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Abstract

Energy-based models, a.k.a. energy networks, perform inference by optimizing
an energy function, typically parametrized by a neural network. This allows
one to capture potentially complex relationships between inputs and outputs. To
learn the parameters of the energy function, the solution to that optimization
problem is typically fed into a loss function. The key challenge for training energy
networks lies in computing loss gradients, as this typically requires argmin/argmax
differentiation. In this paper, building upon a generalized notion of conjugate
function, which replaces the usual bilinear pairing with a general energy function,
we propose generalized Fenchel-Young losses, a natural loss construction for
learning energy networks. Our losses enjoy many desirable properties and their
gradients can be computed efficiently without argmin/argmax differentiation. We
also prove the calibration of their excess risk in the case of linear-concave energies.
We demonstrate our losses on multilabel classification and imitation learning tasks.

1 Introduction

Training a neural network usually involves finding its parameters by minimizing a loss function,
which captures how well the network fits the data. A typical example is the multiclass logistic loss
(a.k.a. cross-entropy loss) from logistic regression, which is the canonical loss associated with the
softmax output layer and the categorical distribution. If we replace the softmax with another output
layer, what loss function should we use instead? In generalized linear models [52, 48], which include
logistic regression and Poisson regression as special cases, the negative log-likelihood gives a loss
function associated with a link function, generalizing the softmax to other members of the exponential
family [8]. More generally, Fenchel-Young losses [18] provide a generic way to construct a canonical
convex loss function if the associated output layer can be written in a certain argmax form. Besides
the aforementioned generalized linear models, models that fall in this family include sparsemax
[47], the structured perceptron [27] and conditional random fields [43, 69]. However, the theory of
Fenchel-Young losses is currently limited to argmax output layers that use a bilinear pairing.

To increase expressivity, energy-based models [44], a.k.a. energy networks, perform inference
by optimizing an energy function, typically parametrized by a neural network. This leads to an
inner optimization problem, which can capture potentially complex relationships between inputs and
outputs. A similar approach is taken in SPENs (Structured Prediction Energy Networks) [11, 13],
in which a continuous relaxation of the inner optimization problem is used, amenable to projected
gradient descent or mirror descent. In input-convex neural networks [4], energy functions are
restricted to be convex, so as to make the inner optimization problem easy to solve optimally. To
learn the parameters of the energy function, the solution of the inner optimization problem is typically
fed into a loss function, leading to an outer optimization problem. In order to solve that problem by
stochastic gradient descent, the main challenge lies in computing the loss gradients. Indeed, when
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using an arbitrary loss function, by the chain rule, computing gradients requires differentiating through
the inner optimization problem solution, often referred to as argmin or argmax differentiation. This
can be done by backpropagation through unrolled algorithm iterates [13] or implicit differentiation
through the optimality conditions [4]. This issue can be circumvented by using a generalized
perceptron loss [44] or a max margin loss [11]. These losses only require max differentiation, for
which envelope theorems [49] can be used. However, these losses often fail to satisfy envelope
theorem assumptions such as unicity of the solution and lack theoretical guarantees.

In this paper, we propose to extend the theory of Fenchel-Young losses [18], so as to create a canonical
loss function associated with an energy network. Our proposal builds upon generalized conjugate
functions, also known as Fenchel-Moreau conjugates [50, 62], allowing us to go beyond bilinear
pairings and to support general energy functions such as neural networks. We introduce regulariza-
tion, allowing us to obtain unicity of the solutions and to use envelope theorems to compute gradients,
without argmin or argmax differentiation. We provide novel guarantees on the calibration of the
excess risk, when our loss is used as a surrogate for another discrete loss. To sum up, we obtain a well-
motivated loss construction for general energy networks. The rest of the paper is organized as follows.

• After providing some background (§2), we describe regularized energy networks, identify a
classification of energy functions and give several possible examples that fall in this family (§3).

• We define generalized conjugates, an extension of Legendre-Fenchel conjugates, and state their
properties (§4). We establish novel conditions for a generalized conjugate to be a smooth function.

• We then introduce generalized Fenchel-Young losses and show that they enjoy many of the same
favorable properties as the regular Fenchel-Young losses (§5). On the theoretical side, we prove
calibration of the excess risk for linear-concave energies and strongly-convex regularizers (§6).

• We demonstrate our losses on multilabel classification and imitation learning tasks (§7).

