the best predictor over a set
of possible distributions. Here, defining such a set requires knowledge of the meaningful shortcuts.
In the experiments section, we show that our approach, by identifying a subset of relevant shortcuts,
is able to outperform approaches equivalent to [36].

Unlike other work (e.g., [4, 28]), we do not assume access to data sampled from multiple environments
or distributions. Instead, we assume access to auxiliary labels that may be proxies for shortcuts.

Most similar to our work is [30], where the authors study an anti-causal prediction problem similar to
ours. Unlike us, they assume that there is a single shortcut labeled by a binary auxiliary label. Our
work can be viewed as a direct extension of [30] to relax assumptions about the type and dimension
of the auxiliary label as well as the prior knowledge about the shortcut.

Shortcut identification. One approach that has been suggested to identify possible shortcuts is by
leveraging interpretability methods such as saliency maps [37] which visually highlight which parts
of an image is most important for a prediction. However, user-based studies have found that saliency
maps often have limited utility in explaining model features [2]. In addition, in domains such as
healthcare, leveraging saliency maps to identify shortcuts might require expert knowledge. In [6],
the authors suggest manipulating the observed examples by intervening on possible shortcuts and
measuring the behviour of the model under such interventions. However, such work relies on being
able to faithfully manipulate the observed data, which is not possible in most cases.

3 Preliminaries

Setup. We consider a supervised learning setup where the task is to construct a predictor f(X) that
predicts a label Y (e.g., presence and severity of DR) from an input X (e.g., image). We assume that
at training time only, we have a d-dimensional set of auxiliary labels Vd. We use V i to denote the ith

column of Vd, and V d\i to denote all columns of Vd excluding the ith column. We use X ,Y,Vd

to denote the domains of X, Y , and Vd respectively. We make no further assumptions about these
domains: they can contain binary, categorical or continuous variables. We use the notation Z ?? PZ 0

to denote that the two variables Z,Z 0 are independent under the distribution P . Throughout, we
will use capital letters to denote variables, and small letters to denote their value. Our training
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Figure 1: Examples of causal DAGs describing the setting studied in this paper. In all DAGs, the
main label Y and relevant auxiliary labels Vp generate observed input X, redundant auxiliary labels
Vc do not directly affect the input X and Y only affects X through X⇤. In (a) Vc causally affects Y ,
in (b) Vc is correlated with Y in (c) Vc is correlated with Vp, and in (d) Vc is caused by Vp

data consist of tuples D = {(xi, yi,vd

i
)}n

i=1
drawn from a source training distribution Ps. We will

consider predictors f of the form f = h(�(x)), where � is a representation mapping and h is the
final predictor.

We assume that Ps follows an anti-causal structure, meaning that X is generated by the labels Y and
Vp, where Vp is a subset of Vd. We require that Vd does not contain any causal descendants of X.
We use Vc to denote the complement of Vp, i.e., all the variables in Vd that do not directly affect X.
Importantly, we do not assume that we know a priori which auxiliary labels fall into Vp and which
fall into Vc. We assume that the labels Y and Vp are correlated, but not causally related; that is, an
intervention on Vp does not imply a change in the distribution of Y , and vice versa. Such correlation
often arises through the influence of an unobserved third variable such as the environment from which
the data is collected. We make no assumptions about the relationship between Y and Vc or Vc and
Vp: they can be causal or correlations. Figure 1 shows examples of the causal directed acyclic graphs
(DAGs) that conform with our assumptions. Solid edges in the figure depict causal relationships, and
dashed bidirectional arrows depict correlations. Grey nodes are observed at training time while white
nodes are unobserved.

We assume that there is a sufficient statistic X⇤ such that Y only affects X through X⇤, and X⇤ can
be fully recovered from X via the function X⇤

:= e(X). However, we assume that the sufficient
reduction e(X) is unknown, so we use a white node to signify that X⇤ is unobserved in Figure 1.

