
Supplemental Materials: Data Augmentation MCMC for

Bayesian Inference from Privatized Data

S-1 Statement on Societal Impacts

We do not foresee direct negative societal impact from the current work. Admittedly, our method
is based on imputing the confidential database which privacy mechanisms seek to protect. We can
assure the reader that such imputations are based on formally differentially private data products
and hence do not violate differential privacy. Also, one may argue that our work is catalytic to
enhancing the ‘disclosure risk’ of individuals, i.e. an adversary might be able to make accurate
posterior inference about an individual if the adversary has highly informative and correct prior and
modeling information to begin with. Granted, no existing privacy frameworks can guard against this.

S-2 Proofs in Section 3.1

Proposition 3.1. For a pure ✏-DP privacy mechanism ⌘, the acceptance probability ↵ from Equation
(5) satisfies ↵(x?

i | xi, x�i, ✓) � exp(�✏), for all ✓, x�i, xi, x
⇤
i .

Proof. Step 2a of Algorithm 1 proposes a new state x
?
i for the i-th record xi according to the model

f(· | ✓). Notice that the proposed latent database x
? = (x?

i , x�i) and the current latent database
x = (xi, x�i) differ in only one entry. Then, the probability of accepting a proposed state x

?
i is

↵(x?
i | xi, x�i, ✓) = min (⌘✏(sdp | x?)/⌘✏(sdp | x), 1). This ratio compares two adjacent databases

x
? and x. ✏-DP guarantees that the probability ratio of any output is within exp(±✏) for adjacent

databases by Equation (1).

Proposition 3.2. The Gibbs sampler described in Algorithm 1 requires O(n) number of operations
to update the full latent database according to p(x | ✓, sdp).

Proof. We prove that each update for xi | x�i, ✓, sdp is O(1) and hence the full sweep for the
latent database x | ✓, sdp is O(n). Given current state (x, ✓), in Step 2a, the method proposes from
x
?
i ⇠ f(· | ✓) independent of other entries x�i and the current state xi; the runtime of this local

proposal step does not depend on n. Since ⌘(sdp | x) is record-additive (Assumption 2), then
t(x?

, sdp) can be computed in O(1) time by t(x?
, sdp) = t(x, sdp) � ti(xi, sdp) + ti(x?

i , sdp) of
Step 2b. The density evaluations in Step 2c are also O(1). Overall, to update all xi, i = 1, 2, . . . , n,
the runtime is O(n).

S-3 Proofs in Section 3.2

S-3.1 Ergodicity

In Algorithm 2, we first present a Metropolis-within-Gibbs sampler that is more general than
Algorithm 1. We prove its ergodicity in Theorem S-3.1, which implies Theorem 3.3.

The Metropolis-within-Gibbs sampler in Algorithm 2 consists of alternating Metropolis-Hastings
steps targeting p(✓ | x, sdp) = p(✓ | x) and p(x | ✓, sdp). In Assumption 1 we have assumed
that a Markov kernel for p(✓ | x) exists. A typical kernel involves first proposing from some
distribution q✓(✓ | x) and then accepting or rejecting the proposed state an appropriate probability.
The data-augmentation steps consist of the sequence of updates p(xi|x�i, ✓, sdp), for i = 1, 2, . . . , n.
Algorithm 1 suggests using the proposal x?

i ⇠ f(· | ✓) independent of current state x. In this more
general sampler, described in algorithm 2, we use proposals qx(x?

i | xi, x�i, ✓, sdp) that can depend
on current states of x and ✓, as well as the private query sdp. Notice that since latent records are
exchangeable in both f(x | ✓) and ⌘(sdp | x), respectively by the i.i.d. model assumption and by
record-additivity, it is sufficient to use the same kernel qx for all xi.
Theorem S-3.1. Under conditions A1 - A4 below, the Gibbs sampler of Algorithm 2 on the joint
space (Xn ⇥ Rp) is ergodic and it admits ⇡(x, ✓) as the unique limiting distribution.