2 Background

Convex conjugates. Let C ⊆ Rk be an output set. Let Ω: C → R be a function, such that
Ω(p) =∞ for all p 6∈ C, i.e., dom(Ω) = C. Given v ∈ V ⊆ Rk, we define the convex conjugate [22]
of Ω, also known as the Legendre-Fenchel transform of Ω, by

Ω∗(v) := max
p∈C

〈v, p〉 − Ω(p). (1)

The conjugate Ω∗ is always convex, even if Ω is not. We define the corresponding argmax as
pΩ(v) := argmax

p∈C
〈v, p〉 − Ω(p) = ∇Ω∗(v). (2)

The latter equality follows from Danskin’s theorem [29, 15], under the assumption that Ω is strictly
convex (otherwise, we obtain a subgradient). It is well-known that Ω∗ is 1

γ -smooth w.r.t. the dual
norm ‖ · ‖∗ if and only if Ω is γ-strongly convex w.r.t. the norm ‖ · ‖ [37, 39, 10, 75].

Fenchel-Young losses. Suppose that v = gθ(x) ∈ Rk are the logits / scores produced by a
neural network g, where x ∈ X ⊆ Rd and θ ∈ Θ are the network’s input features and parameters,
respectively. What loss function should we use if we want to use (2) as output layer? The Fenchel-
Young loss [18] generated by Ω: C → R provides a natural solution. It is defined by

LΩ(v, y) := Ω∗(v) + Ω(y)− 〈v, y〉, (3)
where y ∈ Y ⊆ C is the ground-truth label. Earlier instances of this loss were independently proposed
in the contexts of ranking [2] and multiclass classification [30]. Among many useful properties, this
loss satisfies LΩ(v, y) ≥ 0 and LΩ(v, y) = 0⇔ y = pΩ(v) if Ω is strictly convex [18]. In that sense,
it is the canonical loss associated with (2). Interestingly, many existing loss functions are recovered
as special cases. For instance, if C = Rk and Ω(p) = 1

2‖p‖
2
2, which is 1-strongly convex w.r.t. ‖ · ‖2

over Rk, then we obtain the self-dual, the identity mapping and the squared loss:

Ω∗(v) =
1

2
‖v‖22, pΩ(v) = v, LΩ(v, y) =

1

2
‖v − y‖22.

If C is the probability simplex 4k := {p ∈ Rk+ :
∑k
i=1 pi = 1} and Ω(p) is the scaled Shannon

negentropy γ〈p, log p〉, which is γ-strongly convex w.r.t. ‖ · ‖1 over4k, then we obtain
Ω∗(v) = LSEγ(v), pΩ(v) = softmaxγ(v), LΩ(v, y) = KL(y, softmaxγ(v)),
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where we used the log-sum-exp LSEγ(v) := γ log(
∑k
i=1 exp(vi/γ)), softmaxγ(v) ∝ exp(v/γ),

and the Kullback-Leibler divergence. More generally, when C = conv(Y), the convex hull of Y , pΩ

corresponds to a projection, for which efficient algorithms exist in numerous cases [18, 16]. The
calibration of the excess risk of Fenchel-Young losses when Ω is strongly convex was established
in [56, 16]. However, the theory of Fenchel-Young losses is currently limited to the bilinear pairing
〈v, p〉, which restricts their expressivity and scope.

3 Regularized energy networks
Energy networks. Also known as energy-based models or EBMs [44], of which SPENs [11, 13] are
a particular case, these networks compute predictions by solving an optimization problem of the form

pΦ(v) := argmax
p∈C

Φ(v, p),

where v = gθ(x) ∈ V is the energy network’s input, Φ(v, p) is a scalar-valued energy function, and
C is an output set. Throughout this paper, we use the convention that higher energy indicates higher
degree of compatibility between v and the prediction p. Since Φ(v, p) is a general energy function, we
emphasize that v and p do not need to have the same dimensions, unlike with the bilinear pairing 〈v, p〉.
Any neural network gθ(x) ∈ Rk can be written in energy network form, since argmaxp∈Rk −‖gθ(x)−
p‖22 = gθ(x). The key advantage of energy networks, however, is their ability to capture complex in-
teractions between inputs and outputs. This is especially useful in the structured prediction setting [6],
where predictions are made of sub-parts, such as sequences being composed of individual elements.

Introducing regularization. In this paper, we compute predictions by solving
pΦ

Ω(v) := argmax
p∈C

Φ(v, p)− Ω(p), (4)

where we further added a regularization function Ω: C → R. We call Φ(v, p)− Ω(p) a regularized
energy function and we call the corresponding model a regularized energy network. We obviously
recover usual energy networks by setting Ω to the indicator function of the set C, i.e., Ω(p) = 0 if
p ∈ C, ∞ otherwise. While it is in principle possible to absorb Ω into Φ, keeping Ω explicit has
several advantages: 1) it allows to introduce generalized conjugate functions and their properties
(§4) 2) it allows to introduce generalized Fenchel-Young losses (§5), which mirror the original
Fenchel-Young losses 3) we obtain closed forms for (4) in certain cases (Table 1).

