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Abstract

Variational autoencoders (VAEs) are a popular framework for modeling complex
data distributions; they can be efficiently trained via variational inference by
maximizing the evidence lower bound (ELBO), at the expense of a gap to the
exact (log-)marginal likelihood. While VAEs are commonly used for disentangled
representation learning, it is unclear why ELBO maximization would yield such
representations, since unregularized maximum likelihood estimation generally
cannot invert the data-generating process without additional assumptions. Yet,
VAEs often succeed at this task. We seek to elucidate this apparent paradox by
studying nonlinear VAEs in the limit of near-deterministic decoders. We first prove
that, in this regime, the optimal encoder approximately inverts the decoder—a
commonly used but unproven conjecture—which we refer to as self-consistency.
Leveraging self-consistency, we show that the ELBO converges to a regularized
log-likelihood. This allows VAEs to perform what has recently been termed
independent mechanism analysis (IMA): it adds an inductive bias towards decoders
with column-orthogonal Jacobians, which helps recovering the true latent factors.
The gap between ELBO and log-likelihood is therefore welcome, since it bears
unanticipated benefits for nonlinear representation learning. In experiments on
synthetic and image data, we show that VAEs uncover the true latent factors when
the data generating process satisfies the IMA assumption.

1 Introduction
Latent Variable Models (LVMs) allow to effectively approximate a complex data distribution and
to sample from it [3, 48]. Deep LVMs employ a neural network (the decoder or generator) to
parameterize the conditional distribution of the observations given latent variables, which are typically
assumed to be independent. However, Maximum Likelihood Estimation (MLE) of the model
parameters is computationally intractable. In Variational Autoencoders (VAEs) [35, 56], the exact
log-likelihood is substituted with a tractable lower bound, the evidence lower bound (ELBO). This
objective introduces an approximate posterior of the latents given the observations (the encoder) from
a suitable variational distribution whose mean and covariance are parametrized by neural networks.
The encoder is introduced to efficiently train a deep LVM: however, it is not explicitly designed to
extract useful representations [17, 58].
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Figure 1: Modeling choices in VAEs promote Independent Mechanism Analysis (IMA) [23]. We assume
a Gaussian VAE (3), and prove that in the near-deterministic regime the mean encoder approximatetely inverts
the mean decoder, gθ≈fθ−1 (self-consistency, Prop. 1). Bottom: Closing the gap requires matching the
covariances of the variational (LHS, qϕ(z|x)) and the true posterior (RHS, approximated by gθ

∗[pθ(x|z)],
cf. § 3.2 for details). Under self-consistency, an encoder with diagonal covariance enforces a row-orthogonal
encoder Jacobian Jgθ (x)—or equivalently, a column-orthogonal decoder Jacobian Jfθ (z). This regularization
was termed Independent Mechanism Analysis (IMA) [23] and shown to be beneficial for learning the true latent
factors. The connection elucidates unintended benefits of using the ELBO for representation learning.

Nonetheless, VAEs and their variants are widely used in representation learning [25, 1], where
they often recover semantically meaningful representations [39, 8, 34, 5]. Our understanding
of this empirical success is still incomplete, since (deep) LVMs with independent latents are
nonidentifiable from i.i.d. data [29, 42]; different models fitting the data equally well may yield
arbitrarily different representations, thus making the recovery of a ground truth generative model
impossible. While auxiliary variables, weak supervision [28, 31, 21, 43, 72, 19], or specific model
constraints [29, 67, 68, 26, 23] can help identifiability, the mechanism through which the ELBO
may enforce a useful inductive bias remains unclear, despite recent efforts [5, 57, 38, 15, 71].

In this work, we investigate the benefits of optimizing the ELBO for representation learning by
analyzing VAEs in a near-deterministic limit for the conditional distribution parametrized by the
nonlinear decoder. Our first result concerns the encoder’s optimality in this regime. Previous works
relied on the intuitive assumption that the encoder inverts the decoder in the optimum [50, 38, 71];
we formalize this self-consistency assumption and prove its validity for the optimal variational
posterior in the near-deterministic nonlinear regime.

