
Decision Trees with Short Explainable Rules

Victor F. C. Souza
Departamento de Informática

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, RJ - Brazil
vfsouza@inf.puc-rio.br

Ferdinando Cicalese
Department of Computer Science

University of Verona
Verona - Italy

ferdinando.cicalese@univr.it

Eduardo Sany Laber
Departamento de Informática

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, RJ - Brazil
laber@inf.puc-rio.br

Marco Molinaro
Microsoft Research & Pontifical Catholic University of Rio de Janeiro

mmolinaro@microsoft.com

Abstract

Decision trees are widely used in many settings where interpretable models are
preferred or required. As confirmed by recent empirical studies, the interpretabil-
ity/explainability of a decision tree critically depends on some of its structural
parameters, like size and the average/maximum depth of its leaves. There is indeed
a vast literature on the design and analysis of decision tree algorithms that aim at
optimizing these parameters.
This paper contributes to this important line of research: we propose as a novel
criterion of measuring the interpretability of a decision tree, the sparsity of the set of
attributes that are (on average) required to explain the classification of the examples.
We give a tight characterization of the best possible guarantees achievable by a
decision tree built to optimize both our new measure (which we call the explanation
size) and the more classical measures of worst-case and average depth. In particular,
we give an algorithm that guarantees O(lnn)-approximation (hence optimal if
P 6= NP) for the minimization of both the average/worst-case explanation size
and the average/worst-case depth. In addition to our theoretical contributions,
experiments with 20 real datasets show that our algorithm has accuracy competitive
with CART while producing trees that allow for much simpler explanations.

1 Introduction

Machine learning models and algorithms appear more and more frequently in systems that make
decisions with an impact in our lives. Thus, it is highly desirable that the output of these methods

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

are interpretable so that we can use them more comfortably or, eventually, question its applicability
[13].1

Decision trees are used in many settings as a tool to provide explainability. However, their explainabil-
ity greatly depends on the depths of its leaves, as empirically demonstrated by [46]. In fact, based on
empirical data from a survey with 98 questions answered by 69 respondents, the authors conclude that
“question depth” (the depth of the deepest leaf that is required when answering questions about a tree)
turns out to be the most important parameter. Essentially, users prefer trees where the information
about the most common items are given at the top of the tree. Minimizing the average/worst-case
depth indeed has been a classic goal for decision tree algorithms (see the Related Work section
below).

However, another very important component for explainability is having decision rules that are sparse,
namely, that use as few different attributes as possible to classify an object or make a prediction. For
decision trees, this means that the path to any given leaf should test only a small number of different
attributes. Figure 1 shows two trees for the Sensorless dataset [7] with similar accuracy. While the
trees have the same size, the rightmost one gives much more concise classification rules. As a spoiler,
the left tree was constructed using CART and the right one using the algorithm we propose in this
paper. To exemplify their differences, let us consider the leaves that are marked in the figure with a
thick rectangle. Both are assigned the same class and cover the maximum number of examples in the
training set (approximately 11.500 example each). Despite this similar behaviour, the explanations
for their classifications are quite different (the Di’s denote the attributes):

CART: D11 ∈ [-0.11, 0.07] AND
D9> -0.01 AND
D10≤ 0.03

New algorithm: D11 ∈ [-0.01, 0.03]

Define the explanation size of a leaf as the number of distinct attributes tested on the path from the
root to this leaf. The above example shows that having trees whose leaves have small explanation
size yields significantly simpler (hence easier to interpret/explain) rules. However, to the best of our
knowledge there is no prior work considering decision trees optimized with respect to the explanation
size.

Figure 1: The left and right decision trees are built, respectively, by CART and the algorithm proposed
in this paper for the Sensorless dataset. The maximum depth was set to 4. Internal nodes associated
with the same attribute have the same color. The colors inside a leaf indicate the attributes that are
used to obtain its classification.

Our contributions. In this work we propose the explanation size as a novel measure to capture the
interpretability of a decision tree. In particular, we initiate a principled study of decision trees with
small explanation size by focusing on: (i) the trade-off that optimizing this criterion imposes on other
desirable metrics (e.g., average/worst-case depth); (ii) the design of efficient algorithms for building
such trees that guarantee good performance in practice.

Our first result is that it is possible to essentially obtain a best-of-both worlds in terms of average/worst-
case depth and explanation size: We show that there is always a binary decision tree that has the
smallest average explanation size possible but also has average depth not much larger than that of the

1We use the words interpretability and explainability in a broad sense; for a detailed discussion of the
different concepts related to the topic (see, for example, [41]).

2

optimal tree for the latter metric (Item 2 of Theorem 1). The same result also holds when considering
worst-case explanation size and depth (Item 1 of Theorem 1). Remarkably, the latter (worst-case
bound) turns out to be tight. Theorem 2 shows it matches a necessary trade-off between optimizing
explanation size and depth, i.e., improving the bound on the depth in Theorem 1 can only be attained
at the cost of a logarithmic factor loss in the explanation size.

Despite having strong theoretical guarantees, the construction to obtain these trees is too wasteful
to be used in practice. Thus, our second contribution is an algorithm that still yields a tree that
provably approximates both optimal average/worst-case explanation size and depth (Theorem 3)
but has enough flexibility that it can be employed to obtain a good performance in practice. To
demonstrate the applicability of our proposal, we compare it against CART [11], a quite popular
method to build decision trees, on 20 real classification datasets. Our method leads to much more
(resp. more) interpretable trees in terms of explanation size (resp. average depth), while having a
performance similar to CART in terms of accuracy and speed.