Solving the maximization problem. The ability to solve the maximization problem in (4) efficiently
depends on the properties of Φ(v, p) w.r.t. p. If Φ(v, p) is linear in p, for instance Φ(v, p) = 〈v, Up〉,
then we obtain pΦ

Ω(v) = pΩ(U>v). Thus, the computation of (4) reduces to (2), for which closed
forms are often available. If Φ(v, p) is concave in p and C is a convex set, then we can solve (4) in
polynomial time using an iterative algorithm, such as projected gradient ascent. This is the most
general energy class for which our loss and its gradient can be computed to arbitrary precision. If
Φ(v, p) is nonconcave in p, then it is not possible to solve (4) in polynomial time in general, unless C
is a discrete set of small cardinality. In general, we emphasize that Φ(v, p) can be nonconvex in v,
as is typical with neural networks, since the maximization problem in (4) is with respect to p ∈ C.
However, in the sequel of this paper, certain properties we establish require Φ(v, p) to be convex in v.

We now give examples of regularized energy networks in increasing order of expressivity / complexity.

Generalized linear models. As a warm up, we consider the case of bilinear energy Φ(v, p). For
instance, for probabilistic classification with k classes, where the goal is to predict p ∈ 4k from
x ∈ Rd, we can use Φ(v, p) = 〈v, p〉 with v = Wx + b, where W ∈ Rk×d and b ∈ Rk. In this
case, we therefore obtain pΦ

Ω(v) = pΩ(Wx+ b), recovering generalized linear models [52, 48], the
structured perceptron [27] and conditional random fields [43, 69].

Rectifier and maxout networks. We now consider the case of convex-linear energy Φ(v, p). A
first example is a rectifier network [33] with one hidden layer. Indeed, Φ(v, p) = 〈σ(v), Up〉 is
convex in v if σ is an element-wise, convex and non-decreasing activation function, such as the
relu or softplus, and if U and p are non-negative. A second example is a maxout network [34]
(i.e., a max-affine function) or its smoothed counterpart, the log-sum-exp network [24]. Indeed,
Φ(v, p) = σ(v) · p, where σ is the max or log-sum-exp operator, is convex in v, if the scalar p
is non-negative. In general, it is always possible to construct a convex-concave energy from a
jointly-convex function using the Legendre-Fenchel transform in the first argument.
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Table 1: Examples of regularized energy networks. The v and p columns indicate the property of the
energy function Φ(v, p) in these variables. The LΦ

Ω(v, y) column indicates the property of the loss in
v. The linear-quadratic energy uses v = (A, b) where A is negative semi-definite and Ω(p) = γ

2 ‖p‖
2
2.

Φ(v, p) v p LΦ
Ω(v, y) pΦ

Ω(v)

GLM 〈v, p〉 linear linear convex pΩ(v)
Linear-quadratic 1

2
〈p,Ap〉+ 〈p, b〉 linear quadratic convex (γI −A)−1b

Rectifier network 〈relu(v), Up〉 convex linear DC pΩ(U>relu(v))
Maxout network p ·max(v) convex linear DC pΩ(max(v))

LSE network p · LSEγ(v) convex linear DC pΩ(LSEγ(v))
ICNN −ICNN(v, p) nonconvex concave nonconvex no closed form

Probabilistic
∑
y∈Y p(y)E(v, y) nonconvex linear nonconvex exp(E(v,·))∑

y′∈Y exp(E(v,y′))

Arbitrary Φ(v, p) nonconvex nonconcave nonconvex no closed form

Input-convex neural networks. As an example of nonconvex-concave energy, we consider
Φ(v, p) = −ICNN(v, p), where ICNN is an input-convex neural network [4], i.e., it is convex in p
but can be nonconvex in v. If Ω(p) and C are convex, then Φ(v, p) is concave in p and (4) can be
solved in polynomial time using an iterative algorithm, such as projected gradient ascent.

Probabilistic energy networks. It is often desirable to define a conditional probability distribution

P(Y = y|X = x) :=
exp(E(v, y))∑

y′∈Y exp(E(v, y′))
.

Such networks are typically trained using a cross-entropy loss (or equivalently, negative log-
likelihood). Unfortunately, when Y is large or infinite, this loss and its gradients are intractable
to compute, due to the normalization constant. Therefore, recent research has been devoted to
developing approximate training schemes [67, 35, 51]. Although this is not the focus of this paper,
we point out that probabilistic energy networks can also be seen as regularized energy networks
in the space of probability distributions C = 4|Y|, if we set Φ(v, p) =

∑
y∈Y p(y)E(v, y) and

Ω(p) =
∑
y∈Y p(y) log p(y). While the resulting optimization problem is intractable in general, it

does suggest possible approximation schemes, such as the use of Frank-Wolfe methods [12, 42, 55].