In addition, we make an overlap assumption with respect to Vp on the source distribution, Ps,
that is we assume that Ps(Vp

)Ps(Y ) is absolutely continuous with respect to Ps(Vp, Y ) i.e.,
Ps(Vp

)Ps(Y ) ⌧ Ps(Vp, Y ). We also assume that Vp has a bounded variance.

To establish the intuition underlying the DAGs in figure 1, we highlight some possible scenarios
that these DAGs depict. In all DAGs, Vp can denote the quality of the funduscope, which is used
to capture the image X, or the sex of the patient which has been shown to affect the shape of the
retina [9]. In figure 1(a), Vc can denote high sugar intake: it can cause diabetes and its complications
such as DR but it likely does not directly affect the appearance of the retina (X) independently of
Y . In figure 1(b), Vc can denote conditions that tend to co-occur with DR such as kidney diseases
[31] in figure 1(c), Vc could be socio-economic characteristics correlated with access to high quality
funduscopes (or healthcare in general) while in figure 1(d) Vc could be sex-specific diseases such as
cervical cancer.

Risk invariance and shortcuts. We define the generalization risk of a function f on a distribution
P as RP = EX,Y⇠P [`(f(X), Y )], where ` is an appropriate loss function e.g., categorical cross
entropy if Y 2 {0, . . . ,K} or mean squared error if Y 2 R. We focus on obtaining an optimal
risk invariant predictor, whose risk is invariant across a family of target distributions P that can be
obtained from Ps by interventions on the DAGs in Figure 1. Specifically, we consider interventions
on any non-causal relationship that keep the marginal distribution of Y constant2. For example, each
distribution in the target family of distributions described by the DAG in figure 1(a) can be obtained
by replacing the source conditional distribution Ps(Vp | Y ) with a target conditional distribution
Pt(Vp | Y ). In this case, the target set of distributions is:

P = {Ps(X | X⇤,Vp
)Ps(X

⇤ | Y )Ps(Y | Vc
)P (Vc

)Pt(V
p | Y )}, (1)

This family allows the marginal dependence between Y and Vp to change arbitrarily.
2Extending our analysis to settings where the marginal distribution of Y also changes is possible, but would

introduce some notational overhead. It would require that a re-weighted risk be invariant across such a family.
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We define the set of risk invariant predictors to be all predictors that have the same risk for all Pt 2 P ,
Frinv = {f : RPt(f) = RP

0
t
(f) 8Pt, P 0

t
2 P} and an optimal risk-invariant predictor frinv to have

the property frinv 2 argminf2Frinv RPt(f) 8Pt 2 P.

The definition of P also allows us to define a set of shortcuts that we care to remove: these are the set
of shortcuts that would lead to varying risk across different distributions in P . We will refer to this
set as P-specific shortcuts, but drop such notation when it is implied from the text.

3.1 The sufficiency of Vp for P-shortcut removal

One of the insights of our work is that by taking into account the causal DAG that generates the data,
we are able to identify a small subset of the auxiliary labels that are sufficient to induce robustness
across P . Specifically, for any DAG that satisfies the properties outlined above, we show that it is
sufficient to remove shortcuts that are labeled by Vp to achieve robustness. We formally state this in
the following proposition.
Proposition 1. Let T (Ps) be any transformation that renders Y ?? T (Ps)

Vp. Under such transfor-
mation, the Bayes optimal predictor is a function of X⇤ only and is asymptotically risk invariant.

The proof of this statement follows from the fact that X⇤ d-separates Y,X when Y ?? T (Ps)
Vp.

Since the full statement of the proof is identical that of proposition 1 in [30], it is omitted.

The proposition states that any transformation that renders Y independent of Vp is sufficient to give
us risk invariance for DAGs that satisfy the assumptions outlined above. Meaning the only shortcuts
that we care about are ones induced by Vp. Transformations T include conditioning on Vp or
reweighting the distribution. As shown in previous work, conditioning might lead to poor estimators
especially when training using stochastic gradient descent with small batches [30, 29]. So we focus
on reweighting schemes. We use P � to denote the outcome of such a reweighting transformation, i.e.,
P �

= T (Ps), with Y ?? P�Vp. We refer to this P � as the ideal distribution. In the DR example, this
distribution is one where we are equally likely to observe a man or a woman with DR.