Using self-consistency, we show that the ELBO tends to a regularized log-likelihood—rather than to
the exact one as conjectured in previous work [50]. The regularization term allows VAEs to perform
what has been termed Independent Mechanism Analysis (IMA) [23]: it encourages column orthogo-
nality of the decoder’s Jacobian. This generalizes previous findings based on linearizations or approxi-
mations of the ELBO [57, 44, 38], and allows us to characterize the gap w.r.t. the log-likelihood in the
deterministic limit. Our results elucidate the gap between ELBO and exact log-likelihood as a possible
mechanism through which the ELBO implements a useful inductive bias. Unlike the unregularized
log-likelihood, the IMA-regularized objective can help invert the data generating process under
suitable assumptions [23]. We verify this by training VAEs in experiments on synthetic and image
data, showing that they can recover the ground truth factors when the IMA assumptions are met.

The contributions of this paper can be summarized as follows:
• we characterize and prove self-consistency of VAEs in the near-deterministic regime (i.e., when the

decoder variance tends to zero), justifying its usage in previous works (§ 3.1);
• we show that under self-consistency, the ELBO converges to a regularized log-likelihood (§ 3.2),

and discuss its possible role as a useful inductive bias in representation learning;
• we test the applicability of our theoretical results in experiments on synthetic and image data, and

show that VAEs recover the true latent factors when the IMA assumptions are met (§ 4).

2 Background

We will connect two unsupervised learning objectives: the ELBO in VAEs and the IMA-regularized
log-likelihood. Both stem from LVMs with latent variables z distributed according to a prior p0(z),
and a mapping from z to observations x given by a conditional generative model pθ(x|z).
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Variational Autoencoders. Optimizing the data likelihood pθ(x) in deep LVMs—i.e., finding
decoder parameters θ maximizing

∫
pθ(x|z)p0(z)dz—is intractable in general, so approximate

objectives are required. Variational approximations [63] replace the true posterior pθ(z|x) by an
approximate one, called the variational posterior qϕ(z|x), which is a stochastic mapping x 7→ z
with parameters ϕ. This allows to evaluate a tractable evidence lower bound (ELBO) [35, 56] of the
model’s log-likelihood that can be defined as

ELBO(x,θ,ϕ) = Eqϕ(z|x) [log pθ(x|z)]− KL [qϕ(z|x)||p0(z)] . (1)

The two terms in (1) are sometimes interpreted as a reconstruction term measuring the sample quality
of the decoder and a regularizer—the Kullback-Leibler Divergence (KL) between the prior and the
encoder [36]. The variational approximation trades off computational efficiency with a difference
w.r.t. the exact log-likelihood, which is expressed alternatively as (see [17, 36] and Appx. A)

ELBO(x,θ,ϕ) = log pθ(x)− KL [qϕ(z|x)||pθ(z|x)] , (2)

where the KL between variational and true posteriors characterizes the gap: if the variational family
of qϕ(z|x) does not include pθ(z|x), the ELBO will be strictly smaller than log pθ(x).

VAEs [35] rely on the variational approximation in (1) to train deep LVMs where neural networks
parametrize the encoder qϕ(z|x) and the decoder pθ(x|z). A common modeling choice constrains
the variational family of qϕ(z|x) to a factorized Gaussian with posterior means µϕ

k (x) and variances
σϕ
k (x)

2 for the kth factor zk|x, and with a diagonal covariance Σϕ
z|x ; and the decoder to a factorized

Gaussian, conditional on z, with mean fθ (z) and an isotropic covariance in d dimensions,

zk|x ∼ N (µϕ
k (x), σ

ϕ
k (x)

2) ; x|z ∼ N
(
fθ (z) , γ−2Id

)
. (3)

The deterministic limit of VAEs. The stochasticity of VAEs makes it nontrivial to relate them
to generative models with deterministic decoders such as Independent Component Analysis (see
paragraph below), though postulating a deterministic regime (where the decoder precision γ2 becomes
infinite) is possible. Interestingly, Nielsen et al. [50] explored this deterministic limit and argued
that deterministic VAEs optimize an exact log-likelihood, similar to normalizing flows [55, 51].
Normalizing flows model arbitrarily complex distributions using a simple base distribution p0(z)

and nonlinear, deterministic and invertible transformations fθ. Through a change of variables,3 the
likelihood of the original variables becomes

log pθ(x) = log p0(z)− log
∣∣Jfθ (z)