Existing loss functions for energy networks. Given a pair (x, y) and output v = gθ(x), how do
we measure the discrepancy between pΦ

Ω(v) and y? One possibility [4, 13] is to use the composition
of a differentiable loss L : C × Y → R+ with the argmax output, namely (v, y) 7→ L(pΦ

Ω(v), y).
However, computing the loss gradient w.r.t. v then requires to differentiate through pΦ

Ω(v), either
through unrolling or implicit differentiation. This is particularly problematic when C is a complicated
convex set, as differentiating through a projection can be challenging. In contrast, our proposed loss
completely circumvents this need and enjoys easy-to-compute gradients. For unregularized energy
networks, a naive idea, called the energy loss, is to use (v, y) 7→ −Φ(v, y). However, this loss only
works well if Φ is a similarity measure and works poorly in general [44]. A better choice is the
generalized perceptron loss (v, y) 7→ maxp∈C Φ(v, p) − Φ(v, y) [44]. Our loss can be seen as a
principled generalization of this loss to regularized energy networks, with theoretical guarantees.

4 Generalized conjugates

In order to devise generalized Fenchel-Young losses, we build upon a generalization due to Moreau
[50, Chapter 14] of the convex conjugate Ω∗. Denoted ΩΦ, it replaces the bilinear pairing in (1)
with a more general coupling Φ [62, Chapter 11, Section L]. In this section, we state their definition,
properties, closed-form expressions and connection to the C-transform in optimal transport.

Definition. Let Φ(v, p) ∈ R be a coupling / energy function. The Φ-convex conjugate of Ω: C →
R, also known as Fenchel-Moreau conjugate, is then defined by the value function

ΩΦ(v) := max
p∈C

Φ(v, p)− Ω(p). (5)

The Φ-convex conjugate is an important tool in abstract convex analysis [66, 63]. Recently, it has
been used to provide “Bellman-like” equations in stochastic dynamic programming [25] and to
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provide tropical analogues of reproducing kernels [5]. We assume that the maximum is feasible for
all v ∈ V = Rd, meaning that dom(ΩΦ) = V . We emphasize again that, unlike with (1), v and p do
not need to have compatible dimensions. We denote the argmax solution corresponding to (5) by

pΦ
Ω(v) := argmax

p∈C
Φ(v, p)− Ω(p). (6)

If a function F (v) can be written as F (v) = ΩΦ(v) for some Ω, it is called Φ-convex (in analogy, a
function f(v) is convex and closed if and only if it can be written as f(v) = Ω∗(v) for some Ω).

Properties. Φ-convex conjugates enjoy many useful properties, some of them are natural extensions
of the usual convex conjugate properties. Proofs are provided in Appendix B.1.

Proposition 1 (Properties of Φ-convex conjugates). Let Ω: C → R and Φ: V × C → R.

1. Generalized Fenchel-Young inequality: for all v ∈ V and p ∈ C,

ΩΦ(v) + Ω(p)− Φ(v, p) ≥ 0.

2. Convexity: If Φ(v, p) is convex in v, then ΩΦ(v) is convex (even if Ω(p) is nonconvex).
3. Order reversing: if Ω(p) ≤ Λ(p) for all p ∈ C, then ΩΦ(v) ≥ ΛΦ(v) for all v ∈ V .
4. Continuity: ΩΦ shares the same continuity modulus as Φ.
5. Gradient (envelope theorem): Under assumptions (see paragraph below), we have
∇ΩΦ(v) = ∇1Φ(v, pΦ

Ω(v)), where∇1 denotes the gradient in the first argument.
6. Smoothness: If C is a compact convex set, Φ(v, p) is β-smooth in (v, p), concave in p and

Ω(p) is γ-strongly convex in p, then ΩΦ(v) is (β+β2/γ)-smooth and pΦ
Ω(v) is β/γ-Lipschitz.

The condition on Φ and Ω in item 6 for ΩΦ to be a smooth function (i.e., with Lipschitz-continuous
gradients) is a novel result and will play a crucial role for establishing calibration guarantees in §6.

Assumptions for envelope theorems. The expression in item 5 allows to compute∇ΩΦ(v) without
argmax differentiation. It is based on envelope theorems, which can be used for max differentiation.
Indeed, we have ΩΦ(v) = maxp∈C F (v, p), where F (v, p) := Φ(v, p)− Ω(p). We assume that the
maximum is unique and C is a compact. If F (v, p) is convex in v, we apply Danskin’s theorem [29]
[15, Proposition B.25]. Without convexity assumption in v, if F (v, p) is continuously differentiable
in v for all p ∈ C, ∇1F is continuous, we apply [62, Theorem 10.31]. When we do not compute
the exact solution of (6), we only obtain an approximation of the gradient ∇ΩΦ(v); see [1] for
approximation guarantees. For other envelope theorem usecases in machine learning, see, e.g., [21].