One important consequence of proposition 1 is that it implies that overlap defined with respect to
Y,Vp rather than Y,Vd is sufficient to identify robust estimators. This consequence is useful when
Vd is high dimensional while Vp is low dimensional since overlap is less likely to be satisfied as the
dimension of the variables increase.

4 Identifying a sufficient subset of shortcuts

Our training strategy follows two steps. First, we develop a novel approach to identify Vp. Second,
by extending previous work on single shortcut removal, we suggest an approach which leverages the
results from the first step to train predictors that are robust to arbitrary types and dimensionality of
auxiliary labels and target labels.

Our approach for identifying Vp leverages principles of d-separation [32]. Briefly, for an auxiliary
label to be a shortcut, it must lie on an unblocked backdoor pathway between X and Y . Hence
Vp should have an unblocked pathway to Y , and an unblocked pathway to X. Our approach to
identifying Vp relies on testing for the existence of these two pathways. We formally state this
intuition in the following proposition.
Proposition 2. For all V i 2 Vd, the following two properties hold:
(1) Y ?? PsV

i | V d\i ) V i 62 Vp, and (2) X 6?? PsV
i | Y,V d\i , V i 2 Vp

Proposition 2 states that if any V i is independent of Y conditional on the rest of the auxiliary
variables, it is not in Vp, and that for any V i in Vp, it must hold that X is not independent of such a
variable conditional on all other auxiliary labels.

These two properties provide us with two tests that enable us to identify which auxiliary labels mark
shortcuts that are necessary to account for to induce robustness versus ones which are not. The first
property might seem redundant since it is strictly weaker than the second property but as we show
later, both properties will be helpful to efficiently identify Vp.

In principle, we can apply nonparametric conditional independence tests to each of the auxiliary
labels to identify whether it satisfies the two properties. However, the power of nonparametric
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independence tests has been shown to decline as a function of of the dimension of the data [34, 35].
This dependence on the dimension of the data makes testing if X 6?? PsV

i | Y,V d\i particularly
difficult in situations where X is high dimensional, which is the case for high resolution images.

Instead, we seek to find a low dimensional representation s(X), with s 2 S such that if and only
if X 6?? PsV

i | Y,V d\i then it also true that s(X) 6?? PsV
i | Y,V d\i. Intuitively, if X contains

any information about a given V i 2 Vd in some source distribution Ps, s(X) must retain such
information. This intuition implies that taking s(X) to be the empirical risk minimizing function that
predicts Vd from X, is a good reduction.

To prove the validity of this simple reduction, we require an assumption on the space of functions S:
we require that each variable in Vp is s-representable. Meaning there exists some s 2 S that can
perfectly predict each V i 2 Vp. We do not require that such an s is identifiable using finite samples.
We note that under the causal DAGs in figure 1, for an appropriately chosen S, there should exist
performant (albeit not perfect) predictors of Vp from X since Vp causes X. In cases where Vp is
binary, the assumption of s-representability can be relaxed. In that case it is sufficient to assume
that S contains some s with bounded � error such that � is less than the proportion of the smallest
subgroup defined by Y,Vp. Under such assumption, the following proposition establishes the validity
of this simple reduction.
Proposition 3. For an appropriately chosen loss function `, and function space S, let s⇤(X) =

argmin
s2SEPs [`(s(X),Vd

)]. Then the following holds for all V i 2 Vd

s⇤(X) 6?? PsV
i | Y,V d\i , X 6?? PsV

i | Y,V d\i (2)

Proposition 2 together with proposition 3 give us a practical and efficient procedure to identify
a subset of Vd that is sufficient for P-shortcut removal. For each V i, we propose first testing if
Y ?? PsV

i | V d\i. We remove labels for which this relationship holds (consistent with condition 1
of proposition 2). We use d to denote the remaining set of auxiliary label indices. For the remaining
labels in d, we test if the second condition of proposition 2 holds as follows. We split the training
data into two sub samples D1 and D2. We use D1 to train a model s : X ! V d. We then proceed by
predicting the value of S = s(xi) for i 2 D2, and testing if S ?? V i | Y,V d/ i for all i 2 d.

