
Improving Policy Learning via Language Dynamics

Distillation

Victor Zhong1,2, Jesse Mu3, Luke Zettlemoyer1,2, Edward Grefenstette4,5 and Tim Rocktäschel4

1University of Washington
2Meta AI Research

3Stanford University
4University College London

5Cohere

Abstract

Recent work has shown that augmenting environments with language descriptions
improves policy learning. However, for environments with complex language
abstractions, learning how to ground language to observations is difficult due
to sparse, delayed rewards. We propose Language Dynamics Distillation (LDD),
which pretrains a model to predict environment dynamics given demonstrations
with language descriptions, and then fine-tunes these language-aware pretrained
representations via reinforcement learning (RL). In this way, the model is trained to
both maximize expected reward and retain knowledge about how language relates
to environment dynamics. On SILG, a benchmark of five tasks with language de-
scriptions that evaluate distinct generalization challenges on unseen environments
(NetHack, ALFWorld, RTFM, Messenger, and Touchdown), LDD outperforms
tabula-rasa RL, VAE pretraining, and methods that learn from unlabeled demon-
strations in inverse RL and reward shaping with pretrained experts. In our analyses,
we show that language descriptions in demonstrations improve sample-efficiency
and generalization across environments, and that dynamics modeling with expert
demonstrations is more effective than with non-experts.

1 Introduction

Language is a powerful medium that humans use to reason about abstractions—its compositionality
allows efficient descriptions that generalize across environments and tasks. Consider an agent that
follows instructions to clean the house (e.g. find the dirty dishes and wash them). In tabula-rasa
reinforcement learning (RL), the agent observes raw perceptual features of the environment, then
grounds these visual features to language cues to learn how to behave through trial and error. In
contrast, we can provide the agent with language descriptions that describe abstractions which are
present in the environment (e.g. there is a sink to your left and dishes on a table to your right), thereby
simplifying the grounding challenge. Language descriptions of observations occur naturally in many
environments such as text prompts in graphical user interfaces [Liu et al., 2018], dialogue [He et al.,
2018], and interactive games [Küttler et al., 2020]. Recent work has also shown improvements in
visual manipulation [Shridhar et al., 2021] and navigation [Zhong et al., 2021, Tam et al., 2022] by
captioning the observations with language descriptions. Despite these gains, learning how to interpret
language descriptions is difficult through RL, especially on environments with complex language
abstractions [Zhong et al., 2021].
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Figure 1: Language Dynamics Distillation (LDD). LDD uses cheap unlabeled demonstrations to learn a
dynamics model of the environment, which is used to initialize and distill grounded representations
into the policy learner. During the dynamics modeling phase (purple), we train a teacher model to
predict the next observation given prior observations using unlabeled demonstrations. In the policy
learning phase (red), we initialize a model with the teacher and distill intermediate representations
from the teacher during reinforcement learning. The traditional policy learning loop is shown in
green. LDD-specific components are shown in blue.

We present Language Dynamics Distillation (LDD), a method that improves RL by learning a dy-
namics model on cheaply obtained unlabeled (i.e. no action labels) demonstrations with language
descriptions. When learning how to use language descriptions effectively, one central challenge
is how to disentangle language understanding from policy performance from sparse, delayed re-
wards. Our motivation is to learn initial language grounding via dynamics modeling from an offline
dataset, away from the credit assignment and non-stationarity challenges posed by RL. While labeled
demonstrations that tell the agent how to to act in each situation are expensive to collect, for many
environments one can cheaply obtain unlabeled demonstrations (e.g. videos of experts performing the
task) [Yang et al., 2019, Stadie et al., 2017]. Intuitively, LDD exploits these unlabeled demonstrations
to learn how to associate language descriptions with abstractions in the environment. This knowledge
is then used to bootstrap and more quickly learn policies that generalize to instructions and manuals
in new environments. Given unlabeled demonstrations with language descriptions (e.g. captions of
scene content), we first pretrain the model to predict the next observation given prior observations,
similar to language modeling. A copy of this model is stored as a fixed teacher that grounds language
descriptions to predict environment dynamics. We then train a model with RL, while distilling inter-
mediate representations from the teacher to avoid catastrophic forgetting of how to interpret language
descriptions for dynamics modeling. In this way, the model learns to both maximize expected reward
while retaining knowledge about how language descriptions relate to environment dynamics.

