
A Appendix

A.1 Domain Specific Language (DSL) Specifications

Table 5 shows the domain-specific language (DSL) designed for E-MAPP in the Overcooked-v2
environment.

Table 5: DSL for the Overcooked-v2 Environment. We list types of constituent elements of the
DSL. We provide the context-free grammar for generating all legal programs.

Type Instances

Program p def main():s

Item t FreshOnion | FreshTomato | Plate | ChoppedOnion |
ChoppedTomato | ChoppedOnion+Plate | ChoppedTomato+Plate |
ChoppedOnion+ChoppedTomato | ChoppedOnion+ChoppedTomato+Plate

Behavior b Chop(t) | Pick(t) | Merge(t,t) | Serve(t) | WashDirtyPlate()
PutOutFire()

Conditions c h | tautology
Statement s While(c):(s) | Parallel:(s_1, s_2, · · ·) | b | Repeat(s,i) |

If(c):(s) | else:(s) |
Perception h is_ordered[t] | is_there[t]

A.2 Multi-Pointer Updater

Algorithm 1 shows the execution rules of parallel programs. The program executor maintains a set of
pointers P pointing to different subroutines. After the agents take the actions, we update each pointer
p in P according to the type of the subroutine that p was pointing to.

Algorithm 1 Multi-Pointer Updater
input :a set of pointers P, a required repetition number M
for each pointer p in P do

if p points to an if-routine then
Point p to the routine inside/outside the block of primitives in the if-routine if the response to its condition is True/False.

end
else if p points to an while-routine then

Point p to the routine inside/outside the block of primitives in the while-routine if the response to its condition is True/False.
end
else if p points to a parallel-routine then

Split p into multiple pointers, each pointing to a block of subroutines in the parallel-routine.
end
else if p points to a repeat-routine then

Split p into M pointers, each pointing to a copy of the block of subroutines.
end
else if p points to a behavior primitive and the corresponding subtask is completed then

if p points to the end of a block of subroutines in a while-routine then
Point p to the while-routine.

end
else if p points to the end of a block of subroutines in a group of blocks of subroutines spawned from a parallel-routine/ repeat-routine

then
if the pointed block is not the last remaining one then

remove the pointer
end
else

remove the pointer and generate a new pointer q pointing to the subroutine subsequent to the parallel-routine/repeat-routine
end

end
else

Point p to the subsequent subroutine. Terminate the program if no subsequent subroutine exists.
end

end
end

16

A.3 Full Illustration of the E-MAPP Algorithm

We describe the whole process of E-MAPP in Algorithm 2, which corresponds to the inference stage
of E-MAPP.

Algorithm 2 The E-MAPP Algorithm during test time
input : Environment env and its guiding program, a set of pointers P pointing to the possible

subroutine set, a policy module fpolicy, a perception module fperception
while the task is not completed do

while there are pending perception primitives in the possible subroutine set do
Run fperception on the perception primitives and get the results operc. Update P according to
operc and the rule in Algorithm 1.

end
Run fpolicy to obtain the auxiliary functions on each behavior primitive p points to.
Compute the cost of each possible allocation based on the auxiliary functions.
Run fpolicy on the subtasks with minimal cost and obtain the joint action a
Environment steps forward with a
while There are completed behavior primitives in the possible subroutine set do

Update p according to the rule in Algorithm 1
end

end

A.4 Training Details for the Policy Module

Architecture details. The policy module takes as input a goal vector g and a state s and outputs an
action distribution ã. A goal vector g has a size of 20 where the first 10 elements are one-hot encoded
behavior type (e.g., Chop) and the latter 10 elements are one-hot encoded behavior arguments (e.g.,
Tomato). A state s is comprised of a map state smap and an inventory state sinv. The map state smap
has a size of 20× 8× 8 where 8× 8 is the resolution of the map and 20 is the number of object types.
The inventory state sinv has a size of 6 where the first two entries denote the location of the agent, the
third entry denotes whether the agent is holding objects, and the last three entries denote whether a
certain dish is ordered.