To conduct the conditional independence tests, we use kernel-based conditional independence (KCIT)
methods described in [43]. Such methods ascertain conditional independencies by analyzing the
cross covariance operator. Intuitively, the cross-covariance operator can be thought of as an extension
of the covariance matrix when the variables are infinite dimensional. We formally define it next.
Definition 1. Let Z,Z 0 be a pair of random variables defined on Z ⇥ Z 0 and let ⌦Z and ⌦Z0 be
two Reproducing Kernel Hilbert Spaces (RKHSs) defined on Z and Z 0. Define the cross-covariance
operator of Z,Z, Czz0 : ⌦Z ! ⌦Z0 such that hg, Czz0gi = Cov[g(Z), g0(Z 0

)], 8g 2 ⌦Z , g0 2 ⌦Z0

In KCIT, the cross covariance operator is used to conduct a hypothesis test with the null hypothesis
defined as s(X) ?? PsV

i | Y,V d\i, for example in our case. We use the Gamma approximation
method suggested in [43] to approximate the null distribution and reject the null if the p-value
corresponding to the independence test is less than a pre-specified significance level. To account
for the fact that we are conducting multiple hypothesis tests, we set the significance level to be
low (0.001), following the authors of KCIT. We use the radial basis function (RBF) to estimate the
kernel matrices, and use the median heuristic described in [19] to set the kernel bandwidth. Finally,
KCIT requires setting a parameter ✏, which is a small regularization parameter. We set ✏ = 10

�3

as suggested by the authors but we find that the tests are generally robust to this hyperparameter.
A full description of the shortcut identification procedure is included in the appendix, section C,
procedure 1.

This procedure gives us a subset of bVp, which is an estimate of Vp that is sufficient for shortcut
removal. When characteristic kernels such as the RBF are used as the basis for the RKHS over
which we measure the cross covariance operator, Zhang et al. [43] show that KCIT is asymptotically
consistent, which in turns mean that bVp is an asymptotically consistent estimate of Vp.
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5 Building risk invariant predictors

Given the identified set bVp, the challenge of building an invariant predictor reduces to an extension
of Makar et al. [30]. In that work, the authors study a more restrictive setting where it is assumed that
Vc

= ;. They develop a reweighting scheme and a causally-motivated regularization scheme that
lead to efficient and asymptotically robust predictors. However, their reweighting scheme assumes
that the auxiliary and target labels are binary, while the regularization scheme assumes that there
is a single, binary auxiliary label. We extend both components of the training procedure to a more
general setting with no restrictions on the dimension or type of auxiliary and target labels.

Reweighting to recover P �. Guided by our findings from proposition 1, and similar findings in [30],
we reweight data sampled from an arbitrary Ps to generate a pseudo-sample from P �. As proposition 1
states, the Bayes optimal predictor under this reweighted distribution is robust to the shortcuts.
Unfortunately, the reweighting scheme suggested by Makar et al. [30] does not extend to our setting,
where bVp can be an arbitrary (rather than binary) high dimensional (rather than single dimensional)
variable. Instead of defining the sample weights to be ubin

(yi, bvp

i
) =

Ps(Y=yi)Ps(
bVp

=bvp
i )

Ps(Y=yi,
bVp=bvp

i )
, which

assumes that bVp and Y are binary, we leverage permutation weighting [3] which allows for arbitrarily
valued bVp and Y . Permutation weighting proceeds by permuting Y in the training data to create
D0

= {(xi, y⇡(i),v
d

i
)}n

i=1
, where ⇡ is a random permutation of the indices. Such a permutation

mimics the desirable independencies in P � by breaking any correlations between Y , and bVp. The
original D and the permuted D0 are stacked and a label C 2 {0, 1} is given to examples in the
observed and permuted data respectively. A classifier ⌘ : Y ⇥ Vp ! {0, 1} is trained to learn
Ps(C = 1 | Y, bVp