Closed forms. While (5) and (6) may need to be solved numerically in general, they enjoy closed-
form expressions in simple cases. Proofs are provided in Appendix B.2.

Proposition 2 (Closed-form expressions). Let Ω: C → R and Φ: V × C → R.

1. Bilinear coupling: If Φ(v, p) = 〈v, Up〉, then ΩΦ(v) = Ω∗(U>v) and pΦ
Ω(v) = pΩ(U>v).

2. Linear-quadratic coupling: If C = Rk, Ω(p) = γ
2 ‖p‖

2
2 and Φ(v, p) = 1

2 〈p,Ap〉 + 〈p, b〉,
where v = (A, b) and A is such that (γI −A) is positive definite, we obtain

ΩΦ(v) =
1

2
〈b, (γI −A)−1b〉 and pΦ

Ω(v) = (γI −A)−1b. (7)

3. Metric coupling: If V = C, Φ = −C where C(v, p) is a metric and Ω is M -Lipschitz with
M ≤ 1, then ΩΦ = −Ω and pΦ

Ω(v) = v.

Relation with the C-transform. Given a cost function C, we may define a min counterpart of (5),
ΛC(v) := min

p∈C
C(v, p)− Λ(p). (8)

In the optimal transport literature, this is known as the C-transform of Λ [65, 60]. When C is bilinear,
this recovers the notion of concave conjugate [20]. When C(v, p) = c(v−p) for some c, this recovers
the infimal convolution [20]. It is easy to check that Ω = −Λ⇔ ΩΦ = −ΛC with C = −Φ. Thus,
ΩΦ and ΛC are the natural extensions of convex and concave conjugates, respectively. We opt for the
former in this paper to closely mirror the usual convex conjugates and Fenchel-Young losses.
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5 Generalized Fenchel-Young losses

Definition. The generalized Fenchel-Young inequality in Proposition 1 leads us to propose the
generalized Fenchel-Young loss, the natural extension of (3) to Φ-convex conjugates:

LΦ
Ω(v, y) := ΩΦ(v) + Ω(y)− Φ(v, y). (9)

We also have the relationships LΦ
Ω(v, y) = F (v, y)−F (v, pΦ

Ω(v)), where F (v, p) = Ω(p)−Φ(v, p),
and pΦ

Ω(v) = argminp∈C L
Φ
Ω(v, p). We now give an intuitive geometric interpretation of (9).

p

Ω(p)

〈u, p〉 − Ω∗(u) Φ(v, p)− ΩΦ(v)

y

LΦ
Ω(v, y)

Figure 1: Geometric interpretation with
Ω(p) = γ

2 p
2 and Φ(v, p) = 1

2ap
2 + bp.

Geometric interpretation. For the sake of illustra-
tion, let us set Ω(p) = γ

2 p
2 and Φ(v, p) = 1

2ap
2 +bp.

From (1), the line p 7→ 〈u, p〉 − Ω∗(u), where
Ω∗(u) = 1

2γu
2, is the tightest linear lower bound

on Ω(p), here depicted with u = 0.6. It is the
tangent of Ω(p) at p = pΩ(u). Similarly, from
(5), p 7→ Φ(v, p) − ΩΦ(v) is the tightest lower-
bound of this form given v. It touches Ω(p) at
p = pΦ

Ω(v), here depicted with v = (a, b), a = −1
and b = 1, for which we have the closed form
ΩΦ(v) = 1

2 (γ−a)−1b2 (Proposition 2). The general-
ized Fenchel-Young loss (9) is then the gap between
Ω(p) and Φ(v, p)− ΩΦ(v), evaluated at the ground-
truth p = y. The goal of training is to adjust the parameters θ of a network v = gθ(x) so as to
minimize this gap averaged over all (x, y) training pairs.

Properties. Generalized Fenchel-Young losses enjoy many desirable properties, as we now show.

Proposition 3 (Properties of generalized F-Y losses). Let Ω: C → R and Φ: V × C → R.

1. Non-negativity: LΦ
Ω(v, p) ≥ 0 for all v ∈ V and p ∈ C.

2. Zero loss: if the maximum in (5) exists and is unique, LΦ
Ω(v, y) = 0⇔ y = pΦ

Ω(v).

3. Gradient: ∇1L
Φ
Ω(v, p) = ∇ΩΦ(v)−∇1Φ(v, p).

4. Difference of convex (DC): if Φ(v, p) is convex in v, then LΦ
Ω(v, p) is a difference of convex

functions in v: ΩΦ(v) and Φ(v, p). If Φ(v, p) is linear in v, then LΦ
Ω(v, p) is convex in v.