∣∣ . (4)

The comparison is nontrivial, since VAEs contain an encoder and a decoder, whereas normalizing
flows consist of a single architecture. Nielsen et al. [50] made this analogy by resorting to what
we call a self-consistency assumption, stating that the VAE encoder inverts the decoder. We define
self-consistency in the near-deterministic regime: as the decoder variance goes to zero, i.e. γ → +∞.

Definition 1 ((Near-deterministic) self-consistency). For a fixed θ, assume that mean decoder fθ is in-
vertible with inverse gθ , and that a map associates each choice of decoder parameters and observation
(θ, γ,x) to an encoder parameter (θ, γ,x) 7→ ϕ̂(θ, γ,x), we say the VAE is self-consistent whenever

µϕ̂(x) → gθ(x) and σϕ̂(x)2 → 0 , as γ → +∞ . (5)

The encoder parameter map ϕ̂ reflects the choice of a particular encoder model for each (θ, γ)

pair:4 in § 3.1, we study this problem by introducing and justifying a particular choice for ϕ̂ (see
also § 5). This self-consistency assumption appears central to deterministic claims [50, 38], but has
not yet been proven. In particular, Nielsen et al. [50] assume that taking the deterministic limit is
well-behaved. However, VAEs’ near-deterministic properties have not been investigated analytically.

Identifiability, ICA, and IMA. Independent Component Analysis (ICA) [9, 30] models observations
as the mixing of a latent vector z with independent components through a deterministic function f , i.e.,
x = f(z), p0(z) =

∏
i p0(zi).

5 In ICA the focus is on defining conditions under which the original

3note that in normalizing flows the change of variables is usually expressed in terms of gθ = fθ−1

4both the ELBO and ϕ̂ depends on the decoder precision γ: we will omit this in the following for simplicity
5the conditional distribution p(x|z) is therefore degenerate
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latent variables can be recovered from observations—i.e., the model is “identifiable by design” [31].
The goal is to learn an unmixing gθ such that the recovered components y = gθ (x) are estimates of
the true ones up to some ambiguities (e.g., permutation and element-wise nonlinear transformations).
Unfortunately, the nonlinear problem is nonidentifiable without further constraints [16, 29]: any two
observationally equivalent models can yield components which are arbitrarily entangled, thus making
recovery of the ground truth factors impossible. This is typically shown by suitably constructed
counterexamples [29, 42], and it was argued to imply impossibility statements for unsupervised
disentanglement [42, 65]. Identifiability can be recovered when auxiliary variables [31, 21, 33, 19]
are available, or exploiting a temporal structure in the data [28, 24].

Restrictions on the mixing function class (e.g., linear [9]) are another possibility to recover iden-
tifiability [29, 67]. Recently, Gresele et al. [23] proposed restricting the function class by taking
inspiration from the principle of independent causal mechanisms [52], in an approach termed In-
dependent Mechanism Analysis (IMA). IMA postulates that the latent components influence the
observations “independently”, where influences correspond to the partial derivatives ∂fθ

/∂zk, and
their non-statistical independence amounts to an orthogonality condition. While full identifiability
has not been proved for this model class, it was shown to rule out classical families of spurious
solutions used as counterexamples to identifiability of unconstrained non-linear ICA [23, 4]. Mo-
roever, Buchholz et al. [4] further demonstrated local identifiability of this function class. Also, IMA
constraints were empirically shown [23, 62] to help recover the ground truth through regularization of
the log-likelihood in (4) with an objective LIMA(f

θ, z) := log pθ(x)− λ · cIMA(f
θ, z), where λ > 0

and the regularization term cIMA(f
θ, z) and its expectation CIMA(f

θ, p0) are given by

cIMA(f
θ, z) =

d∑
k=1

log
∥∥∥∂fθ

∂zk
(z)
∥∥∥−log

∣∣Jfθ (z)
∣∣; CIMA(f

θ, p0)= Ep0(z)

[
cIMA(f

θ, z)
]
, (6)

and termed local (resp. global) IMA contrast. When fθ is in the IMA function class (i.e.,
CIMA(f

θ, p0) vanishes), the objective is equal to the log-likelihood; otherwise, it lower bounds it.