The map state smap is encoded by a four-layer convolutional neural network (CNN) with channel sizes
of 32,64,64, and 64. For each convolutional layer, we use 1 as the stride size and 1 as the “same"
padding size. Each convolutional layer has a kernel size of 3 except for the first one, which has a
kernel size of 5. A ReLU nonlinearity is applied to every convolutional layer. The output is finally
flattened into a feature vector and fed into a linear layer, producing a 128-dim map feature vector,
denoted as fmap.

The inventory state sinv is encoded by a three-layer MLP with hidden size 128 for all layers. The
output feature vector has a dimension of 32, denoted as finv.

The map feature fmap and the inventory feature finv are then concatenated, producing the 160-dim
state feature f1

state.

The goal vector g is encoded by a three-layer MLP with a hidden size of 128 for all the layers. The
output goal feature fgoal is a 640-dim feature vector. fgoal can be viewed as the concatenation of
four 160-dim feature vectors,denoted as γ1, β1, γ2, and γ2 respectively.

The state feature is modulated by γ1 and β1 as f2
state = f1

stateγ̇1 + β1. Next, the modulated feature
f2

state is encoded by a two-layer MLP with both hidden size and output size equal to 128. The output
is then modulated by γ2 and β2, producing the goal-conditioned state feature fstate.

Finally, the goal-conditioned state feature fstate is encoded by two linear layers to produce the 24-dim
action distribution and the 1-dim value function.

In practice, the parameters of the convolutional layers are shared by the policy net and the value net,
while other parameters are separate.

17

Table 6: Hyperparameters for the training of the policy module. We use MAPPO as the backbone
algorithm. The common hyperparameters are listed below.

Name Value

learning rate 3e-4
training steps 10M

update batch size 256
number of rollout threads 8

rollout buffer size 4096× 8
weight of value loss 0.1
weight of policy loss 1

weight of entropy loss 0.01

Table 7: Hyperparameters for the training of the perception module. We model the perception
module as a binary classifier and use cross-entropy loss as the training objective.

Name Value

learning rate 3e-4
update batch size 128

In cooperative settings, the goal input of the assistive agent is the leading agent’s goal. We use a
separate assistive goal encoder for it. The architecture of the altruistic goal encoder is the same as the
independent goal encoder mentioned above.

Self-imitation learning. In our task domain, it is important to address the challenge of sparse
rewards, which is also a key issue for goal-conditioned reinforcement learning [31]. To tackle this,
we propose to better utilize the successful trajectories of each agent inspired by self-imitation [32].
For each agent, we select the state-action pairs from the replay buffer with empirical returns that
are larger than a threshold rthresh. The self-imitation learning objective of the agent i is Lsil =
−ri(s, t) log πi(st). This loss is added directly to the reinforcement learning loss.

Hyperparameters. Table 6 shows the hyperparameters used in the policy module.

A.5 Architecture and Training Details for the Perception Module.

Architecture of the perception module. The architecture of the perception module can be obtained
from that of the policy module in Appendix A.4 by replacing the goal encoders with perceptive query
encoders. The details of the encoders remain unchanged.

Dataset collection. We randomly sample 10k environments as the training dataset. To augment the
data, we label the ground truth of the perceptive queries after the agents randomly take 10-15 steps.
We leave 10% of the dataset as the evaluation dataset and terminate the training process when the
accuracy on the evaluation dataset is larger than 99% five times.

Hyperparameters. Table 7 shows the hyperparameters used in training the perception module.

A.6 Training Details for the Auxiliary Functions

We randomly sample 10k environments as the training environments for each of the three auxiliary
functions: freach, ffeas, and fcost-to-go.

To train the reachability function, we run the pre-trained single-agent policy on the training envi-
ronments to collect the training data. The agent is required to fulfill a specific subtask within an
episode of 128 timesteps. If the agent violates the program by completing the wrong subtask or
exceeding the time limit, we will label every state in the trajectory as False. In contrast, if the
agent successfully completes the subtask, we will label the states as True. We train the reachability
function by alternatively collecting (state, goal, label) triplets and training on the collected data.

18

To train the feasibility function, we run the pre-trained multi-agent cooperative policy in the training
environments to collect the training data. The agents are required to complete a specific subtask
within an episode of 128 timesteps. Although both agents are responsible for the subtask, we only
take account of the leading agent’s trajectories. The states in the trajectories are labeled True/False
according to whether the subtask is successfully completed during an episode.