5. Smaller output set, smaller loss. If C′ ⊆ C and Ω′ is the restriction of Ω to C′, then
LΦ

Ω′(v, p) ≤ LΦ
Ω(v, p) for all v ∈ V and p ∈ C′.

6. Quadratic lower-bound. If Φ(v, p)− Ω(p) is γ-strongly concave in p w.r.t. ‖ · ‖ over C and
C is a closed convex set, then for all v ∈ V and p ∈ C

γ

2
‖p− pΦ

Ω(v)‖2 ≤ LΦ
Ω(v, p). (10)

7. Upper-bounds. If Φ(v, p) − Ω(p) is α-Lipschitz in p w.r.t. ‖ · ‖ over C, then LΦ
Ω(v, p) ≤

α‖p− pΦ
Ω(v)‖. If Φ(v, p) is concave in p, then LΦ

Ω(v, p) ≤ LΩ(∇2Φ(v, p), p).

Proofs are given in Appendix B.3. The non-negativity is a good property for a loss function. The
zero-loss property LΦ

Ω(v, y) = 0⇔ y = pΦ
Ω(v), which is true for instance if p 7→ Φ(v, p)− Ω(p) is

strictly concave, is key as it allows to use pΦ
Ω(v) defined in (6) as the (implicit) output layer associated

with an energy network. The gradient ∇1L
Φ
Ω(v, y) does not require to differentiate through the

argmax problem in (6) needed for computing pΦ
Ω(v). Typically, differentiating through an argmax

or argmin, as is done in input-convex neural networks [4], requires either unrolling or implicit
differentiation [36, 14, 41, 19, 17] and is therefore more costly.

The fact that LΦ
Ω(v, p) is a difference of convex (DC) functions in v when Φ(v, p) is convex in v

suggests that we can use DC programming techniques, such as the convex-concave procedure [72],
for training such energy networks. We leave the investigation of this observation to future work. The
“smaller output set, smaller loss” property means that we can achieve the smallest loss by choosing
the smallest set C in (6) such that Y ⊆ C. The smallest such convex set is the convex hull of Y , also
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known as marginal polytope [71] when Y ⊆ {0, 1}k. The quadratic lower-bound relates our loss to
using pΦ

Ω(v) within a squared norm loss. The upper-bounds relate our loss to using pΦ
Ω(v) within a

norm loss and to using a regular Fenchel-Young loss with a linearized energy.

If Ω is the indicator function of C, i.e., Ω(p) = 0 if p ∈ C,∞ otherwise, then it can be checked that
we recover the “generalized perceptron” loss [45, 44] as a special case of (9). Proposition 3 therefore
provides new properties to understand and analyze this loss.

Regular Fenchel-Young losses are closely related to Bregman divergences [18]. In Appendix A, we
build a generalized notion of Bregman divergence using generalized conjugates.

Training. To train regularized energy networks with our framework, the user should choose an
energy Φ(v, p), a regularization Ω(p), an output set C (from Proposition 3 item 5, the smaller this
set the better) and the model v = gθ(x) with input x and parameters θ. Given a set of input-output
pairs (x1, y1), . . . , (xn, yn) ∈ X × Y , where Y ⊆ C, we can find the parameters θ by minimizing
the empirical risk objective regularized by R : Θ→ R,

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

LΦ
Ω(gθ(xi), yi) +R(θ). (11)

Thanks to the easy-to-compute gradients of LΦ
Ω, we can easily solve (11) using any (stochastic) solver.

6 Calibration guarantees

Many times, notably for differentiability reasons, the loss used at training time, here our generalized
Fenchel-Young loss LΦ

Ω(v, y), is used as a surrogate / proxy for a different (potentially discrete loss)
L : Y × Y → R, used at test time. Calibration guarantees [73, 74, 9, 68] ensure that minimizing the
excess of risk of the train loss will also minimize that of the test loss (a.k.a. target loss). We study in
this section such guarantees, assuming that L satisfies an affine decomposition property [26, 16]:

L(ŷ, y) = 〈ϕ(ŷ), V ϕ(y) + b〉+ c(y), (12)

where ϕ(y) 7→ V ϕ(y) + b is an affine map, ϕ(y) is a label embedding and c(y) is any function that
depends only on y. Numerous losses can be written in this form. Examples include the zero-one,
Hamming, NDCG and precision at k losses [56, 16]. Inference in this setting works in two steps.
First, we compute a “soft” (continuous) prediction p = pΦ

Ω(v) ∈ C. Second, we compute a “hard”
(discrete) prediction by a decoding / rounding from C to Y , calibrated for the loss L:

yL(p) := argmin
ŷ∈Y

L(ŷ, p) = argmin
ŷ∈Y

〈ϕ(ŷ), V ϕ(p) + b〉. (13)

The target risk of f : X → Y and the surrogate risk of g : X → V are defined by

L(f) := E(X,Y )∼ρ L(f(X), Y ) and LΦ
Ω(g) := E(X,Y )∼ρ L

Φ
Ω(g(X), Y ),

where ρ is a typically unknown distribution over X × Y . The Bayes predictors are defined by
f? := argminf : X→Y L(f) and g? := argming : X→V LΦ

Ω(g). We now establish calibration of the
surrogate excess risk, under the assumption that the energy Φ(v, p) is linear-concave, i.e., it can be
written as Φ(v, p) = 〈v, ϕ(p)〉, for some function ϕ.