). The final weights are then computed as:

ui =
⌘(bvp

i
, yi)

1 � ⌘(bvp

i
, yi)

=
Ps(C = 1 | bvp

i
, yi)

Ps(C = 0 | bvp

i
, yi)

. (3)

We use ũi to denote a normalized version of ui such that
P

i
ũi = 1. As Arbour et al. [3] show,

ui =
Ps(yi)Ps(bvp

i )

Ps(yi,bvp
i )

=
dP

�

dPs
. Hence, under this reweighting scheme, the empirical risk minimizer

f⇤
= argmin

f

P
i
ũi`(f(xi), yi) is asymptotically risk invariant. The proof for this statement is

identical to results by Makar et al. [30] and is therefore omitted.

Causally-motivated regularization for lower variance. While reweighting gives asymptotically
robust estimators, such estimators tend to have higher variance, i.e., they are inefficient in finite
samples [10]. Following Makar et al. [30], we propose a regularization scheme that leads to more
efficient predictors by leveraging findings from proposition 1. This proposition establishes that under
P �, the optimal risk invariant predictor is a function of X⇤ only and hence encodes the following
independence property: �(X) ?? bVp. As a result, we consider penalizing models which do not encode
this independence property. To do so, we will leverage the Hilbert Schmidt Independence Criterion
(HSIC). For two arbitrary variables Z,Z 0, the HSIC is defined as the squared Hilbert-Schmidt (HS)
norm of their cross covariance operator Czz0 , defined in definition 1. i.e. HSIC(Z,Z 0

) := kCzz0k2
HS

.
The HSIC measures the magnitude of the correlation between infinite dimensional projections of two
arbitrary variables Z,Z 0. As before, we use the RBF kernel when estimating the HSIC.

For data sampled from P �, we can use the HSIC to enforce �(X) ?? bVp by penalizing
HSIC(�(X), bVp

). However, in the more likely case where Ps 6= P �, we need to penalize a
weighted version of the HSIC. This weighting in necessary since the independence property only
holds under P �. Specifically, we use the weighted HSIC estimator suggested by Hu et al. [23] (see
their Proposition 3) 3.

Putting all components of our approach together the final objective to optimize is

h⇤,�⇤
= argmin

h,�

X

i

ũi`(h(�(xi)), yi) + ↵ · \HSIC
u

�
(�(X), bVp

), (4)

3The HSIC estimator we use here has a finite sample bias of O(n�1), which is negligible in light of the finite
sample fluctuations that dominate the convergence rate. We use this biased estimator because it is more efficient
to estimate and is more commonly used in the literature.
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where ↵ > 0 is a hyperparameter that controls the cost of violating the HSIC penalty, \HSIC
u

�
is

the estimate of the HSIC, computed over samples weighted by ũ which is defined in equation (3)
using a kernel with bandwidth �. In contrast to Makar et al. [30], by regualrizing the HSIC rather
than the Maximum Mean Discrepancy, our approach allows for arbitrary types of auxiliary labels
with large dimensions. In the appendix, we show that this improvement does not come at the cost of
statistical efficiency by showing that our estimator inherits the finite sample efficiency guarantees of
the methods described in [30].

Cross-validation. The objective function in (4) depends on two hyperparameters: the cost of the
HSIC penalty ↵, and the penalty’s kernel bandwidth �. Unlike many regularizers, the HSIC penalty
depends on the distribution of the data, and is vulnerable to overfitting, such that the estimated \HSIC

on the training data underestimates the population HSIC. For this reason, we follow a two-step cross-
validation procedure. Letting Dvalid denote a held out validation set, �valid denote {�(xi)}i2Dvalid , and
similarly define bVp

valid, our cross validation procedure proceeds as follows. In the first step, for a given
↵ = ↵0, � = �0, we first check if the corresponding �valid is independent of bVp

valid. We do so using
the permutation test suggested by Gretton et al. [19]. This test entails creating 100 permutations of the
validation set, with the kth permutation defined as D0