2 Related work

Our work can be connected with an active line of research that proposes interpretable models for
machine learning [13], in particular more interpretable rule-based models (e.g. decision lists, sets,
and trees) [37, 30, 21, 9]. Our interpretability metric is closely related to rule sizes considered in
the rule learning literature, e.g., [31, 47]. In addition, we can relate our work with those from the
vast literature of methods with provable guarantees that are designed to build decision trees of “low
complexity” (e.g. depth of leaves, number of nodes, etc.) [23, 22, 18, 8, 24].

More interpretable rule-based models. There is a body of work that aims to understand what
makes a rule model more comprehensible via experiments with end users [4, 29, 46]. The paper [4]
compares the comprehensibility of classifiers that are learned by decision trees and rule-learning
algorithms, based on subjective comparisons of classifier pairs by 100 Computer Science students.
They conclude that decision trees are more comprehensible. In [29], based on experiments with
business students, it is concluded that decision tables are more interpretable than decision trees
and propositional “if-then” rules. One potential limitation of this study is that these students had
no experience with the representation formats, so it is not clear whether this conclusion can be
extended for more experienced users. The work of [46] reports a survey with 69 respondents that
was carried out to understand what makes a decision tree more interpretable. Among their findings is
that the depth of the leaves required by users during the experiments had one of the biggest and most
consistent impact on the usability of decision trees across multiple tasks (classify, explain, validate,
and discover).

There are some recent works that try to optimize interpretabilty metrics when building rule-based
models [37, 10, 56, 30, 40, 9]. We briefly discuss those that focus on decision trees. The paper [30]
contends that splits that have at least one of its parts/child nodes being class-homogeneous (roughly
this means that most examples have the same class) are important for interpretability, and propose a
splitting criterion that tries to balance this homogeneity and the depth of the leaves. In contrast to our
work, no provable guarantees are provided. The works [10, 56] employ Integer Linear Programming
to build trees of a given maximum depth, while [40] employs Dynamic Programming techniques to
develop an optimization framework that allows the construction of decision trees with few leaves that
optimize a variety of objective functions such as F-score and AUC. These methods, while interesting,
are much more complex to implement than ours and they do not run in polynomial time, which may
compromise their application on large datasets.

Decision trees with provable guarantees. There is a vast literature dedicated to the problem of
building decision trees with “low complexity”, where the complexity of a tree can be measured in
different ways, including worst-case/average leaf depth and number of nodes, among others [12]. It is
known that building a decision tree that minimizes the worst-case or average leaf depth, among those
that fit the training data, does not admit an o(log n) approximation unless P=NP [16, 36]. When the
goal is minimizing the number of nodes, the problem is even harder to approximate [3, 26]. Regarding
upper bounds, several algorithms with the optimal (within constants) O(log n)-approximation are
known for minimizing the worst-case and average depth [23, 22, 17, 18, 8, 24, 32, 39, 44]. What
distinguishes each method is the generality of its guarantee; for example, some consider scenarios

3

that include tests with noisy outcomes [32], while others consider items/examples with non-uniform
weights and tests with non-uniform costs [18, 44].

We remark that the method we propose here also allows the use of non-uniform weights on the
examples, which can be used, for instance, to prioritize models that yield simpler explanations
for some classes of particular interest, by setting high weights for examples in these classes. The
key difference between our method and the existing ones is that ours is the only one that provides
theoretical guarantees on the explanation size.

3 Model

We describe the model used throughout for the theoretical analyses. For that, we adopt a terminology
similar to that employed by some closely related works [1, 18]. On an instance I , there is a set of
ordinal attributes A and a set of objects O, where each object o ∈ O is described by the value it takes
on each attribute a ∈ A; we denote this value by a(o). Each object o also has a class c(o) in some set
C. In order to classify an object o, we are allowed to use threshold tests of the form “Is a(o) < t?”
for some attribute a and threshold value t.

A (threshold) decision tree T is a rooted tree where each internal node ν is associated with a threshold
test “Is a(o) < t?” and the edges from a node to its children are associated to the two possible
outcomes “a(o) < t” and “a(o) ≥ t”. We also refer to this test by the attribute/threshold pair (a, t).
Each leaf ` of T is associated with a class in C. Given a decision tree T , we say that an object o
reaches a node ν of T if it agrees with all outcomes associated with the path from the root of T to ν.
For each o ∈ O, we use `(o) to denote the unique leaf reached by object o. Finally, we consider the
exact classification model, namely a decision tree must correctly classify all objects of the instance,
i.e., each object o ∈ O reaches some leaf associated to its correct class c(o).

We now formalize the measures of interpretability that were mentioned in the introduction.

Depth and explanation size of a tree. We start recalling the classical notions of worst-case and
average tree depth. Given a decision tree T , the depth of a leaf ` is the number of tests/internal-nodes
on the path from the root of T to `, and is denoted by depth(`). The worst-case depth of the tree T is
obtained by considering the maximum depth over its leaves, namely

depthwc(T) := max
`∈leaf(T)

depth(`).