Proposition 4. Calibration of target and surrogate excess risks

Assume LΦ
Ω(v, y) is M -smooth in v w.r.t. the dual norm ‖ · ‖∗, C is a compact convex set such

that Y ⊆ C and Φ(v, p) = 〈v, ϕ(p)〉. Let σ := supy∈Y ‖V >ϕ(y)‖∗. Then, the generalized
Fenchel-Young loss (9) is calibrated with the target loss (12) with decoder d = yL ◦ pΦ

Ω:

∀g : X → V (L(d ◦ g)− L(f?))2

8σ2M
≤ LΦ

Ω(g)− LΦ
Ω(g?),

where pΦ
Ω : V → C is defined in (6) and yL : C → Y is defined in (13).

The proof is in Appendix B.4. Proposition 1 item 6 shows that the smoothness of Φ and strong
convexity of Ω ensure the smoothness of LΦ

Ω. Calibration also implies Fisher consistency, namely

7



Table 2: Multilabel classification results using various energies (test accuracy in %).

Energy yeast scene mediamill birds emotions cal500

Unary (linear) 79.76 89.14 96.84 86.47 78.22 85.67
Unary (rectifier network) 80.03 91.35 96.91 91.74 79.79 86.25

Pairwise 80.19 91.58 96.95 91.55 80.56 85.73
SPEN 79.99 91.24 96.68 91.41 79.35 86.25

Input-concave SPEN 80.00 90.64 96.95 91.77 79.73 86.35

LΦ
Ω(g) = LΦ

Ω(g?) ⇒ L(d ◦ g) = L(f?), when using the decoder d = yL ◦ pΦ
Ω. The existing proof

technique for the calibration of regular Fenchel-Young losses [56, 16] assumes a bilinear pairing and
a loss of the form LΩϕ

(u, ϕ(y)) = Ω∗ϕ(u) + Ωϕ(ϕ(y))− 〈u, ϕ(y)〉, where Ωϕ is a strongly-convex
regularizer w.r.t. ϕ(y). Our novel proof technique is more general, as it works with any linear-concave
energy and the regularizer Ω is w.r.t. y, not ϕ(y). Unlike the existing proof, our proof is valid for the
pairwise model we present in the next section.

7 Experiments

7.1 Multilabel classification

We study in this section the application of generalized Fenchel-Young losses to multi-label classifica-
tion, setting Y = {0, 1}k and C = [0, 1]k, where k is the number of labels. When the loss L in (12)
is the Hamming loss (1 - accuracy), our loss is calibrated for L and the decoding (13) is just ŷj = 1 if
pj > 0.5 else 0. We therefore report our empirical results using the accuracy metric.

Unary model. We consider a neural network u = gθ(x) ∈ Rk, assigning a score uj to each label
j ∈ [k]. With the bilinear pairing Φ(u, p) = 〈u, p〉, we get

pΦ
Ω(u) = argmax

p∈[0,1]k
〈u, p〉 − Ω(p) = pΩ(u). (14)

That is, (14) is just a normal neural network with pΩ as output layer. When Ω(p) = Ω1(p)+Ω1(1−p),
where Ω1(p) := 〈p, log p〉 is Shannon’s negentropy, we get pΩ(v) = sigmoid(v) := 1/(1+exp(−v))
and (9) is just the usual binary logistic / cross-entropy loss. When Ω(p) = Ω2(p) + Ω2(1− p), where
Ω2(p) := 1

2 〈p, 1−p〉 is Gini’s negentropy, we get a sparse sigmoid and the binary sparsemax loss [18,
§6.2]. Because C = [0, 1]k is the convex hull of Y = {0, 1}k, (14) can be intepreted as a marginal
probability [71]. Indeed, there exists a probability distribution P(Y |X) over Y ∈ Y such that

[pΦ
Ω(u)]j = P(Yj = 1|X = x).