= {xi, yi, bvp

⇡k(i)
}, and ⇡k

(i) is a permutation
of the indices. We compute a vector of HSIC values for each of the permuted datasets, and the
corresponding 1 � �th quantile of that vector. � is a pre-specified significance level that we use to
accept or reject the null hypothesis that the estimated �(X),Vp are independent. Similar to before,
we set that to be 0.001 as a heuristic to account for the multiple tests. We reject ↵0, �0 as valid
hyperparameters if \HSIC as calculated on the unpermutated validation set is larger than the value
corresponding to the 1 � �th quantile. Repeating this process for all ↵, � candidates gives us a subset
of the hyperparameters that lead to models encouraging the desired invariances. In the second step,
we pick the best performing model out of this subset of candidate functions.

Pseudocode for our full approach is included in the appendix section C.

Remarks:
1. Invariance to the full Vd. We note that it is possible to bypass the first step of our approach–
identifying Vp–and define the weights in equation 3, and the HSIC with respect to Vd. Such a
predictor might still be asymptotically robust but it will have higher variance than an estimator that
relies on Vp only for two reasons: first, when d > p, u as defined with respect to Vd will be less
stable due to conditioning on a larger set of variables. In the appendix, we discuss how this might
translate into a less favorable generalization error bound. Second, the power of the HSIC estimation
problem decline as a function of of the dimension of the data [34, 35], making our regularizer less
reliable in small samples. We empirically validate the limitations of bypassing the first step of our
approach in section 6.

2. Errors in bVp. While it is true that the two independence tests outlined in section 4 are asymptoti-
cally consistent, meaning bVp should converge to Vp as the sample size goes to 1, it is possible that
bVp 6= Vp due to finite sample variability. Under some additional assumptions, it can be shown that
the generalization error bound of our proposed estimator has a fourth order (i.e., mild) dependence
on errors in bVp, following results by Foster and Syrgkanis [13]. The details of this analysis are left
as future work.

6 Experiments

We empirically test the two main claims in this paper: (1) that our approach is able to identify a
sufficient set of auxiliary labels to induce robustness to shortcuts, and (2) that our approach leads to
invariant predictors in settings where the target label and/or the auxiliary labels are high dimensional
and/or non-binary. We study two different tasks: predicting bird types from images, and predicting
diabetic retinopathy from fundus images. Throughout, we will evaluate the performance of our
approach vis-a-vis baseline methods by comparing the area under the receiver operating curve
(AUROC) on a set of shifted test distributions sampled from the family described in equation 1. Our
code is available on https://github.com/mymakar/cm_multishortcut_id_removal.
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6.1 Waterbirds

Setup. The goal of this setting is to test if our approach is able to identify shortcuts and in turn lead to
more efficient predictors. Our data generation process follows the DAG described in figure 1(a), where
we have a high dimensional set of auxiliary labels with a small subset that affects both the outcome
Y and the image X while the rest only affect Y . We follow Sagawa et al. [36] by constructing a
semi-synthetic waterbirds dataset where the task is to predict Y , the type of bird (land or water).
In this setting Vp is 2 dimensional, with V p0 representing the image background (land or water)
and V p1 camera artifacts (present or absent). To generate the background shortcut, we combine
images of water and land birds extracted from the Caltech-UCSD Birds-200-2011 (CUB) dataset
[42] with water and land background extracted from the Places dataset [44]. To generate the camera
artifact shortcut, we add small black patches to the image if camera artifacts are present. In addition,
we generate 10 auxiliary labels (Vc) that affect the outcome Y but not the image X. All labels in
this example (Y , Vp and Vc) are binary. Additional details about the data generation process and
examples of the generated images are included in the appendix.

