
Monte Carlo Tree Descent for Black-Box Optimization

Yaoguang Zhai
UCSD

Sicun Gao
UCSD

Abstract

The key to Black-Box Optimization is to efficiently search through input regions
with potentially widely-varying numerical properties, to achieve low-regret descent
and fast progress toward the optima. Monte Carlo Tree Search (MCTS) methods
have recently been introduced to improve Bayesian optimization by computing
better partitioning of the search space that balances exploration and exploitation.
Extending this promising framework, we study how to further integrate sample-
based descent for faster optimization. We design novel ways of expanding Monte
Carlo search trees, with new descent methods at vertices that incorporate stochastic
search and Gaussian Processes. We propose the corresponding rules for balancing
progress and uncertainty, branch selection, tree expansion, and backpropagation.
The designed search process puts more emphasis on sampling for faster descent
and uses localized Gaussian Processes as auxiliary metrics for both exploitation
and exploration. We show empirically that the proposed algorithms can outperform
state-of-the-art methods on many challenging benchmark problems.

1 Introduction

Black-Box Optimization (BBO), also referred to as Derivative-free or Zeroth-order Optimization,
considers objective functions that are not known analytically and can only be evaluated at various
inputs, potentially at a high cost. The generality of the formulation makes BBO broadly applicable to
a wide range of challenging problems in machine learning [1, 2, 3] as well as many scientific and
engineering problems [4, 5, 6]. BBO problems over compact domains are naturally NP-hard: in the
worst case, we need to exhaustively search through the combinatorially-large number of local regions
to find high-quality solutions. Thus, the goal of BBO algorithm design is to accelerate optimization
progress with respect to the number of function evaluations.

Existing work on BBO can be categorized into model-based and model-free approaches. Most model-
based approaches, typically in the framework of Bayesian Optimization [7, 8], involve learning
a surrogate function from samples of the unknown function and optimizing the surrogate rather
than the original function. For highly nonlinear functions with high-dimensional input spaces, such
methods are known to be costly because of the need for global modeling of the objective functions.
Various Bayesian optimization approaches utilize ensembles of local surrogate models [9] to improve
performance. Model-free approaches include simulated annealing [10], cross-entropy methods [11],
search gradient [12], as well as traditional direct search methods such as Nelder-Mead [13, 14]. The
goal is to iteratively propose sampling distributions that can approach the optima. Such methods
typically do not attempt to maintain global information about the objective and are challenged
when the optimization landscape is highly non-convex [15]. In general, the lack of mechanisms
for explicitly managing the search over the combinatorially-large number of local regions, in both
standard model-based and model-free BBO methods, has been a major bottleneck of the field.

Recent advances in stochastic tree search methods [16, 17] offer new opportunities for balancing
local search and modeling with more systematic global exploration in BBO problems. In particular,
Monte Carlo Tree Search (MCTS) has recently been introduced for computing good partitioning of
the search space for BBO [3, 18, 19]. These approaches adaptively divide the input space into regions,

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

balancing exploitation and exploration, to only perform Bayesian optimization at local regions and
create better model ensembles. However, because the focus is still on modeling the objective, the
ability of MCTS to quickly expand deep branches into promising search regions has not been fully
utilized. As a result, the curse of dimensionality can still quickly stall the search, while model-free
descent methods may be able to make more progress if they are also guided by MCTS.

We propose a new design of MCTS methods for BBO, with more emphasis on sample-efficient local
descent, which can benefit the most from balanced exploitation and exploration. We use Bayesian
optimization and local modeling as auxiliary metrics for guiding the search tree construction. At
each node in our search tree, we iteratively collect samples in the neighborhood of some anchor
point and also maintain a local Gaussian Process (GP) model for the neighborhood. The samples
are chosen using sampling-based descent such as Stochastic Three Points methods (STP) [20], and
they are also used to train the local GP models. These local models provide surrogate objectives to
propose future samples without querying the ground truth function, and they also provide uncertainty
metrics for exploration steps. We name our overall approach Monte Carlo Tree Descent (MCTD),
because of the focus on faster descent led by samples that are managed by tree search, rather than
using MCTS for explicit space partitioning. We evaluate the proposed methods with experiments on
challenging benchmarks such as nonlinear optimization benchmarks [21], policy search for MuJoCo
locomotion tasks [22], and neural architecture search [23]. We compare our algorithm with state-
of-the-art model-based [9] and MCTS-based methods [19], as well as model-free [24] and direct
search methods [13]. We observe clear benefits in the proposed designs for improving efficiency,
consistently outperforming existing methods on the tested benchmarks.