We evaluate LDD on the recent SILG benchmark [Zhong et al., 2021], which consists of five diverse en-
vironments with language descriptions including NetHack [Küttler et al., 2020], ALFWorld [Shridhar
et al., 2021], RTFM [Zhong et al., 2020], Messenger [Hanjie et al., 2021], and Touchdown [Chen et al.,
2018]. These environments present unique challenges in language-grounded policy-learning across
complexity of instructions, visual observations, action space, reasoning procedure, and generalization.
By learning a dynamics model from cheaply obtained unlabeled demonstrations, LDD consistently
outperforms reinforcement learning with language descriptions both in terms of sample efficiency and
generalization performance. Moreover, we compare LDD to other techniques that inject prior knowl-
edge in VAE pretraining [Kingma and Welling, 2013], inverse reinforcement learning [Hanna and
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Stone, 2017, Torabi et al., 2018, Guo et al., 2019], and reward shaping with a pretrained expert [Merel
et al., 2017]. LDD achieves top performance on all environments in terms of task completion and
reward. In addition to comparing LDD to other methods, we ablate LDD to quantify the effect of
language observations in dynamics modeling, and the importance of dynamics modeling with expert
demonstrations. On two environments where we can control for the presence of language descriptions
(NetHack game messages and Touchdown panorama captions), we show that language descriptions
improve sample-efficiency and generalization. Finally, across all environments, we find that dynamics
modeling with expert demonstrations is more effective than with non-expert rollouts.

2 Related Work

Learning by observing language. Recent work studies generalization to language instructions
and manuals that specify new tasks and environments. These settings range from photorealistic/3D
navigation [Anderson et al., 2018, Chen et al., 2018, Ku et al., 2020, Shridhar et al., 2020] to multi-
hop reference games [Narasimhan et al., 2015, Zhong et al., 2020, Hanjie et al., 2021]. We use a
collection of these tasks to evaluate LDD. There is also work where understanding language is not
necessary to achieve the task, however its inclusion (e.g. via captions, scene descriptions) makes
learning more efficient. Shridhar et al. [2021] show that one can quickly learn policies in a simulated
kitchen environment described in text, then transfer this policy to the 3D visual environment. Zhong
et al. [2021] similarly transform photorealistic navigation to a symbolic form via image segmentation,
then learn a policy that transfers to the original photorealistic setting. In work concurrent to ours, Tam
et al. [2022] generate oracle captions of observations for simulated robotic control and city navigation,
which improve policy learning. LDD is complementary to these—in addition to incorporating language
descriptions as features, we show that learning a dynamics model from unlabeled demonstrations
with language descriptions improves sample efficiency and results in better policies.

Imitation learning from observations. There is prior work on model-free as well as model-based
imitation learning from observations. Model-free methods encourage the imitator to produce state
distributions similar to those produced by the demonstrator, for example via generative adversarial
learning [Merel et al., 2017] and reward shaping [Kimura et al., 2018]. In contrast, LDD only requires
intermediate representations extracted from an expert dynamics model on states encountered by the
learner, which are cheaper to compute than rollouts from an expert policy. Model-based approaches
learn dynamics models that predict state-transitions given the current state and an action. Hanna and
Stone [2017] learn an inverse model to map state-transitions to actions, which is then used to annotate
unlabeled trajectories for imitation learning. Edwards et al. [2019] learn a forward dynamics model
that predicts future states given state and latent action pairs. In contrast, LDD does not assume priors
over the action space distribution. For instance, on ALFWorld, our method works even though it is
impossible to enumerate the action space. In our experiments, we extend model-free reward shaping
and model-based inverse dynamics modeling to account for language descriptions and compare LDD to
these methods.

Representation learning in RL. In representation learning for RL, the agent learns representations
of the environment using rewards and objectives based on the difference between the state and prior
states [Strehl and Littman, 2008], raw visual observations [Jaderberg et al., 2017], learned agent
representations [Raileanu and Rocktäschel, 2020], and random network observations [Burda et al.,
2019]. In intrinsic exploration methods [Raileanu and Rocktäschel, 2020, Burda et al., 2019], the
training objective encourages dissimilarity (e.g. in observation/state space) to prior agent experi-
ence so that the agent discovers novel states. Unlike intrinsic exploration, the distillation objective
in Language Dynamics Distillation encourages similarity to expert behaviour, as opposed to dissim-
ilarity to prior agent experience. In reconstruction based representation learning methods [Strehl
and Littman, 2008, Jaderberg et al., 2017], the training objective encourages the agent to learn
intermediate representations that also capture the dynamics and structure of the environment by
reconstructing the observations (e.g. predicting what objects are in scene). Language Dynamics
Distillation is similar to reconstruction methods for representation learning, however unlike the latter,
the dynamics model in LDD is trained on trajectories obtained from an expert policy as opposed to the
agent policy. Language Dynamics Distillation is complementary to intrinsic exploration methods and
to reconstruction based representation learning methods.
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3 Language Dynamics Distillation