We generate the source distribution Ps such that Ps(V p0
= 1 | Y = 1) = Ps(V p0

= 0 | Y =

0) ⇡ 0.75, and Ps(V p1
= 1 | Y = 1) = Ps(V p1

= 0 | Y = 0) ⇡ 0.65. We also generate three
test distributions: Ps, PFlip, and P �. Ps is the same as the training distribution. It serves to show
us how models perform in-distribution. P � is the ideal distribution, where P �

(V p0
= 1 | Y =

1) = P �
(V p0

= 0 | Y = 0) = P �
(V p1

= 1 | Y = 1) = P �
(V p1

= 0 | Y = 0) = 0.5. It
presents a test on how models perform with some deviation from the training distribution. Finally,
PFlip is the most dissimilar to the training distribution, where the relationship between V p0, V p1

and Y is flipped in that PFlip(V p0
= 1 | Y = 1) = PFlip(V p0

= 0 | Y = 0) ⇡ 0.25, and
PFlip(V p1

= 1 | Y = 1) = Ps(V p1
= 0 | Y = 0) ⇡ 0.35. The relationship between Vc and Y is

the same across all three test distributions. We introduce noise by randomly flipping 1% of the labels.

We use ResNet-50 [22], pretrained on ImageNet [12]. All models in this paper are implemented
in TensorFlow [1]. We present the results from 10 simulations. In each simulation, we generate
different train/test splits, different draws of auxiliary labels and different bird-background-camera
artifact combinations. Additional details about training are included in the appendix.

Baselines. We compare our approach to the following baselines: (1) L2 is the standard neural network
trained to minimize the empirical risk, with an L2 penalty on the model weights. (2) W-L2-FullV
minimizes the weighted empirical risk, with the weights computed as defined in equation 3 but using
the full set of 12 auxiliary variables, Vd. (3) W-L2-S is similar to W-L2-FullV but it follows the
first step in our approach to first identify a sufficient set of auxiliary labels to compute the sample
weights. (4) W-L2-HDX is similar to W-L2-S but it does not leverage our findings in proposition 3,
i.e., instead of first reducing X to the low dimensional s(X), it conducts the conditional independence
tests on the raw input X. (5) W-HSIC-FullV is similar to W-L2-FullV but instead of an L2 penalty,
it penalizes the HSIC penalty defined with respect to the full Vd (6) W-HSIC-HDX is similar to
W-L2-HDX but it penalizes the HSIC penalty defined with respect to the set of auxiliary labels
identified based on conditional tests on the raw input X, without using our s(X) reduction.

Note that as Sagawa et al. [36] show, the baselines W-L2-FullV, W-L2-S and W-L2-HDX are
equivalent to distributionally robust optimization in some special cases.

Results. We find that by reducing X to its low dimensional sufficient statistic, our approach is able to
correctly identify the two true auxiliary labels which mark the true shortcuts in all 10 simulations. By
contrast, utilizing the full X rather than s(X) to conduct the conditional independence tests identifies
the correct auxiliary labels in 1 out of the 10 simulations, and for the remaining 9 it is able to identify
only one of the two auxiliary labels.

Figure 2 shows the predictive performance of each of the models as measured by the AUROC
(y-axis), on the three different test distributions PFlip, P �, and Ps (x-axis). We find that our approach
outperforms all others under distribution shift and performs comparably to the best models in-
distribution. As expected, the L2 model performs well only in-distribution but its performance
quickly deteriorates out of distribution signaling a reliance on the shortcuts. All models penalizing the
HSIC penalty perform better than their L2 regularized counterparts signaling that the HSIC penalty
is successful in leading to more efficient estimators. W-HSIC-HDX and W-HSIC-FullV are unable
to achieve the same level of robustness as our approach highlighting the limitation of conducting
the conditional independence tests on the full, “unreduced” X, and the importance of selecting a
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Figure 2: Waterbirds results. x�axis shows the test distribution, y�axis shows the AUROC. Our
approach outperforms others in the most severe distribution shifts (flipped distribution) and performs
comparably to others in-distribution.

sufficient subset of shortcuts respectively. However, these two models still perform better than models
which do not include the HSIC penalty, signifying some robustness to incorrect estimates of bVp.