2 Related Work

Model-based methods. Bayesian optimization [7, 25] typically uses Gaussian Processes to con-
struct surrogate models of the objective functions [8], with samples selected by acquisition functions
(e.g., confidence bounds, expected improvement, etc.) [26, 27]. Model-based methods are known
to suffer from the curse of dimensionality as the problem dimensionality and sample sizes grow
quickly [28]. Many approaches have been proposed to improve the scalability of Bayesian optimiza-
tion methods in high-dimensional problems [29, 30, 31]. For instance, TuRBO is a state-of-the-art
method that uses Thompson sampling with Expected Hypervolume Improvement (EHVI) [9]. It
samples in local trust regions and adjusts the trust regions after each sampling iteration, which has
shown major benefits in improving the efficiency of model-based approaches for BBO.

Model-free methods. Model-free approaches focus on sampling inputs, either point-wise or
population-based, that can incrementally approach optimal regions in the search space without
explicitly maintaining models of the objective. Standard approaches include stochastic methods such
as simulated annealing (SA) [10] and cross-entropy (CE) [11] and deterministic schemes such as
Nelder-Mead (NM) [13]. These methods have been successfully applied to a wide range of problems
but they typically do not aim for optimizing efficiency, i.e., reducing the number of evaluations [32].
They may still offer improvements faster than local methods that rely on gradient information [14, 32].
The Stochastic Three Points method [20] is a simple but effective way of direct search that compares
function values at the base point, in one random direction, and in the opposite direction. Each step
evaluates only two more points that lie in the opposite direction of the current point and moves
towards the one with a better value. To improve sample efficiency, we attempt to combine The
Stochastic Three Points method with model-based methods and carefully design the direction in
which the method will try in each iteration.

Tree search methods. Various tree-search methods have been proposed to improve partitioning of
the search space in BBO, such as Deterministic and Simultaneous Optimistic Optimization (DOO
and SOO) [18], and Hierarchical Optimistic Optimization (HOO) in [33]. Specifically, DOO divides
up the search domain into partitions, each of which is represented by a point within it, assuming
known Lipschitz constants for the objective function. SOO and HOO extend DDO to stochastic
versions but are mostly applicable to low-dimensional problems because of the high cost involved
in creating good partition cells. Voronoi Optimistic Optimization (VOO) [3] can be more efficient
in high dimensions by combining Voronoi partitioning and tree search. LA-MCTS [19] introduces
MCTS to manage the partitioning of the search space. It learns latent actions that define boundaries
between good and bad regions in the search space and prioritizes the expansion of the search tree

2

around the boundaries. When continuing with such splitting, it sets a sampling preferential on every
node in the tree. In every iteration, the search tree is traversed from the root node to a leaf by selecting
the highest approximated value based on Upper Con�dence bounds applied to Trees (UCT) algorithm.
The optimization is then performed from the subspace partition on the selected node. These methods
successfully change the objective function modeling for global space to local regions. However,
the partitioning of the state space, particularly when the space is a high dimension, becomes a very
challenging problem. The tree becomes extremely large when the optimization attempts to learn with
high accuracy in local regions.

3 Preliminaries

We consider the problem of minimizing an objective functionf (x) :
 ! R where the domain

 � Rn is compact. We assume the ability to evaluatef (x) for arbitraryx 2
 but do not have
information about the analytic form of the function or its derivatives.

Gaussian Processes (GP) is commonly used in Bayesian optimization and is also used in our work to
construct a surrogate model for the local model-based optimization. For a �nite collection of points
x1; :::; xk 2 Rd, GP constructs the mean vector� 0 from the functionf at eachx i , and the covariance
matrix � 0 by a kernel at each pair of(x i ; x j); i; j = 1 ; 2; :::k. With � 0 and� 0 the prior distribution
on f is:

f (x1; : : : xk) � N (� 0(x1; : : : xk); � 0(x1 : : : xk ; x1; : : : xk)) (1)