Pairwise model. We now additionally use a network U = hθ(x) ∈ Rk×k, assigning a score Ui,j to
the pairwise interaction between labels i and j. With v = (u, U) and the linear-quadratic coupling
Φ(v, p) = 〈u, p〉+ 1

2 〈p, Up〉, we get

pΦ
Ω(v) = argmax

p∈[0,1]k
〈u, p〉+

1

2
〈p, Up〉 − Ω(p). (15)

If U is negative semi-definite, i.e., U = −AA> for some matrix A ∈ Rk×m, then the problem is
concave in p and can be solved optimally. Moreover, since Φ(v, p) is linear-concave, the calibration
guarantees in §6 hold and LΦ

Ω(v, y) is convex in v. In our experiments, we use a matrix A of rank 1
(cf. Appendix C). Unlike (7), (15) does not enjoy a closed form due to the constraints. We solve it
by coordinate ascent: if Ω is quadratic, as is the case with Gini’s negentropy, the coordinate-wise
updates can be computed in closed-form. Again, (15) can be interpreted as a marginal probability. In
constrast to (15), marginal inference in the closely related Ising model is known to be #P-hard [32].

SPEN model. Following SPENs [11, Eq. 4 and 5], we also tried the energy Φ(v, p) = 〈u, p〉 −
Ψ(w, p), where v = (u,w), u = gθ(x) and w are the weights of the “prior network” Ψ (independent
of x). We also tried a variant where Ψ is made convex in p, making Φ(v, p) concave in p. In both
cases, we compute pΦ

Ω(v) by solving (6) using projected gradient ascent with backtracking linesearch.

8
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Figure 2: Average performance (higher is better) and standard deviation over 10 seeds.

Experimental setup. We perform experiments on 6 publicly-available datasets, see Appendix C.
We use the train-test split from the dataset when provided. When not, we use 80% for training data
and 20% for test data. For all models, we solve the outer problem (11) using ADAM. We set Ω(p) to
the Gini negentropy. We hold out 25% of the training data for hyperparameter validation purposes.
We set R(θ) in (11) to λ

2 ‖θ‖
2
2. For the regularization hyper-parameter λ, we search 5 log-spaced

values between 10−4 and 101. For the learning rate parameter of ADAM, we search 10 log-spaced
valued between 10−5 and 10−1. Once we selected the best hyperparameters, we refit the model on
the entire training set. We average results over 3 runs with different seeds.

Results. Table 2 shows a model comparison. We observe improvements with the pairwise model
on 4 out of 6 datasets, confirming that our losses are able to learn useful models. Input-concavity
helps improve SPENs in 4 out of 6 datasets. Table 4 confirms that using the envelope theorem for
computing gradients works comparably to (if not better than) the implicit function theorem. Table 5
shows that our losses outperform the energy, the cross-entropy and the generalized perceptron losses.

7.2 Imitation learning

In this section, we study the application of generalized Fenchel-Young losses to imitation learning.
This setting consists in learning a policy π : X 7→ Y , a mapping from states X to actions Y ,
from a fixed dataset of expert demonstrations (x1, y1), . . . , (xn, yn) ∈ X × Y . In particular, we
only consider a Behavior Cloning approach [61], which essentially reduces imitation learning to
supervised learning (as opposed to inverse RL methods [64, 54]). The learned policy π is evaluated
on its performance, which is the expected sum of rewards of the environment [70].

Experimental setup. We consider four MuJoCo Gym locomotion environments [23] together with
the demonstrations provided by Orsini et al. [58]; see Appendix C.2 for details. We evaluate the
learned policy π for different number of demonstration trajectories: 1, 4 and 11, consistently with
[38, 40, 28]. The action space in the demonstrations is included in [−1, 1]k, where the dimensionality
of the action space k corresponds to the torques of the actuators. We scale the action space to the
hypercube Y = C = [0, 1]k at learning time and scale it back to the original action space at inference
time. Similarly to the multilabel classification setup, we evaluate the unary and pairwise models, with
the only difference that we use two hidden layers instead of one, since it leads to significantly better
performance. We specify the hyperparameter selection procedure in Appendix C.2.

Results. We run the best hyperparameters over 10 seeds and report final performance over 100
evaluation episodes. Figure 2 shows a clear improvement of the pairwise model over the unary
model for 3 out of 4 tasks. Contrary to the unary model, the pairwise model enables to capture the
interdependence between the different torques of the action space, translating into better performance.

8 Conclusion

Building upon generalized conjugate functions, we proposed generalized Fenchel-Young losses,
a natural loss construction for learning energy networks and studied its properties. Thanks to
conditions on the energy Φ and the regularizer Ω ensuring the loss smoothness, we established
calibration guarantees for the case of linear-concave energies, a more general result than the existing
analysis, restricted to bilinear energies. We demonstrated the effectiveness of our losses on multilabel
classification and imitation learning tasks. We hope that this paper will help popularize generalized
conjugates as a powerful tool for machine learning and optimization.
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