While in principle the L2 model should outperform others when the test distribution is the same as
the training distribution, it–somewhat surprisingly–does not. This could be explained by the fact that
the HSIC regularized models are more efficient in finite samples, as suggested by proposition A1 in
the appendix, section B. However, better performance of the L2 model in distribution would likely
translate into even worse performance in shifted distributions such as the “flipped” distribution.

6.2 Diabetic Retinopathy

Setup. In this setting, we examine the validity of our approach when the outcome is non-binary.
We use a publicly available dataset made available by EyePACS, LLC [11]4. Here, we predict the
presence and severity of diabetic retinopathy (DR) using fundus images, with Y 2 {0, . . . , 4}. To
focus the analysis on the challenges pertaining to categorical outcomes, we generate a single binary
auxiliary label, V p, reflecting the presence or absence of funduscope artifacts. Similar to before, we
add small black patches to the image if funduscope artifacts are present. We simulate the training
distribution Ps with Ps(V p

= 1 | Y = 0) = Ps(V p
= 0 | Y > 0) = 0.9. We introduce noise by

randomly permuting 1% of the labels.

Here, we compare two baselines to our approach: L2 is defined similar to before, W-L2 is a weighted
version of L2, using weights defined with respect to V p. We follow Li et al. [26] in using an
Inception-V3 architecture [40] to train all models. We present the results from 10 simulations. In
each simulation, we generate different train/test splits and different draws of auxiliary labels.

Similar to the waterbirds setting, we measure the performance of the three models on three distribu-
tions Ps, PFlip, and P �, where PFlip has PFlip(V p

= 1 | Y = 0) = PFlip(V p
= 0 | Y > 0) = 0.1 and

P � is the ideal distribution.

Results. Table 1 shows the AUROCs averaged over 10 simulations and their corresponding standard
errors. The results show that our approach vastly outperforms others in the most severe distribution
shifts, and performs relatively on par with the other models in-distribution. The slight drop in accuracy
in-distribution is attributable to the fact that the baselines exploit the shortcut whereas our approach
does not. The results confirm that our approach extends to setting where the target label is non-binary.

4Approval for the use of this data set for the purpose of research was obtained via correspondence with the
data curators.
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AUROC (STE)
Model Flipped (PFlip) Ideal (P �

) Same (Ps)

L2 0.69 (0.009) 0.82 (0.003) 0.92 (0.001)
W-L2 0.68 (0.015) 0.82 (0.005) 0.92 (0.001)
Ours 0.72 (0.026) 0.83 (0.007) 0.91 (0.007)

Table 1: Diabetic retinopathy results: AUROCs averaged over 10 simulations and standard deviations
across 3 test distributions. Our approach outperforms others especially when the distribution shift is
most severe, and performs comparably to others in-distribution

7 Conclusion

We presented an approach to identify a sufficient set of shortcuts and leverage the identified shortcuts
to build predictors that are invariant to distribution shifts. Guided by insights from the causal DAG
underlying the prediction problem, we analyzed the theoretical properties of our suggested approach,
showing that it is both consistent and efficient. Empirically, we showed that our approach outperforms
others using a semi-simulated dataset and a medical dataset.

Limitations. One of the strengths of our approach is identifying a small subset of relevant shortcuts.
In doing that, we were able to weaken the overlap assumption relative to an approach that treats
all auxiliary labels as possible shortcuts. However, in cases where Vp is high dimensional, this
weaker overlap assumption might be violated, especially with small samples. One way to address this
limitation is by first checking if overlap is satisfied. Absent strong assumptions or additional data,
our approach (and any other learning-based approach) will not be able to generalize to subgroups for
which overlap is violated.

Societal impact. Our approach could be used in fairness applications where invariance to auxiliary
sensitive labels is desired. We caution that like any machine learning-based predictor, our approach is
imperfect in that it might still encode some biases. In addition, when used for the purpose of fairness,
the first step of our approach might not be desirable: practitioners might wish to enforce invariance
with respect to a pre-specified sensitive label rather than a learned label.
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