To measure the average depth of the tree, in addition to the datum above, as part of the input each
object o has a non-negative weight w(o) ∈ R+ indicating its likelihood/importance. Letting w(`)
be the sum of the weights of all objects that reach leaf `, the average depth of the tree T is then the
weighted sum of the depth of its leaves, namely

depthavg(T) :=
∑

`∈leaf(T)

w(`) · depth(`).

We now consider the novel measures of quality/interpretability of a tree using the notion of explanation
size. The explanation size of a leaf `, denoted by expl(`), is the number of different attributes on the
tests on the path from the root of T to `. As an example, the explanation size of the leaf marked with
a thick rectangle on the left tree of Figure 1 is 3. The worst-case and average explanation size of a
tree T are then given as before by the largest and the weighted sum of the explanation sizes of its
leaves, respectively:

explwc(T) = max
`∈leaf(T)

expl(`),

explavg(T) =
∑

`∈leaf(T)

w(`) · expl(`).

Our goal is to obtain trees with as small worst-case/average depth and explanation size as possible.
We use depth∗wc = depth∗wc(I) to denote the smallest possible worst-case depth of a decision tree
that solves instance I , and define the optimal values expl∗wc, depth∗avg , and expl∗avg analogously.

4

4 Tradeoff between depth and explanation size

Our goal is to obtain trees that simultaneously have both small worst-case/average depth and explana-
tion size. However, is this even possible? It is conceivable that in order to obtain trees with small
depth, one may be required to use several different attributes along the paths to effectively classify
the objects; but this would make the tree have a large explanation size. Conversely, in a tree with
small explanation size, the few attributes along a path may need to be used many times in order to
correctly classify the objects, leading to a large tree depth.

Perhaps surprisingly, we show that there are trees that simultaneously have optimal explanation size
and almost optimal depth.
Theorem 1. Given an instance of the classification problem, the following holds:

1. (Worst-case metrics) There exists a binary tree T for which simultaneously

• explwc(T) = expl∗wc
• depthwc(T) ≤ 2 depth∗wc + log n.

2. (Average metrics) There exists a binary tree T for which simultaneously

• explavg(T) = expl∗avg
• depthavg(T) ≤ 2 depth∗avg +W log n.,

where W is the sum of the weights of the object in the instance.

We remark that these additive bounds on the worst-case and average depth imply O(log n) multiplica-
tive approximations as well.
Observation 1. The bounds from Theorem 1 imply

depthwc(T) ≤ 3 log n

log c
· depth∗wc

depthavg(T) ≤ 3 log n · depth∗avg,

where c is the number of classes.

While the proof of Theorem 1 is deferred to Appendix B, we give here the main ideas behind it. We
will consider here only the worst-case metric (Item 1), since the proof is simpler and more transparent.

To show the existence of our desired tree we make use of multiway trees, i.e., a decision tree where
multiway tests are used rather than threshold tests. A multiway test associated with attribute a splits
the objects based on all possible values of this attribute. As an example, if an attribute a takes 5
distinct values for the objects in the instance and we use a at the root of a multiway tree, then the root
will have 5 children.

The starting point for the construction of the tree in Theorem 1 is the equivalence between optimal
binary trees and optimal multiway trees in terms of worst-case explanation size. While this is formally
proved in Lemmas 2 and 3, for an intuitive view of this equivalence first notice that there is a multiway
tree M∗ that is simultaneously optimal in terms of worst-case depth and worst-case explanation size,
since each attribute only needs to be used once in a path. Also, this optimal multiway tree M∗ has
worst-case explanation size (equivalently worst-case depth) at most that of the best binary tree, namely
depthwc(M

∗) = explwc(M
∗) ≤ expl∗wc, since intuitively multiway tests are more informative than

binary tests. Conversely, we can transform an optimal multiway tree M∗ into a binary decision tree T
by simulating each multiway test on an attribute a by using multiple threshold tests “Is a(o) < t” with
varying t (but same attribute a). Since explanation size only counts the number of distinct attributes
used along a path, the tree T so created has exactly the same explanation sizes as M∗, and hence
explwc(M

∗) = explwc(T) ≥ expl∗wc. Thus, we have the equivalence explwc(M
∗) = expl∗wc.

To prove Theorem 1, we start with the optimal multiway tree M∗ and convert it into a binary tree,
as above. However, the conversion in the previous paragraph is not enough: while it preserves the
explanation size, it may greatly increase the depth of the leaves when using multiple threshold tests
to simulate a multiway test (possibly yielding depth� depth∗wc). The key idea is to use a much
more efficient simulation that is based on alphabetic codes, a classic notion from coding theory [28].

5

The following result from [2, Chp. 2, p. 341], rephrased in the terminology of decision trees, gives a
sufficient condition for the existence of such codes with prescribed code-lengths di’s.
Lemma 1. Consider an instance of the classification problem with n objects but only 1 attribute.
Then for any positive integers d1, . . . , dn such that

∑n
j=1 2−di ≤ 1

2 , there exists a binary threshold
decision tree with n leaves at depths d1, . . . dn such that the i-th object reaches the leaf at depth di.

Then for each node ν of M∗ (corresponding to an attribute a, and with children ch1, ch2, . . .), we
consider all objects that reach a child chi as a “single object” (with the corresponding value in attribute
a) and applying the previous lemma we replace ν by a binary tree A where the leaf corresponding
to the objects in chi end up in a leaf at depth (in A) `i = dlog n(ν)

n(chi)
e + 1, where n(node) is the

number of objects that reach a given node in M∗. The final tree obtained, call it T , still has the
same explanation sizes as M∗, so explwc(T) = expl∗wc. Moreover, in terms of worst-case depth, any
root-to-leaf path P in T has a corresponding path PM∗ = ν0, ν1, ν2, . . . in M∗, and the length of P
is at most

|PM∗ |−1∑
i=0

(⌈
log

n(νi)

n(νi+1)

⌉
+ 1

)
≤ log n+ 2 · [length of PM∗].