A1. The prior distribution is proper and ⇡0(✓) > 0 for all ✓ in ⇥ = {✓ | f✓(x) > 0 for some x}.

1



Algorithm 2 A general Metropolis-within-Gibbs sampler for p(✓, x | sdp)

1. Conditional update of p(✓ | x):
(a) Propose ✓

? ⇠ q✓(✓? | ✓, x).
(b) Accept ✓? with probability

↵(✓? | ✓, x) = min

⇢
q✓(✓ | ✓?, x)p(✓?)

Qn
i=1 f(xi | ✓?)

q✓(✓? | ✓, x)p(✓)
Qn

i=1 f(xi | ✓)
, 1

�

2. For each i = 1, . . . , n, update p(xi | x�i, ✓, sdp) by:
(a) Propose x

0
i ⇠ qx(x?

i | xi, x�i, ✓, sdp),
(b) Accept the proposed state x

?
i with probability

min

⇢
qx(xi | x?

i , x�i, ✓, sdp)⌘(sdp | x?
i , x�i)f(x?

i | ✓)
qx(x?

i | xi, x�i, ✓, sdp)⌘(sdp | xi, x�i)f(xi | ✓)
, 1

�
.

A2. The model is such that the set {x : f(x | ✓) > 0} does not depend on ✓.

A3. The privacy mechanism satisfies ⌘(sdp | x) > 0 for all x 2 Xn
.

A4. From a valid current state, the proposal kernels satisfies (a) q✓(✓? | x, ✓) > 0 for all ✓? 2 ⇥,
and (b) qx(x?

i | xi, x�i, ✓, sdp) > 0 for all x?
i with f(x?

i , x�i | ✓) > 0.

Proof. It is sufficient to show that the chain is ⇡-invariant, aperiodic, and ⇡-irreducible [Tierney,
1994]. The Metropolis-within-Gibbs sampler is aperiodic by construction, since some proposals can
be rejected. It is also ⇡-invariant because it is composed of kernels that satisfy detailed balance with
respect to ⇡.

Irreducibility means that, informally, every set A with ⇡(A) > 0 can be reached by the Gibbs sampler
from any starting point within finitely many steps. We first prove irreducibility for n = 1 and
generalize this to a sample size of n � 2. Suppose A ⇢ X1 ⇥ ⇥ with ⇡(A) > 0 and suppose the
current state of the Gibbs chain is (x(0)

, ✓
(0)). For any state (x, ✓) 2 A we have q(✓ | x(0)

, x
(0))q(x |

x
(0)

, ✓, sdp) > 0 by A4. The acceptance ratios are also positive by A1-A4. As a result

P (A | x(0)
, ✓

(0))

�
Z Z

A
q(✓ | x(0)

, x
(0))q(x | x(0)

, ✓, sdp)↵(✓ | x(0)
, x

(0))↵(x | x(0)
, ✓, sdp)dxd✓ > 0.

So when n = 1, we can reach A from any starting point in one iteration of the Gibbs sampler. For
n � 2, we can reach the set A in at most n steps: the first iteration moves x1 and ✓ into A, and
subsequent steps moves other xi’s into A while keeping all previous xj’s inside A by rejecting
proposals leaving A.

A4 details conditions on the proposal distributions to ensure ergodicity of Algorithm 2. It can
be relaxed so long as ⇡-irreducibility is satisfied. Also, A4a should be viewed as a condition
implied by the validility of a kernel targeting p(✓ | x) from Assumption 1 and, therefore, is not an
additional assumption. Importantly, conditions in A4 are mild because they cover common proposal
distributions; Gaussian random walk on ✓ for A4a and the independent Metropolis proposals f(· | ✓)
for A4b are such examples. In Algorithm 1, we use the kernel qx(x?

i | xi, x�i, ✓, sdp) = f(x | ✓),
which satisfies f(x? | ✓) > 0 by A2. Hence Theorem S-3.1 implies Theorem 3.3.