Recent work improves policy learning by augmenting environment observations with language de-
scriptions [Shridhar et al., 2021, Zhong et al., 2021, Tam et al., 2022]. For environments with complex
language abstractions, however, learning how to associate language to environment observations is
difficult through RL due to sparse, delayed rewards. In Language Dynamics Distillation (LDD), we
pretrain the model on unlabeled demonstrations (i.e. no annotated actions) with language descrip-
tions to predict the dynamics of the environment, then fine-tune the language-aware model via RL.
LDD consists of two phases. In the first dynamics modeling phase, we pretrain the model to predict
future observations given unannotated demonstrations. We store a copy of the model as a fixed
teacher that has learned grounded representations useful for predicting how the environment behaves
under an expert policy. In the second reinforcement learning phase, we fine-tune the model through
policy learning, while distilling representations from the teacher. This way, the model is trained
to both maximize expected reward and retain knowledge about the dynamics of the environment.
Fig 1 illustrates the components of LDD.

3.1 Background

Markov decision process. Consider a MDP M = {S,A, P, r, �}. Here, S and A respectively are
the discrete state (e.g. language goals, descriptions, visual observations) and action spaces of the
problem. P (st+1|st, at) is the transition probability of transitioning into state st+1 by taking action
at from state st. r(s, a) is the reward function given some state and action pair. � is a discount factor
to prioritize short-term rewards.

Actor-critic methods for policy learning. In RL, we learn a policy ⇡(s; ✓) that maps from
observations to actions ⇡ : S ! A. Let R(⌧) denote the total discounted reward over the trajectory
⌧ . The objective is to maximize the expected reward J⇡(✓) = E⇡[R(⌧)] following the policy ⇡ by
optimizing its parameters ✓. For trajectory length T , the policy gradient is

rE⇡[R(⌧)] = E⇡

" 
R(⌧)

TX

t=1

r log ⇡(at, st)

!#
= E⇡

" 
TX

t=1

Gtr log ⇡(at, st)

!#
(1)

where Gt =
P1

k=0 �
krt+k+1 is the return or discounted future reward at time t. We consider

the actor-critic family of policy gradient methods, where a critic is learned to reduce variance in
the gradient estimate. Let V (s) = E⇡[Gt|st = s] denote the state value, which corresponds to the
expected returns by following the policy ⇡ from a state s. Actor critic methods estimate the state value
function by learning another parametrized function V to bootstrap the estimation of the discounted
return Gt. For instance, with one-step bootstrapping, we have Gt ⇡ rt+1 + �V (st+1;�). The critic
objective is then JV (�) =

1
2 (rt+1 + �V (st+1;�)� V (st;�))

2 We minimize a weighted sum of the
policy objective and the critic objective Jac(✓,�) = �J⇡(✓) + ↵V JV (�).

3.2 Dynamics modeling during pretraining

In addition to policy learning, Language Dynamics Distillation learns a dynamics model from unla-
beled demonstrations to initialize and distill into the policy learner. Consider a set of demonstrations
without labeled actions T� = {⌧1, ⌧2, . . . ⌧n} obtained by rolling out some policy �(at, st), where
each demonstration ⌧ = [s1, s2, . . . sT ] consists of a sequence of observations. We learn a dynamics
model �(s1 . . . st; ⇣) to predict the next observation st+1 given the previous observations.

J�(⇣) =
1

nT

 
nX

i=1

 
TX

t=1

sim (st+1, �(s1, . . . st; ⇣))

!!
(2)

where sim is a differentiable similarity function between the predicted state �(s1, . . . st) and the
observed state st+1, and ⇣ are parameters of the dynamics model. In the environments we consider,
sim is the cross-entropy loss across a grid of symbols denoting entities present in the scene.

3.3 Dynamics distillation during policy learning

Fig 1 shows the decomposition of the model into a representation network frep, a policy head f⇡, a
value head fV , and a dynamics head f�. The three heads share parameters because their inputs are
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Figure 2: NetHack Challenge comparisons (left) and ablations (right). LDD consistently outperforms
other methods.

formed by the same representation network.