By looking at the longest such path we get
depthwc(T) ≤ log n+ 2 depthwc(M

∗) ≤ log n+ 2 depth∗wc,

where the last inequality holds because of the optimality of M∗ with respect to worst-case depth.
This gives Item 1 of Theorem 1.

The average-case part of the theorem (Item 2) uses similar ideas, but in addition relies on entropy-
based calculations to argue about the average depth of the constructed tree.
Observation 2. Theorem 1 is an existential result and the construction outlined above cannot be
done in polytime, since it relies on the availability of an optimal multiway tree. However, one can
obtain in polytime a tree that is simultaneously an O(log n)-approximation for both worst-case
(respectively average) explanation size and depth by replacing the optimal multiway tree by one that
approximates within a factor of O(log n) the worst-case (resp. average) depth, which can be found
in polytime (see, e.g., [18] and references therein quoted).

Although guaranteeing asymptotically the desired optimal approximation, the construction leading to
such trees might be wasteful in practice as it involves the use of distinct alphabetic codes to turn each
multiway tests into a short sequences of threshold tests. Therefore, we present an alternative approach
in Section 5 that achieves the same approximation guarantee and has also very good performance in
practice.

4.1 Lower bound

Given these positive results, a natural question is whether it is possible to obtain a tree that is optimal
for both depth and explanation size. The next result answers this in the negative, and shows that in a
way the worst-case bound in Theorem 1 cannot be improved.
Theorem 2. Fix c and n ≥ cst · c for a sufficiently large constant cst. Then for every α ∈
[1
2 log c ,

1
2 (log(n/2)

log c − 1)], there is a classification instance with n examples and c classes such that
every binary decision tree T for this instance has either

depthwc(T) >
α

2
· depth∗wc

or
explwc(T) >

1

4α
· log

(n
c

)
· expl∗wc.

Remark 1. To get a more concrete idea for this lower bound, consider setting α at its upper limit,
namely α ≈ 1

2
logn
log c . In this case we obtain that every tree with depthwc(T) . 1

4
logn
log c depth∗wc

must have explwc(T) ≥ Ω((1 − log c
logn) log c) expl∗wc, which is Ω(log n) expl∗wc if we set c = logn

2 .
Comparing this against Theorem 1 and Observation 1 we see an interesting and subtle phenomenon:
while you can have a tree with depthwc(T) ≤ 3 logn

log c depth∗wc and optimal explwc(T), if you require
the approximation in the depth to be a constant factor smaller then you must lose a logarithmic factor
in the approximation in the explanation size.

6

5 An efficient and practical algorithm

In this section we design an algorithm, which we name Short Explanaible Rules (SER-DT), that
always yields trees of approximately optimal average/worst-case explanation size and depth. Impor-
tantly, our method has enough flexibility that it can be tuned to trade-off accuracy and interpretability,
as shown in our computational experiments (Section 6).

Similar to other algorithms in the area, ours chooses in each step a split that creates subtrees with
“small impurity”. However, unlike most such algorithms, it is not completely greedy and allows for
the desired extra flexibility in the choices.

To describe the algorithm, consider a set of objects S ⊆ O and let S(a, i) (respectively S(a,≤ i)
and S(a,> i)) be the set of objects in S with value equal (respectively at most and larger than) i on
attribute a. Moreover, let w(S) :=

∑
o∈S w(o) denote its total weight. Let o, o′ be a pair of objects

in S such that c(o) 6= c(o′). We will refer to such a pair as a misclassified pair because if both o and
o′ reach the same leaf in the decision tree then one of them will be surely misclassified.

We use P (S) to denote the number of misclassified pairs in S. This quantity can be thought of as a
measure of the amount of work that is needed to reach a correct classification of all objects in S and
it has been previously used in [19, 22, 18]. To take into account also the importance/weight of set S
we define wpm(S) := P (S) · w(S) as the weighted pair-wise misclassification of S.

As a pre-processing step, before executing SER-DT, each weight w(o) smaller than w(O)/n3) is
replaced with w(O)/(wminn

3), where wmin is the smallest positive weight among the objects in
O. This idea (from [35]) is important to guarantee a logarithmic dependence on n instead of w(O).
After this preprocessing, SER-DT is called for the set of objects O.

The pseudo-code description of SER-DT is presented in Algorithm 1, First SER-DT tries to use any
balanced test that reduces the weighted pair-wise misclassification of the current set of objects (in
the worst case) by at least a 1

2 factor. In any path of the tree built by SER-DT the amount of these
balanced tests is at most logarithmic, so they can be easily handled in our analysis. If no balanced test
exists, then the algorithm finds an attribute a∗ and value t∗ such that in the ternary split S(a∗, < t),
S(a∗, t∗), S(a∗, > t∗), only the middle set S(a∗, t∗) has weighted pair-wise misclassification larger
than the desired 1

2wpm(S). This 3-way partition is obtained by using two binary splits. Then, the
algorithm recurses on each set. A critical issue is to show that in this case some progress is also
achieved with the problematic subproblem on S(a∗, t∗) where wpm(S(a∗, t∗)) > 1

2wpm(S). In fact,
the choice of the attribute a∗ is such that, the instance S(a∗, t∗) has the minimum weighted pair-wise
misclassification among all the attributes and other possible tripartitions. As a result, we can employ
a lower bound on the optimum (Lemma 8 in appendix) that allows us to absorb the cost of the subtree
for the subproblem S(a∗, t) in the logarithmic guarantee.