To alleviate the problem of mistakenly labeling a feasible (state, goal) pair as False due to the
imperfection of the pre-trained policy, we run multiple times on the environment that is labeled False
and correct the label if there is a successful case.

A.7 Detailed Environment Description

In the Overcooked environment, the goal of the agents is to complete long-horizon tasks, such as
preparing a dish. A typical dish would require first picking up ingredients from certain supplies,
then processing the ingredients (e.g., chop, merge together, or put on a plate), and finally delivering
the dish (and washing the plates if another dish is still needed). We also introduce “on-fire” as an
accident for the agents to handle with a fire extinguisher. The subtasks correspond to the subroutines
in the domain-specific language (DSL). Different subroutines, together with the control flow, form
the guiding parallel programs for the agents.

For each agent, the state is composed of a map state and an inventory state. Both the maps and the
programs are one-hot encoded as object-centric representations. The agents’ action space is discrete.
There are 24 possible actions, including 6 operations (move, pick, place, serve, merge, and interact)
in 4 directions. In multi-agent settings, we follow the original game and assume full observability.

A.8 More Visualizations for Generalization

Figure 7 shows more detailed visualizations of two emergent behaviors.

parallel:

1:Pick(Onion)

2:Wash(Dish)

3:Pick(Tomato)

Chop(Onion)

Figure 7: Visualizations of parallel executions and cooperative behaviors. In the first example,
there are three feasible subtasks. The blue agent chooses the subtask Wash(Dish) because the dirty
plate is both reachable from and close to him. The magenta agent chooses the subtask Pick(Onion)
because the onion supply is reachable from him. In the second example, the two agents cooperate on
the subtask Chop(Onion). The magenta agent picks the onion and passes it to the blue agent, while
the blue agent finalizes the subtask by chopping the onion at the chopping block.

19

A.9 Baseline Description

In our study, we mainly consider two types of baselines: state-of-the-art MARL algorithms and
natural language-guided agents.

• State-of-the-art multi-agent reinforcement learning. We directly use MAPPO [51] to train
joint policies without the guiding program, while still providing dense rewards to the agents
when any correct subtask is completed;

• Natural language-guided agent. We train a goal-conditioned policy where the goal is encoded
from the natural language description with a pre-trained BERT model in the PyTorch package
transformer [10]. The encoded features of the tokens are average-pooled and frozen during
the training process. Then we use a learnable MLP to encode the frozen features into goal
features. The MLP has three layers connected by the ReLU activation, and the hidden sizes
of the MLP are all 128. We note that here we do not provide a program-like structure for the
language-guided agents.

The baseline models have the same policy and value network architecture as those of E-MAPP. When
training the end-to-end baseline models, the agents are rewarded 0.2 if they complete a correct subtask
and 1 if the final task is completed. We also use self-imitation learning in baseline algorithms to
address the sparse reward problem.

The computation costs of E-MAPP and baselines are shown in Table 8

Table 8: Computation Cost. The number of parameters and the running time in E-MAPP and
baselines.

Model Parameters Running Time

E-MAPP 5.6M around 72h
natural language guided agent 2.3M around 36h

MAPPO 1.8M around 24h

A.10 Results in the Stacking Environment

To evaluate the ability of E-MAPP to scale to more complex control tasks, we also demonstrate how
E-MAPP works on a parallel stacking task set. It is desired that the two franka arms cooperate to
complete two stacks of blocks in a given order. The behavior primitives considered in this setting
are in the form of Stack(c, idx), which represents the subtask of putting a c-colored block on the
top of the idx-th pile. We use motion planning as the policy to complete the subtasks. Figure 8 is a
demonstration of the task completion process. The baselines considered above fail to achieve the
goal in any episode, while E-MAPP can achieve a 46% completion rate.

A.11 Computational Resources

We train our model on a single Nvidia TITAN-X GPU, in a 16-core Ubuntu 18.04 Linux server.

A.12 Examples of Programs Used in Evaluation

A.12.1 Easy tasks

if IsOnFire():
PutOutFire()

if is_ordered(ChoppedTomato):
Serve(ChoppledTomato+Plate)

if is_ordered(ChoppedOnion):
Pick(FreshOnion)

20

Figure 8: A demonstration of the completion process of stacking tasks. The pictures show the
process of picking up boxes and stacking them.