⇡(st) = f⇡ (frep (st; ✓rep) ; ✓⇡) (3)
V (st) = fV (frep (st; ✓rep) ; ✓V ) (4)
�(st) = f� (frep (st; ✓rep) ; ✓�) (5)

In the first phase of dynamics modeling, we pretrain the model to predict future observations
given demonstrations by optimizing J�. We then store a copy of the model as a fixed teacher
�̃(st) = f̃�

⇣
˜frep

⇣
st; ✓̃rep

⌘⌘
. Let |X � Y | denote the L2 distance between X and Y . During the

second phase, in addition to policy learning, we optimize a distillation objective Jd(✓rep, ✓⇡, ✓V ) =

| ˜frep

⇣
st; ✓̃rep

⌘
� frep (st; ✓rep)| to avoid catastrophic forgetting of how to interpret language descrip-

tions for dynamics modeling. This quantity is the similarity between the feature representation
produced by the fixed teacher (e.g. the pretrained dynamics model) and the feature representation
produced by the model. Because �̃ is frozen, the parameters ✓̃rep are not included in the objective
function Jd. The joint loss for Language Dynamics Distillation is then

J(✓rep, ✓⇡, ✓V ) = �J⇡(✓) + ↵V JV (�) + ↵dJd(✓rep, ✓⇡, ✓V ) (6)

To summarize, using unlabeled demonstrations with language descriptions, LDD learns a dynamics
model of the environment that grounds language descriptions to environment observations (Sec-
tion 3.2). This prior knowledge is then injected into reinforcement learning via initialization and
distillation (Section 3.3).

4 Experiments

We evaluate Language Dynamics Distillation on the Situated Interactive Language Grounding bench-
mark (SILG) [Zhong et al., 2021]. SILG consists of five different language grounding environments
with diverse challenges in term of complexity of observation space, action space, language, and
reasoning procedure. In all environments, a situated agent observes symbolically (RTFM, Messenger,
Nethack, Touchdown) or prose (ALFWorld) rendered visuals and interacts with the environment to
follow some instance-specific language goals (e.g. what to do). In addition, the agent observes text
manuals describing instance-agnostic environment rules (e.g. entity-role associations). The learning
challenge is to learn a reading agent that generalizes to new environments with different environment
rules (e.g. new entity-team associations, new parts of the map). The five different environments are
as follows.

4.1 Environments

NetHack [Küttler et al., 2020]: The agent must descend a procedurally generated dungeon. Its
primarily challenge is in large state space and partial observability, as the map remains obscured until
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Figure 3: Touchdown comparisons (left) and ablations (right). Methods that distill or reward shape
(LDD, reward, LDD-init) outperform those that do not.

exploration. Observations include a symbolic grid of entity IDs, in-game message, and description
of character stats. The agent chooses among a fixed set of actions such as movement, picking
up/buying/selling items, and attacking. We evaluate not on SILGNethack but the full NetHack
challenge, a difficult game for humans with ⇠15% expert win rate [Street, 2013].

SymTouchdown [Zhong et al., 2021]: A symbolic version of Touchdown [Chen et al., 2018]
where the agent navigates segmentation maps of Street View panoramas following long instructions.
The primary challenge is reading long, natural instructions that describe photorealistic images.
Evaluation is on new navigation instructions. Observations include a grid of segmentation class IDs
corresponding to a discretized Google Street View panorama, synthetic captions of where objects are
relative to the agent (e.g. to your right you see a lot of road and some cars), and language navigation
instructions. The agent selects from a list of radial directions to proceed to the next panorama.

ALFWorld [Shridhar et al., 2021]: The agent navigates and manipulates objects inside a kitchen
which is described via textual descriptions. ALFWorld is challenging due to its large (>50) text action
space that vary across scenes. Evaluation is on unseen instructions. Observations include a textual
description of the scene and language goals (e.g. put a clean sponge on the metal rack). The agent
chooses among a variable set of language actions (e.g. open drawer 1).

RTFM [Zhong et al., 2020]: The agent interprets a game manual and instruction to acquire the
correct items to fight the correct monsters. Its main challenge is in multi-step reasoning that combines
world observations with texts describing multiple entities. Evaluation is on a set of manuals distinct
from those in training; hence the agent cannot memorize training manuals and must learn to read
correctly in order to generalize. Observations include a symbolic grid containing names of entities
present, manual describing high level game rules, agent inventory, and the language instruction. The
agent chooses among a fixed set of movements. We train and evaluate on the first curriculum stage.