Algorithm 1 SER-DT (S : set of objects)
1: if all objects in S are assigned to the same class, create a leaf assigned to such class and return
2: if there is a test τ that splits S into SL and SR such that max{wpm(SL), wpm(SR)} ≤ 1

2
wpm(S) then

3: Use any such test, say τ = (a, t), as the root of the decision tree
4: Recurse on the children S(a,≤ t) and S(a,> t)
5: else
6: Let a∗ be an attribute in argmin

a
{max

i
wpm(S(a, i))}

7: Let t∗ be the smallest value of the attribute a∗ such that the “left child” S(a∗,≤ t∗) satisfies

wpm(S(a∗,≤ t∗)) ≥ 1

2
· wpm(S).

8: Use two binary tests to simulate the 3-way split S(a∗, < t∗), S(a∗, t∗), S(a∗, > t∗). More precisely, at
the root use a test on attribute a∗ that splits S into the sets S(a∗, < t∗) and S(a∗,≥ t∗). Then, apply a
test on the right child of the root, currently associated with S(a∗,≥ t∗), creating two new children with
objects S(a∗, t∗) and S(a∗, > t∗)

9: Recurse on each of the three leaf nodes in the current tree
10: end if

The following is the promised guarantee for the average/worst-case depth and explanation size of the
trees produced by the algorithm.

7

Theorem 3. Given an instance I , the algorithm SER-DT produces a tree T that satisfies

1. (Worst-case metrics)

• depthavg(T) ≤ O (log n) depth∗avg,

• explavg(T) ≤ O (log n) expl∗avg.

2. (Average metrics)

• depthwc(T) ≤ O (log n) depth∗wc,
• explwc(T) ≤ O (log n) expl∗wc.

We remark that, in the light of the inapproximability results from [36, 16]2 this theorem says that
SER-DT (with the preprocessing step) guarantees the best possible approximation obtainable by a
polynomial algorithm with respect to both the measures under consideration: worst/average depth
and worst/average explanation size.

6 Experiments

In this section, we report the experiments that were carried out to evaluate how our proposed algorithm
SER-DT performs in practice.

Figure 2: The left (resp. right) image shows the average accuracy (resp. explavg) over the 20 datasets
as a function of FactorExpl.

We considered the 20 datasets that appear on Column 1 of Table 1 (see Appendix E for their main
characteristics). For all of them, 70% of the examples were used for training and the remaining 30%
for testing. Moreover, all the examples (objects) were considered equally important (weight=1/size of
training set). During a preprocessing step we converted all categorical attributes into binary attributes
via one-hot-encoding. See also Appendix E for more details on the experimental setup.

Recall that in (Line 2) of algorithm SER-DT any test that splits the current set of objects into subsets
of small enough wpm could be used. We use this flexibility to select a test among these that should
further help in obtaining small explanation sizes and high accuracy in practice. To explain our
selection, recall the Gini impurity measure employed by CART. For a set of examples (objects) S,
each of them labeled with a class in {1, . . . , c}, the Gini impurity is given by

Gini(S) = 1−
c∑
i=1

(
|Si|
|S|

)2

,

where Si is the set of examples of class i. Moreover, the weighted Gini impurity Gini(τ, ν) induced
by a test τ that divides the set of examples S that reach a node ν into SL and SR is given by

Gini(τ, ν) =
|SL|
|S|

Gini(SL) +
|SR|
|S|

Gini(SR).

Let FactorExpl be a hyper-parameter in the range [0, 1]. Because we are interested in trees that
induce accurate classifiers with short explanation rules, to expand a given leaf ν, in Line 2 of the
algorithm we select, among the permissible tests 3 the test τ that minimizes

AdjustedGiniExpl(τ, ν) := I(τ, ν)× Gini(τ, ν),

2The hardness of approximation holds also for instances with only binary attributes. In this case explanation
size coincides with depth and every test can be considered a threshold test.

3A permissible τ must satisfy Gini(τ, ν) < Gini (Examples that reach ν), in addition to respect the
condition of Line 2

8

where I(τ, ν) = FactorExpl if the attribute associated with test τ has already appeared in the path
from the root to ν, and I(τ, ν) = 1 otherwise. Since FactorExpl is used to favour attributes that
have already appeared in the path, when FactorExpl is set to a low value we expect to obtain trees
with short explanations but also with lower accuracy, as the effect of the Gini impurity is reduced.

In terms of stopping rules, we do not expand a leaf ν if it is either located at depth 6 or if there is
no test τ for which Gini(τ, ν) is smaller than Gini(Examples thaat reach ν). As a post-processing
step, whenever two sibling leaves are assigned the same class, we delete them both and leave their
parent as a leaf.