A.12.2 Medium tasks

repeat:
Pick(FreshTomato)

parallel:
1. Pick(FreshOnion)
2. Pick(FreshTomato)
3. WashDirtyPlate()

if is_ordered(ChoppedTomato):
Chop(FreshTomato)
Merge(ChoppedTomato,Plate)
Serve(ChoppedTomato+Plate)

A.12.3 Hard tasks

parallel:
1: if is_ordered(Onion):

Merge(ChoppedOnion,Plate)
Serve(ChoppedOnion)

2: if is_ordered(Onion):
Merge(ChoppedTomato,Plate)
Serve(ChoppedTomato)

3: while (True):
If (IsOnFire()):

PutOffFire()

parallel:
1:

Pick(FreshOnion)
Chop(FreshOnion)

2:
Pick(FreshTomato)
Chop(FreshTomato)

3:
WashDirtyPlate()

4:
Merge(ChoppedOnion,Plate)

21

Serve(ChoppedOnion)
5:

Merge(ChoppedTomato,Plate)
Serve(ChoppedTomato)

A.13 More experiments

A.13.1 Overcooked with more agents

We conduct an experiment with a doubled number of agents to evaluate our algorithm. Table 9 shows
the results. The results indicate that E-MAPP can scale to environments with more agents and further
boost the time efficiency by parallelization.

Table 9: Additional experiment in Overcooked involving four agents. E-MAPP can scale to
environments with more agents and further boost the time efficiency by parallelization.

model score completion rate

E-MAPP(original) 0.99±0.22 43.7%
E-Mapp(larger) 1.13± 0.31 46.3%

A.13.2 Comparison with other centralized execution agents

We also compare E-MAPP with a centralized execution approach. We implement a centralized PPO
where joint policy is directly produced by a centralized network. Table 10 shows the results. The
results indicate that the centralized PPO suffers from the high dimensionality of the joint action space
and fails to learn cooperation and coordination.

Table 10: Comparison of E-MAPP, centralized algorithm PPO and decentralized algorithm
MAPPO. We additionally compare E-MAPP with a centralized PPO that directly outputs the joint
policy.

model score

E-MAPP 1.58±0.60
MAPPO(decentralized) 0.59± 0.27
MAPPO(centralized) 0.48 ± 0.21

A.14 Potential parallel-program synthesis approaches

The guiding program in our work can be obtained with program synthesis approaches. When it
comes to a new domain, we can devise new perception primitives and behavior primitives based on
object properties and interactions among objects [25]. These primitives, along with the branching and
parallelization keywords, compose the DSL. Previous approaches on program synthesis [44, 11, 7, 8]
can be applied to synthesize programs for tasks. For example, we can synthesize programs from
diverse video demonstrations. The activities (subtasks) of a task in a video can be segmented out
as a subroutine for program extraction [44]. By summarizing the chronological order of subtask
completions, we can obtain the dependence of subtasks and put the possibly parallelizable subtask in
one parallel subroutine.

22

	Introduction
	Related Work
	Problem Statement
	Program Guided Cooperative Markov Game
	Parallel Programs
	Multi-Agent RL with Parallel Programs

	Method
	Parallel Program Executor
	Perception Module
	Policy Module
	Task Allocator
	Complexity Analysis

	Experiments
	Environment Description
	Setup
	Results
	Visualization of Learned Behaviors
	Scalability to New Domains

	Conclusion
	Appendix
	Domain Specific Language (DSL) Specifications
	Multi-Pointer Updater
	Full Illustration of the E-MAPP Algorithm
	Training Details for the Policy Module
	Architecture and Training Details for the Perception Module.
	Training Details for the Auxiliary Functions
	Detailed Environment Description
	More Visualizations for Generalization
	Baseline Description
	Results in the Stacking Environment
	Computational Resources
	Examples of Programs Used in Evaluation
	Easy tasks
	Medium tasks
	Hard tasks

	More experiments
	Overcooked with more agents
	Comparison with other centralized execution agents

	Potential parallel-program synthesis approaches