Messenger [Hanjie et al., 2021]: The agent delivers a message from a source entity to a target
while avoiding an enemy. The entities are referred to in text by many names, which have no lexical
overlap with their symbol ID, hence the core challenge is in mapping language entity references
in text to observed symbolic entity IDs. Evaluations are on new entity-role assignments (e.g. who
carries the message). Observations include a symbolic grid containing symbol IDs of entities present,
and a manual of entities and roles. The agent chooses among a fixed set of movements. We train and
evaluate on the second curriculum stage.

4.2 Method and Baselines

Reinforcement learning with language descriptions from scratch. We train a base tabula-rasa
policy learner from random initialization. For NetHack, we train the base policy learner from [Küttler
et al., 2020] using moolib [Mella et al., 2022]. For RTFM, ALFWorld, and Touchdown, we train the
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Figure 4: ALFWorld comparisons (left) and ablations (right). LDD consistently outperforms other
methods.

Figure 5: RTFM comparisons (left) and ablations (right). LDD consistently outperforms other methods.
Because of the multi-step reasoning nature of RTFM solutions, partially complete strategies (e.g. able
to do 2/3/4 cross-references) result in step-wise gains in win-rates. Strategies at different levels of
completion result in larger variances when averaged.

SIR model from [Zhong et al., 2021] using Torchbeast [Küttler et al., 2019, Espeholt et al., 2018].
For Messenger, we train the EMMA model from Hanjie et al. [2021] using PPO [Schulman et al.,
2017]. For NetHack, we train the base policy learner from [Küttler et al., 2020] using moolib [Mella
et al., 2022]. For RTFM, ALFWorld, and Touchdown, we train the SIR model from [Zhong et al.,
2021] using Torchbeast [Küttler et al., 2019, Espeholt et al., 2018]. For Messenger, we train the
EMMA model from Hanjie et al. [2021] using PPO [Schulman et al., 2017].

Pretraining representations via a variational autoencoder. We pretrain a variational autoencoder
(VAE), a common approach for representation learning, that predicts the intermediate representation
just before the policy head [Kingma and Welling, 2013]. This VAE has the same architecture as the
policy learner, and is used to initialize the policy learner. The training procedure for the VAE is as
described in Ha and Schmidhuber [2018].

Language Dynamics Distillation (LDD) We train LDD variants of the baseline policy learners for
each environment, where we pretrain the model to perform dynamics modeling on unannotated
demonstrations. For NetHack, we use 100k screen-recordings (where actions are not annotated and
cannot be trivially reverse engineered due to ambiguity in observations) of human-playthroughs
from the alt.org NetHack public server. For Touchdown, we use unannotated demonstrations by
human players. For ALFWorld, we use trajectories obtained from an A* planner with full state and
goal knowledge, with actions removed. For RTFM and Messenger, we train expert trajectories until
convergence, and sample 10k rollouts from the experts from which we remove action labels.
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Figure 6: Messenger comparisons (left) and ablations (right). Methods that pretrain to initialize (LDD,
inverse, LDD-distill) outperform those that do not.

Reward shaping with expert. Methods such as Merel et al. [2017] reward shape with an expert by
encouraging the agent to produce states similar to a demonstrator. To compare LDD to this idea, we use
the dynamics model to predict the next observation under expert policy. The difference (e.g. accuracy
in symbol prediction across grid) between the predicted observation and the actual observation after
taking the action proposed by the agent is used as a penalty (e.g. negative auxiliary reward). This
method is listing as reward in experiment figures and uses the same unlabeled demonstrations as LDD.

Inverse reinforcement learning. Another class of methods learn a inverse dynamics model with
which infer actions in unlabeled demonstrations, then learn to imitate the pseudo-labeled demonstra-
tions [Hanna and Stone, 2017, Torabi et al., 2018]. To compare to this method, we first train the base
policy learner for 10k episodes, then collect 10k rollouts to train an inverse dynamics model that
predicts current action given current and future observations. This inverse model is used to annotate
the original unlabeled demonstrations for imitation learning [Torabi et al., 2018]. Because these
imitation policies do not generalize to novel environments and goals found in SILG evaluation, we
additionally fine-tune them via RL similar to Guo et al. [2019]. This method is listing as inverse
in experiment figures. In addition to the data used by reward and LDD, inverse uses additional
rollouts to train the inverse dynamics model.