S-3.2 Geometric ergodicity of Algorithm 1

Theorem 3.4. Assume that in step 1 of Algorithm 1, one can directly sample from p(✓ | x). Under
A1-A3 of Theorem 3.3, the resulting (x, ✓) chain, as well as the marginal chains, are geometrically
ergodic if ⌘ satisfies ✏-DP and there exists 0 < a  b < 1 such that a  f(x | ✓)  b 8✓, x.
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Proof of Theorem 3.4. The assumption of a  f(x | ✓)  b leads to the inequality

p(✓ | x) = p(✓)f(x | ✓)R
p(✓0)f(x | ✓0)d✓0

� a

b
p(✓),

since p(✓) is a proper prior by A1 of algorithm 1.

This proof proceeds by verifying the drift and minorization conditions of the marginal Markov
transition kernel on X according to Theorem 8 of Johnson et al. [2013]. We first present a full proof
for n = 1 and then generalize the arguments to n � 2. In this proof, we abbreviate ⌘(sdp | x) as
⌘(x).

Recall that the probability of accepting proposed state x
? is ↵(x? | x, ✓) = min

⇣
1, ⌘(x?)

⌘(x)

⌘
. The

probability of accepting any proposal from the current state is ↵(x, ✓) =
R
↵(x? | x, ✓)f(x? | ✓)dx?

.

Let K(x0 | x, ✓) denote the Markov transition kernel with respect to the proposal x? ⇠ f(· | ✓), and
let K(x0 | x) =

R
K(x0 | x, ✓)p(✓ | x)d✓ be the marginal kernel, which integrates out the exact ✓

update from p(✓ | x). We have

K(x0 | x, ✓) = f(x0 | ✓)↵(x0 | x, ✓) + (1� ↵(x, ✓))�x(x
0),

where �x(x0) is the Dirac-delta function. Then the marginal transition kernel satisfies

K(x0 | x, ✓) � f(x0 | ✓)↵(x0 | x, ✓) � a exp(�✏)

since a(x0 | x, ✓) � exp(�✏) according to Proposition 3.1. As a result, we have

p(✓ | x)K(x0 | x, ✓) � a

b
p(✓) · a exp(�✏) (S1)

Equation (S1) is sufficient for a minorization condition K(x0 | x) � a
2
b
�1 exp(�✏) to hold on

x
0 2 X since p(✓) is proper.

To establish a drift condition, let w : X ! R>0 be integrable with v =
R
w(x)dx < 1. Then we

have the conditional expectation

KX [w(x)] = E
h
w(X(t+1)) | X(t) = x

i

=

Z
w(x0)K(x0 | x, ✓)dx0

=

Z Z
w(x0)K(x0 | x, ✓)p(✓ | x)d✓dx0

=

Z Z
w(x0)f(x0 | ✓)↵(x0 | x, ✓)p(✓ | x)d✓dx0 + w(x)

Z
(1� ↵(x, ✓))p(✓ | x)d✓


Z Z

w(x0)f(x0 | ✓)p(✓ | x)d✓dx0 + w(x)

Z
p(✓ | x)d✓

Using f(x | ✓)  b, we can show that

KX [w(x)]  bv + w(x), (S2)

which is the drift condition. Combining Equations (S1) and (S2), we invoke Theorem 8 of Johnson
et al. [2013] to establish geometric ergodicity of the Gibbs sampler.

When n � 2, the proof shall proceed by denoting K(x0 | x, ✓) as the Markov transition kernel on
x, x

0 2 Xn and similarly for K(x0 | x). The drift condition becomes KX [w(x)]  b
n
v + w(x) and

minorization condition becomes K(x0 | x)  (a2b�1 exp(�✏))n.
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S-4 Log-linear Model: More Details

Our full model, along with conjugate priors is given in the following equation array:

prior p ⇠ Dirichlet(↵), (S3)

p
k
i� ⇠ Dirichlet(↵k

i ) 8i, (S4)
data model n� ⇠ Multinomial(N, p�), (S5)

n
k
i� ⇠ Multinomial(ni, p

k
i�) 8i, (S6)

privacy noise Lijk
i.i.d.⇠ Laplace(0, 2K/✏), (S7)

m
k
ij = n

k
ij + Lijk 8i, j, k, (S8)

privatized output sdp = (mk
ij). (S9)

S-5 Linear Regression: More Details and Results

Data generating parameters. Our experiments use continuous predictors X0, which we model
as X

i
0

i.i.d.⇠ Np(m,⌃). We choose ⌃ = In. We simulate mi
i.i.d.⇠ N (0, 1) and hold it fixed at

m = (0.9,�1.17).