In our first experiment we study how the accuracy and the interpretability measures of the trees
produced by our algorithm behave when FactorExpl is varied. Figure 2 shows the average accuracy
(left image) and the average explanation size explavg (right image) as a function of FactorExpl.
More precisely, for the left image, the y-value associated with a point x corresponds to the average
accuracy on the testing set, calculated over the 20 datasets, when our algorithm is executed with
FactorExpl = x. For the right image the same logic holds. As expected, the larger the FactorExpl
the larger the accuracy and the explavg. The interesting finding, however, is that the accuracy
increases relatively slow, for FactorExpl is close to 1, compared with the growth in explavg (see the
Table 5 in the appendix for experiments with FactorExpl in the range [0.95,0.99]). This suggests
that it is possible to obtain trees that are significantly more interpretable without sacrificing the
accuracy.

Table 1: Test Accuracy, explavg and explwc for FactorExpl = 0.97. Each entry is the average of
10 runs using different seeds to select the examples in the training and testing set. Boldface values
indicate a difference of more than 1% (columns 2,3) or a gain of at least 25% in favour of SER-DT
(columns 4,5,6 and 7).

Dataset Test Accuracy explavg explwc

SER-DT CART SER-DT CART SER-DT CART

anuran 94,8% 94,7% 4,78 5,24 6,0 6,0
audit risk 99,9% 99,9% 1,00 1,00 1,0 1,0

avila 61,5% 63,2% 3,06 4,22 4,9 5,4
banknote 97,6% 98,1% 2,44 2,55 3,8 3,4

bankruptcy polish 96,6% 96,9% 2,56 4,63 5,6 5,9
cardiotocography 89,5% 89,8% 4,30 5,30 5,9 6,0

collins 13,2% 15,6% 2,13 4,76 4,4 5,9
default credit card 82,0% 81,9% 1,45 4,29 4,5 6,0

dry bean 90,1% 89,8% 3,32 4,45 5,1 6,0
eeg eye state 74,1% 73,6% 3,69 4,29 5,9 6,0

htru2 97,7% 97,7% 1,20 2,03 4,3 4,9
iris 94,2% 93,6% 1,75 1,76 3,1 3,4

letter recognition 44,9% 47,9% 3,34 5,50 5,5 6,0
mice 99,9% 99,9% 3,05 3,05 3,6 3,6

obs network 91,7% 89,5% 3,48 4,26 5,3 5,9
occupancy room 99,4% 99,3% 4,18 4,54 5,3 5,7

online shoppers intention 89,3% 89,8% 3,30 4,00 5,1 6,0
pen digits 88,6% 86,9% 4,76 5,31 5,8 6,0

poker hand 52,9% 55,0% 1,80 4,30 3,8 5,1
sensorless 87,4% 80,1% 2,94 4,03 4,9 5,5
Average 82,3% 82,2% 2,93 3,97 4,69 5,19

In our second experiment we compare the results of our method, using FactorExpl = 0.97 with
CART [11]. The value 0.97 is motivated by the above observation. To expand a leaf ν, recall that
CART selects the test τ for which Gini(τ, ν) is minimum and it only expands ν if there is a test τ for
which Gini(τ, ν) < Gini(Examples that reach ν). To provide a fair comparison with our algorithm
we set the maximum depth to 6 and applied the same aforementioned post-processing. Table 1 shows
the accuracy on the testing set as well as the average explanation size explavg and the worst-case
explanation size explwc for all datasets. Each entry in this table is the average of ten runs, where in
each of them a different seed is used to split a dataset into training and testing set.

We notice that the accuracy of our method is very close to that obtained by CART, while the gain in
terms of the interpretability metrics is significant. On 7 datasets (bold-faced on columns 2 and 3) we

9

observe a difference larger than 1% on the accuracies; on 3 of them our algorithm outperforms CART
while on the remaining 4, CART is better. In terms of the average explanation size, our algorithm is at
least as good as CART for all datasets, and for 9 of them (bold-faced on columns 4 and 5) it improves
the explavg by at least 25%. For the explwc the gain is also clear. For all datasets, but Banknote,
our algorithm is at least as good as CART. Moreover, for 3 of them (bold-faced on columns 6 and 7),
it provides a gain of at least 25%. Boxplots for the experiments in Table 1 are provided in Section
E.5 of the appendix.

In Appendix E we compare CART and SER-DT in terms of depthavg and depthwc. For depthavg,
SER-DT performs better than CART while for depthwc the results are similar. The result for depthwc
is not surprising since we set 6 as the maximum depth in our experiments. Regarding running time,
the algorithms present similar behaviour, as it can be verified in Appendix E. This is somehow
expected since both consist of mostly a greedy split selection at each node.

In the appendix we also present additional experiments and analyses. In particular, in Section E.8,
we evaluate the impact of applying post-pruning to both CART and SER-DT. Moreover, in Section
E.7, we show comparisons of SER-DT with one of the state of the art decision tree methods that
optimize the average depth, namely the EC2 algorithm from [22]: the experiments suggest that
SER-DT performs significantly better than EC2 on all metrics.

7 Conclusion

In this work, we proposed the explanation size as a new metric to capture intrepretability of decision
trees and initiated a principled study of it. We presented upper and lower bound on the trade-off of
simultaneously optimizing this new metric and metrics related to depths of the leaves.

We also proposed a practical algorithm that provably approximates the average explanation size and
the average depth and showed, via experiments over 20 datasets, that it is competitive with the widely
used CART algorithms in terms of accuracy while being much better in terms of producing trees with
short explanation size.