4.3 Results and ablations

LDD consistently improves performance across environments. We evaluate on held-out envi-
ronments across 4 random seeds for NetHack in Fig 2, Touchdown in Fig 3, ALFWorld in Fig 4,
RTFM in Fig 5, and Messenger in Fig 6. LDD obtains top performance compared to tabula-rasa
policy learning with language descriptions, VAE pretraining, reward shaping using the dynam-
ics model, and inverse reinforcement learning. This is consistent across challenges in multi-step
reasoning (RTFM), language-entity generalization (Messenger), large language action spaces (ALF-
World), large procedurally generated states (NetHack), and long natural language instructions
with complex visual scenes (Touchdown). We also ablate LDD by removing the initialization step
(LDD-init) or the distillation step (LDD-distill). On Messenger, methods that pretrain to ini-
tialize (LDD, inverse, LDD-distill) outperform those that do not (reward, LDD-init). On
Touchdown, methods that distill or reward shape (LDD, reward, LDD-init) outperform those that
do not. Learning curves for each method across environments are shown in Appendix section G.
LDD converges faster and to a higher win rate than other methods, with the exception of Touchdown,
where it achieves lower training but higher evaluation win-rate.

Adding language descriptions improves performance. What is the role of language descrip-
tions in pretraining and subsequent policy learning? To answer this question, we ablate language
descriptions by removing them from the environments in NetHack and SymTouchdown (the other envi-
ronments are not solvable without descriptions because they describe the objective). no-msg removes
NetHack messages describing events near the agent (e.g. kitten attacks the bat!). no-msg,stats
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Figure 7: Dynamics model frame prediction accuracy using unlabeled expert demonstrations vs.
rollouts from random policies. Training using expert demonstrations result in more accurate dynamics
models, especially on complex environments that are difficult to explore via random policies.

additionally removes character state descriptions (e.g. health, achievements, dungeon level). no-desc
removes Touchdown captions that describe objects locations scene relative to the agent (e.g. on your
left, there are many building, some people, and few cars). These variants differ only in the observation
space used in dynamics modeling. In fine-tuning, they receive the same observation space with lan-
guage descriptions. For both NetHack (Fig 2) and Touchdown (Fig 3), removal of in-game messages,
character state descriptions, and synthetic captions degrade performance. Appendix Fig 12 further
shows that adding language descriptions results in dynamics models with higher accuracy. This
suggests that modeling language descriptions in the observation space result in better initialization
and distillation, which improve subsequent policy learning.

Expert demonstrations cover late-stage strategy that result in asymptotic gains. In complex
environments, experts demonstrate late stage strategies difficult to explore via random sampling.
Because these stages are rarely reached, accurate dynamics models are especially helpful in providing
signals when rewards are sparse. Take NetHack as an example: unlike experts, non-expert policies
never proceed to the deeper dungeons of the game. A dynamics model trained on non-expert rollouts
therefore struggles to generalize to unseen deeper dungeons. As the agent learns and descends deeper
in the dungeon, a dynamics model trained on non-expert demonstrations results in less distillation
gains. Fig 7 compares dynamics modeling from observations using expert demonstrations vs. using
rollouts from a random policy. The evaluation is on a held-out set of expert demonstrations. Across
environments, training on expert demonstrations outperforms training on non-expert demonstrations.
This effect is less apparent on environments where random policies can (eventually) discover most of
the state space (e.g, RTFM, Messenger) and more apparent on partially observed environments where
only strategic expert policies can encounter rare states indicative of success (e.g. long-term planning
in NetHack and Touchdown, choosing from large language action space in ALFWorld).

5 Conclusion

While recent work showed that augmentation with language descriptions result in better policies,
learning how to ground language descriptions to observations is difficult through naive RL with sparse,
delayed rewards. We proposed Language Dynamics Distillation, which pretrains a dynamics model
using cheaply-obtained unlabeled demonstrations with language descriptions to initialize and distill
into the policy learner. On five tasks with language descriptions, LDD improved sample efficiency and
resulted in better policies than RL from scratch, inverse RL, and expert reward shaping. In addition,
the benefit from initialization and distillation differ on an environment basis, but are complementary
across environments. Moreover, language descriptions improved initialization and distillation gains in
policy learning. Finally, learning to model dynamics with expert demonstrations was more effective
than with non-expert rollouts. A promising direction for future research is studying whether dynamics
modeling with language descriptions is similarly effective in robotic control where naive RL can be
prohibitively expensive, but unlabeled demonstrations with synthetic captions are cheap to obtain.
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