Conjugate prior distribution. Our experiments fix �
2 at the data generating value of �2 = 2.

Given prior � ⇠ Np+1(0, ⌧2Ip+1) , the posterior distribution � | �2
, x, y is multivariate Normal with

covariance matrix ⌃n = (x>
x/�

2 + Ip+1/⌧
2)�1 and mean vector µn = ⌃n(x>

y)/�2
. The prior

for � is �i
i.i.d.⇠ N (0, ⌧2 = 22).

The effect of clamping. We view clamping as part of the privacy mechanism. The clamping step
first truncates x and y values into a fixed range, and then performs data-independent location-scale
transformation so that all values of x̃ and ỹ are in the range [�1, 1]. Although with conjugate priors
the confidential data posterior p(✓ | x, y) is tractable, the clamped data posterior p(✓ | x̃, ỹ) no longer
enjoys conjugacy and is now intractable. Since the clamping parameters are known, to sample from
the clamped data posterior, one can design data-augmentation MCMC algorithms to impute truncated
values. Such an imputation algorithm might take O(n) per iteration. We also highlight that as ✏ ! 1,
in which case privacy noise approaches zero, the posterior p(✓ | sdp) approaches p(✓ | x̃, ỹ).

Acceptance rate. In Section 5, we report the posterior means of �,�1 and �2 given sdp produced
from the same fixed latent database (x, y), with different privacy levels. We also report the acceptance
rate of p(xi | x�✓, ✓, sdp) updates in each iteration of the Gibbs samplers. Recall that for each sdp,
we run the Gibbs sampler for 10000 iterations and discard the first half for burn-in. From Figure S1,
we can see that the empirical acceptance rate of the IM proposals is much higher than the lower
bound of Proposition 3.1.

Posterior credible intervals. We repeat the credible interval experiment on log-linear models. First
we sample one � parameter from the prior, and hold this fixed. Then for each ✏ value, we produce
100 confidential databases (x, y) and one private sdp for each non-private one, and then run a chain
for 10,000 iterations targeting � | sdp. After burn-in, from each chain, we produce a 90% credible
interval for each �0,�1 and �2. We then calculate the empirical coverage which is reported in Table
1.

While at n = 100, we do not expect the frequentist coverage of the credible intervals to exactly match
the nominal level of .9, note that most of the values are close to or above .9. The coverage on �1

is lower than 90%, which might be due to the true parameter being furthest from the prior mean of
0. Another explanation is that data quality loss from truncation and location-scale transformations
during the clamping procedure can not be fully recovered by our inference procedure.

4



0.00

0.25

0.50

0.75

1.00

0.1 0.3 1 3 10

epsilon

ac
ce

pt
an

ce
 ra

te

bound low mean

Figure S1: Observed acceptance rates for the log-linear model. The blue (above) point clouds indicate
the average acceptance rate, and the orange (below) points indicate the observed minimum acceptance
rate of each chain. The solid black line is the lower bound of Proposition 3.1.

✏ �0 = �1.79 �1 = �2.89 �2 = �0.66
0.1 .99 .60 .99
0.3 1 .66 .94
1 1 .84 .80
3 1 .84 .75
10 .93 .87 .85

Table 1: Coverage of �0,�1,�2 in linear regression. Coverage is based on 100 replicates.

S-6 Statement on Computing Resources

We ran the experiments on an internal cluster. We used a server with a pair of 64-core AMD Epyc
7662 ‘Rome’ processors and with 256GB of RAM. We ran each MCMC chain for 10000 iterations
and a typical chain takes approximately 330 seconds for linear regression and approximately 404
seconds for the log-linear model.
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