On the basis of both the theoretical analysis (approximation guarantee) and the performance demon-
strated in the empirical studies, we believe that our algorithm (or some variation based on its ideas)
can be used to generate accurate and highly interpretable trees for practical applications.

Acknowledgments and Disclosure of Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Brasil (CAPES) - Finance Code 001. The work of the third author is partially supported by
CNPq (grant 307572/2017-0), by FAPERJ, grant E- 26/202.823/2018 and by the Air Force Office of
Scientific Research under award number FA9550-22-1-0475.

The fourth author is supported by Bolsa de Produtividade em Pesquisa #312751/2021-4 from CNPq,
and FAPERJ grant Jovem Cientista do Nosso Estado.

10

References
[1] Micah Adler and Brent Heeringa. Approximating optimal binary decision trees. Algorithmica,

62(3-4):1112–1121, 2012.

[2] Rudolf Ahlswede and Ingo Wegener. Search problems. John Wiley & Sons, Inc., 1987.

[3] Michael Alekhnovich, Mark Braverman, Vitaly Feldman, Adam R. Klivans, and Toniann Pitassi.
Learnability and automatizability. In 45th Symposium on Foundations of Computer Science
(FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 621–630. IEEE Computer
Society, 2004.

[4] Hiva Allahyari and Niklas Lavesson. User-oriented assessment of classification model under-
standability. In Anders Kofod-Petersen, Fredrik Heintz, and Helge Langseth, editors, Eleventh
Scandinavian Conference on Artificial Intelligence, (SCAI) 2011, Trondheim, Norway, May
24th - 26th, 2011, volume 227 of Frontiers in Artificial Intelligence and Applications, pages
11–19. IOS Press, 2011.

[5] E. Alpaydin and Fevzi Alimoglu. Pen-Based Recognition of Handwritten Digits. UCI Machine
Learning Repository, 1998.

[6] Banknote Authentication. UCI Machine Learning Repository, 2013.

[7] Martyna Bator. Dataset for Sensorless Drive Diagnosis. UCI Machine Learning Repository,
2015.

[8] Gowtham Bellala, Suresh K. Bhavnani, and Clayton Scott. Group-based active query selec-
tion for rapid diagnosis in time-critical situations. IEEE Transactions on Information Theory,
58(1):459–478, 2012.

[9] Clément Bénard, Gérard Biau, Sébastien Da Veiga, and Erwan Scornet. Interpretable random
forests via rule extraction. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th
International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15,
2021, Virtual Event, volume 130 of Proceedings of Machine Learning Research, pages 937–
945. PMLR, 2021.

[10] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Mach. Learn., 106(7):1039–
1082, 2017.

[11] Leo Breiman, Jerome Friedman, Charles J Stone, and R A Olshen. Classification and Regression
Trees. Chapman & Hall/CRC, Philadelphia, PA, jan 1984.

[12] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[13] Nadia Burkart and Marco F. Huber. A survey on the explainability of supervised machine
learning. J. Artif. Intell. Res., 70:245–317, 2021.

[14] D. Campos and J. Bernardes. Cardiotocography. UCI Machine Learning Repository, 2010.

[15] Robert Cattral and Franz Oppacher. Poker Hand. UCI Machine Learning Repository, 2006.

[16] Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, and
Mukesh K. Mohania. Decision trees for entity identification: Approximation algorithms
and hardness results. ACM Trans. Algorithms, 7(2):15:1–15:22, 2011.

[17] Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Marco Molinaro. On greedy
algorithms for decision trees. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park,
editors, Algorithms and Computation - 21st International Symposium, ISAAC, 2010, Jeju
Island, Korea, December 15-17, 2010, Proceedings, Part II, volume 6507 of Lecture Notes
in Computer Science, pages 206–217. Springer, 2010.

11

[18] Ferdinando Cicalese, Eduardo Sany Laber, and Aline Medeiros Saettler. Diagnosis determina-
tion: decision trees optimizing simultaneously worst and expected testing cost. In Proceedings
of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages 414–422. JML-
R.org, 2014.

[19] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In Proceedings of
the 18th International Conference on Neural Information Processing Systems, NIPS’05, page
235?242, Cambridge, MA, USA, 2005. MIT Press.

[20] R.A. Fisher. Iris. UCI Machine Learning Repository, 1988.

[21] Rafael García Leiva, Antonio Fernández Anta, Vincenzo Mancuso, and Paolo Casari. A novel
hyperparameter-free approach to decision tree construction that avoids overfitting by design.
IEEE Access, 7:99978–99987, 2019.

[22] Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning
with noisy observations. In John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor,
Richard S. Zemel, and Aron Culotta, editors, Advances in Neural Information Processing
Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010.
Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada,
pages 766–774. Curran Associates, Inc., 2010.

[23] Andrew Guillory and Jeff A. Bilmes. Average-case active learning with costs. In Ricard Gavaldà,
Gábor Lugosi, Thomas Zeugmann, and Sandra Zilles, editors, Algorithmic Learning Theory,
20th International Conference, (ALT) 2009, Porto, Portugal, October 3-5, 2009. Proceedings,
volume 5809 of Lecture Notes in Computer Science, pages 141–155. Springer, 2009.

[24] Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi. Approximation
algorithms for optimal decision trees and adaptive (tsp) problems. CoRR, abs/1003.0722, 2010.

[25] Te Sun Han and Kingo Kobayashi. Mathematics of information and coding, volume 203.
American Mathematical Soc., 2002.