For any new pointx, we can use Bayes' rule to compute the conditional distribution off (x):

f (xjx1; : : : xk) � N (� 0(x1; : : : xk ; x); � 0(x1; : : : xk ; x; x1; : : : xk ; x)) (2)

The Stochastic Three Points (STP) method is a model-free approach to BBO that uses only a small
number of samples in each iteration to identify descent directions. At each time stept with a current
samplex t , it generates a setD t = f x t ; x t + st � � t ; x t � st � � t g wherest is a direction and� t > 0
is the step size at stept. When� t is small enough, the relationship betweenf (x t + st � � t), f (x t)
andf (x t � st � � t) is monotonically non-increasing or non-decreasing if the gradient of the function
f is not zero in the direction ofst . For the next step,x t +1 = argmin x 2 D t

f (x). In our method, the
STP-based local descent optimization will identify the best directionst with an optimized step size
� t for improving its performance.

Monte Carlo Tree Search (MCTS) is a leading framework for balancing exploration and exploitation
in sampling-based tree search. It consists of four main steps: Selection, Expansion, Simulation, and
Backpropagation. During Selection, a search tree is traversed from the root node to a leaf node. This
traversal is made by selecting the node with the highest value based on the UCT algorithm. For a
nodeni , the UCT� is computed by:

� (ni) = Ri =Ni + C �
p

2 � ln Nb=Ni (3)

in whichRi is the rewards onni ; N i andNb denote the number of visits onni and its parent node
nb, respectively;C is a constant to balance between exploitation and exploration. At each branch
nodenb, the child to select is the one with the highest� value among all of its immediate children.
At Expansion, a new child node is then added to expand the tree. During Simulation, a random
simulation is run from the new child node until the terminal node is reached, and the simulation
reward is approximated. Finally, the simulation reward is backpropagated through the selected nodes
to update the tree. In our approach, we construct our Monte Carlo tree by assigning every leaf node
to one optimization process. During each step, we use a modi�ed UCT algorithm to select the node
on which the optimization is launched.

4 Monte Carlo Tree Descent

Our MCTD algorithm iteratively constructs a search tree over the domain of the objective function,
and at each node of the tree we maintain a set of samples and a surrogate model learned from them.
The balancing of exploration and exploitation takes into account several factors that will be explained
in the subsequent sections. The overall algorithm is illustrated in Alg.1, and we refer Fig. 4 in the
Appendix that provides a visual illustration of the process.

3

Algorithm 1 Monte Carlo Tree Descent (MCTD)
1: function MCTD(objective:f , domain:
)
2: x random sample in

3: n0:sample_set (x ; y) . root node
4: for step =1; :::; t do
5: n Select(n0)
6: Optimize(n)
7: Backup(n)
8: end for
9: return y�

0
10: end function
11:
12: function EXPAND(node:ni)
13: if ni is leafthen
14: ni 0 ni excluding parent/child
15: ni child list ni 0
16: end if
17: lv level ofni
18: d / exp (� lv)
19: x random sample inB (x �

i ; d)
20: nim .sample_set f (x; f (x))g;
21: ni .children.append(nim)
22: return nim
23: end function
24:
25: function BACKUP(node:ni)
26: n ni
27: while n has parentnp do
28: Update(x �

p; y�
p) with Eq.5

29: Updatedyp with Eq.6
30: n np
31: end while
32: end function

1: function SELECT(node:ni)
2: nb ni
3: while nb has childrendo
4: for child nodenbi do
5: Compute� (nbi) by Eq.4
6: end for
7: Compute� (nbx) by Eq.7
8: if maxi (� (nbi)) < � (nbx) then
9: return Expand(nb)

10: end if
11: b̂ argmaxi � (nbi)
12: nb nb;b̂
13: end while
14: if EP (nb) in (8) is satis�edthen
15: nb Expand(nb)
16: end if
17: return nb
18: end function
19:
20: function OPTIMIZE(node:ni)
21: � D 1
22: if jni :sample_setj > = NR then
23: � GP model ofni .sample_set
24: � D � D � correlation length in�
25: else
26: oracle� None
27: end if
28: Descend onni by � , f , � D from (x �

i ; y�
i)

29: ni Bayesian Optimize fromf (x; y)gi
30: Update(x �

i ; y�
i) anddyi by Eq.5 and 6

31: return
32: end function

4.1 Overall Tree Search Strategy

We initialize our algorithm at a random sample in the domain of the objective function, and the
sampled points create the root node of the entire search tree. Unlike standard MCTS that considers
�nite and discrete actions at each node, for BBO over the continuous domains we can not expand
the in�nitely-many possible next samples as child nodes of the root node. Consequently, already at
the root node, we need to decide between two choices. First, we could perform local descent on the
current sample at this node. Second, we could explore a different region in the space by taking a
sample that is far from the current one, which will act as a new anchor point that forms a new child
node of the tree, which expands the tree. When multiple child nodes have been expanded at a node,
there is the third option of going down the tree along the most promising branch, and then focusing
the next steps of search from there.

Consequently, in each iteration of the algorithm, we perform three operations sequentially. First, we
perform branch selection starting from the root node, and then either land at some existing node or
create a new anchor sample and node, from which we will perform local descent.

4.2 Branch Selection

In every step, we pick a leaf for optimization. To balance exploration and exploitation, our algorithm
uses UCT to determine the path between the root and the leaf, as shown in the functionSELECT in
Alg.1 line 1. We modi�ed the UCT formula for �tting our MCTD algorithm. For each child nodenbi

4

with the parent nodenb , its UCT� (nbi) is given by:

� (nbi) = � y�
bi + Cd �

JX

j =1

dy� j
bi + Cp �

p
logNb=Nbi (4)

Here,Cd is a weight factor controlling the importance of recent improvements during optimization,
Cp is a hyper-parameter for the extent of exploration,Nb andNbi are the number of visits to the
branch nodenb and the child nodenbi , respectively.y�

bi is the current best function value in the
sample setSbi = f (x; y)g which stores the samples during optimization on nodenbi :

(x �
bi ; y�

bi) = argmin
y

(x; y); (x; y) 2 Sbi (5)

anddy� j
bi is the most recentj 's improvement atnbi after calling the objective function. When

computing� , only the lastJ improvements are taken into account. For every call to the objective
function during the optimization, we record the improvement in the function value from this call. If
the value from this call is worse than the optimal value before the call, we set the improvement to
zero; otherwise, we set the improvement as the absolute difference between the optimal value before
and after the call. That is, fory�

bi at the time stept asy�
bi (t),

dy� j
bi (t) = max(y�

bi (t � j) � y�
bi (t � j + 1) ; 0) (6)

We similarly integrate the tree expansion as the UCT algorithm. At a branch nodenb, in addition to
examining the UCT of all its child nodes we add an arti�cial exploration nodenbx that has the UCT
value� (nbx) as following:

� (nbx) = �
X

i

(y�
bi)=Db + C0

p �
p

logNb (7)

whereDb is the number of children of the nodenb, C0
p is a hyper-parameter for the extent of

exploration but may be different fromCp. This exploration node is to determine whether to optimize
in a new domain because the existing children are not performing well enough. When the exploration
node is selected, a new child node under the branch node is created and returned.

If the path selects a leaf that is not newly created, we need to determine whether it is worth optimizing
on it. On a leaf nodenf , we expand the tree if the following condition is met:

EP (nf) : � y�
f + C

00

d �
J

00

X

j =1

dy� j
f < C 00

p �
p

logN f (8)

Here,C00
d is a weight factor for recent lastJ 00improvements and may be different fromCd, C00

p is also
a hyper-parameter for the extent of exploration different fromCp andC0

p. In the event the condition
8 is met, we will make a leaf expansion; otherwise, we descend on the selected leaf nodenf .

4.3 Tree Expansion

When we need to take an exploration step at a node, a new child node will be created. The new
child node is created at a random point lying within some distance from the selected node. The
minimum and maximum distances are set to10%and50%of the domain's dimensional length, with
exponential decay according to the node level. After the newly created child node is placed, it will
be immediately selected as the node for optimization at the current step. When the selected node to
explore is a leaf nodenf , a new child nodenf 1 is created in the same way as above, makingnf a
branch node. At this time, a new nodenf 0, starting from the current best point atx �

f , is also created
as the child 0 of nodenf . This nodenf 0 inherits a batch of samples that are near its starting pointx �

f ,
as well as the latest improvement history onnf . The reduced number of samples forces the inheriting
nodenf 0 to focus on optimizing in the neighborhood of the starting point, while the newly expanded
nodenf 1 is optimizing in a distant region. Thus, the tree grows a leaf nodenf 1 while maintaining
the possibility of further exploiting around the best point found onnf at nodenf 0. These steps are in
the functionEXPAND in Alg. 1 line 12, and 3 subplots in Fig.4 show an example. As in Fig.4 (c),
the expansion takes place on the root noden0. The noden01 is a new node for exploration, placed
distant fromn0. Noden00 starts fromx �

0. Similarly, in 4 (d), noden010 starts fromx �
01, and node

n011 is placed away fromn01, but the distance between noden01 andn010 is much smaller than the
distance between noden0 andn01 at node creation. Fig. 4 (e) shows how a new leaf node is created.

5

4.4 Local Optimization.

In every iteration, we use the STP method to attempt local descent and also use TuRBO-1 [9] for
local Bayesian optimization (BO). We tightly integrate the two methods. Samples obtained from
local descent optimization are used to construct the surrogate GP regression model. The GP model
not only serves as an oracle for the local descent optimization but also provides the correlation length
according to which the local descent optimization scales its step sizes.

Local Descent. We use the STP method with the following changes. In STP, the directionst at
stept is usually selected from a sphere with uniform distribution in direct search. Instead, we use
the surrogate GP regression model to identify the point with the highest expected improvement. The
steps of local descent optimization are as follows:

1. Choose a nodeni by SELECT. If the number of samples exceeds some threshold, we train a
Gaussian Process model that will be referred to as the oracle for this node.

2. Compute the step size� t . In our case, we set� t to be inversely proportional to the square root
of the product of node visitsN i and the node level in the tree. We also rescale it according to the
correlation length in the surrogate GP model when possible.

3. If the oracle is not available, get a random directionst , and usest � � t for checking ground truth.

4. If the oracle is available, generate multiple samples in the box with edge length equaling the step
size� t , and choose the best point. The direction to the best point isst � � t .

5. Start one step of STP with the selected direction ofst � � t by calling the objective function.

6. Depending on the optimization progress, we may further optimize the objective function along the
same direction with tuned step sizes in a �ne-grain descent approach.

The last step is used when the optimization comes to �ne-tuned phase with small variations in samples,
so one can set a function threshold from which the search applies the �ne-grain descent approach.

Local Bayesian Optimization. The TuRBO-1 [9] creates a hyper-rectangle Trust Region (TR)
with volumeL N centered at the best sample. Afterward, it samples new candidates within the TR
and queries the objective function for ground truth data. The length ofL i will either increase after
successive "successes" or decrease after consecutive "failures". We changes TuRBO-1 in three ways
to �t it into our algorithm: 1) TuRBO-1 begins with collected samples of the node. Consequently,
TuRBO-1 is compelled to optimize from the vicinity of the collected sample. 2) The trust region
length has been preserved on the same node, so the local BO can continue from the previous epoch. 3)
We do not perform restarts for TuRBO-1 in order to avoid TuRBO-1 restarting from random samples.

4.5 Back Up

In theBACKUP function, we backpropagate the updated best score found at a leaf node and propagate
it upwards to its parent nodes. This score update is important for informing future branch selections.
This backup procedure is used in every step even if the best-found sample on the selected leaf node
does not change after one iteration.

5 Experiments and Evaluation

5.1 Experiment Setup

Benchmarks We use several standard benchmark sets for testing BBO algorithms, from three
categories: synthetic functions for nonlinear optimization, reinforcement learning problems in
MuJoCo locomotion environments, and optimization problems in Neural Architecture Search (NAS).
Synthetic functions are widely-used in nonlinear optimization benchmarks [21]. These functions
usually have numerous local minima, valleys, and ridges in their landscapes which is hard for normal
optimization algorithms. MuJoCo locomotion environments [22] are popular for reinforcement
learning tasks. NAS problems have practical signi�cance, since many �elds are using deep learning
models, but implementing ef�cient neural networks requires a substantial amount of time and effort.

6

	Introduction
	Related Work
	Preliminaries
	Monte Carlo Tree Descent
	Overall Tree Search Strategy
	Branch Selection
	Tree Expansion
	Local Optimization.
	Back Up

	Experiments and Evaluation
	Experiment Setup
	Overall Performance
	Ablation Studies

	Conclusion
	Acknowledgement
	Tree expansion illustration
	Benchmark Sets