[26] Thomas R. Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision
lists and trees. Inf. Comput., 126(2):114–122, 1996.

[27] Clara Higuera, Katheleen Gardiner, and Krzysztof Cios. Self-organizing feature maps identify
proteins critical to learning in a mouse model of down syndrome. PloS one, 10:e0129126, 06
2015.

[28] T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-length alphabetical
codes. SIAM Journal on Applied Mathematics, 21(4):514–532, December 1971.

[29] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Baesens. An
empirical evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decis. Support Syst., 51(1):141–154, 2011.

[30] Sangheum Hwang, Hyeon Gyu Yeo, and Jung-Sik Hong. A new splitting criterion for better
interpretable trees. IEEE Access, 8:62762–62774, 2020.

[31] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva. A sat-based approach
to learn explainable decision sets. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani,
editors, Automated Reasoning - 9th International Joint Conference, (IJCAR) 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
volume 10900 of Lecture Notes in Computer Science, pages 627–645. Springer, 2018.

[32] Su Jia, Fatemeh Navidi, R Ravi, et al. Optimal decision tree with noisy outcomes. Advances in
neural information processing systems, 32, 2019.

[33] Colonna. Juan, Eduardo Nakamura, Marco Cristo, and Marcelo Gordo. Anuran Calls (MFCCs).
UCI Machine Learning Repository, 2017.

12

[34] Murat Koklu and Ilker Ali Ozkan. Multiclass classification of dry beans using computer vision
and machine learning techniques. Computers and Electronics in Agriculture, 174:105507, 2020.

[35] S. Rao Kosaraju, Teresa M. Przytycka, and Ryan S. Borgstrom. On an optimal split tree problem.
In Proceedings of the 6th International Workshop on Algorithms and Data Structures, WADS
’99, pages 157–168, London, UK, 1999. Springer-Verlag.

[36] Eduardo Sany Laber and Loana Tito Nogueira. On the hardness of the minimum height decision
tree problem. Discret. Appl. Math., 144(1-2):209–212, 2004.

[37] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable decision sets:
A joint framework for description and prediction. In Balaji Krishnapuram, Mohak Shah,
Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pages 1675–1684. ACM, 2016.

[38] Letter Recognition. UCI Machine Learning Repository, 1990.

[39] Ray Li, Percy Liang, and Stephen Mussmann. A tight analysis of greedy yields subexponential
time approximation for uniform decision tree. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 102–121. SIAM, 2020.

[40] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo I. Seltzer. Generalized and
scalable optimal sparse decision trees. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 6150–6160. PMLR, 2020.

[41] Zachary C. Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, jun 2018.

[42] R. J. Lyon, B. W. Stappers, S. Cooper, J. M. Brooke, and J. D. Knowles. Fifty years of pulsar
candidate selection: from simple filters to a new principled real-time classification approach.
Monthly Notices of the Royal Astronomical Society, 459(1):1104–1123, 04 2016.

[43] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university press, 2017.

[44] Fatemeh Navidi, Prabhanjan Kambadur, and Viswanath Nagarajan. Adaptive submodular
ranking and routing. Operations Research, 68(3):856–877, 2020.

[45] Hooda. Nishtha. Audit Data. UCI Machine Learning Repository, 2018.

[46] Rok Piltaver, Mitja Lustrek, Matjaz Gams, and Sanda Martincic-Ipsic. What makes classification
trees comprehensible? Expert Syst. Appl., 62:333–346, 2016.

[47] Hugo Manuel Proença and Matthijs van Leeuwen. Interpretable multiclass classification by
mdl-based rule lists. Information Scieces, 512:1372–1393, 2020.

[48] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[49] Ananth R. Room occupancy estimation data set. Kaggle.

[50] Adel Rajab. Burst Header Packet (BHP) flooding attack on Optical Burst Switching (OBS)
Network. UCI Machine Learning Repository, 2017.

[51] Oliver Roesler. EEG Eye State. UCI Machine Learning Repository, 2013.

[52] C. Okan Sakar, S. Polat, Mete Katircioglu, and Yomi Kastro. Real-time prediction of online
shoppers’ purchasing intention using multilayer perceptron and lstm recurrent neural networks.
Neural Computing and Applications, 31, 10 2019.

13

[53] C. De Stefano, M. Maniaci, F. Fontanella, and A. Scotto di Freca. Reliable writer identification
in medieval manuscripts through page layout features: The “avila” bible case. Engineering
Applications of Artificial Intelligence, 72:99–110, 2018.

[54] Sebastian Tomczak. Polish companies bankruptcy data. UCI Machine Learning Repository,
2016.

[55] Joaguin Vanschoren. collins dataset. OpenML.

[56] Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary linear
program formulation. In The Thirty-Third AAAI Conference on Artificial Intelligence, (AAAI),
2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 1625–1632. AAAI Press,
2019.

[57] I-Cheng Yeh and Che hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications,
36(2, Part 1):2473–2480, 2009.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No] We have not identified a clear

limitation of our work. That said, we will be happy to discuss in a revised version some
potential limitation that the referees point to us.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All the proofs can be

found in the supplementary material
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] In the
supplementary material we include the url for our anonymous repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] It is explained in the experimental section.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In the supplementary material we present boxplots for
our experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We give the specification of the PC
employed in our experiments in the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use public

datasets, we are citing all of them
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