3 Theory
Our theoretical analysis assumes that all the model’s defining densities (p0(z), qϕ(z|x) and pθ(x|z))
are factorized. We also assume a Gaussian decoder, matching common modeling practice in VAEs.

Assumption 1 (Factorized VAE class with isotropic Gaussian decoder and log-concave prior). We are
given a fixed latent prior and three parameterized classes of Rd → Rd mappings: the mean decoder
class θ 7→ fθ, and the mean and standard deviation encoder classes, ϕ 7→ µϕ and ϕ 7→ σϕ s.t.

(i) p0(z) ∼
∏

k m(zk), with m being smooth and fully supported on R, having bounded
non-positive second-order, and bounded third-order logarithmic derivatives;

(ii) the encoder and decoder are of the form in (3), with isotropic decoder covariance 1/γ2Id;
(iii) the variational mean and variance encoder classes are universal approximators;
(iv) for all θ, fθ : Rd → Rd is a bijection with inverse gθ, and both are C2 with bounded first

and second order derivatives.

Crucially, both the mean encoder and the mean decoder can be nonlinear. Moreover, the family of
log-concave priors contains the commonly-used Gaussian distribution as a special case. We study
the near-deterministic decoder regime of such models, where γ→+∞. This regime is expected
to model data generating processes with vanishing observation noise well—in line with the typical
ICA setting—and is commonly considered in theoretical analyses of VAEs, e.g., in [50] (which
additionally assumes quasi-deterministic encoders), and in [44, 38]. Unlike Nielsen et al. [50], we
consider a large but finite γ, not at the limit γ=∞, where the decoder is fully deterministic. In fact,
for any large but finite γ, the objective is well-behaved and amenable to theoretical analysis, while the
KL-divergence is undefined in the deterministic setting. The requirement in assumption (iv) deviates
from common practice in VAEs—where observations are typically higher-dimensional—but it allows
to connect VAEs and exact likelihood methods such as normalizing flows [50] (see also § 5).

Due to considering γ → +∞, results are stated in the following “big-O” notation for an integer p:

f(x, γ) = g(x, γ) +Oγ→+∞(1/γp) ⇐⇒ γp∥f(x, γ)− g(x, γ)∥ is bounded as γ → +∞ .
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3.1 Self-consistency

In this section, we will prove a self-consistency result in the near-deterministic regime. This rests
on characterizing optimal variational posteriors (i.e., those minimizing the ELBO gap w.r.t. the
likelihood) for a particular point x and fixed decoder parameters θ. Based on (2), any associated
optimal choice of encoder parameters satisfies

ϕ̂(x,θ) ∈ argmax
ϕ

ELBO(x;θ,ϕ) = argmin
ϕ

KL [qϕ(z|x)||pθ(z|x)] . (7)

We call self-consistent ELBO the resulting achieved value, denoted as

ELBO∗(x;θ) = ELBO(x;θ, ϕ̂(x,θ)) . (8)
The expression in (7) corresponds to a problem of information projection [10, 48] of pθ(z|x) onto
the set of factorized Gaussian distributions. This means that given a variational family, we search for
the optimal qϕ(z|x) to minimize the KL to pθ(z|x). While such information projection problems are
well studied for closed convex sets where they yield a unique minimizer [11], the set projected onto
in our case is not convex (convex combinations of arbitrary Gaussians are not Gaussian), making this
problem of independent interest. After establishing upper and lower bounds on the KL divergence
(exposed in Prop. 7-8 in Appx. C.2), we obtain the following self-consistency result.
Proposition 1. [Self-consistency of near-deterministic VAEs] Under Assumption 1, for all x, θ, as
γ → +∞, there exists at least one global minimum solution of (7). These solutions satisfy

µϕ̂(x) = gθ (x) +O(1/γ) and σϕ̂
k (x)

2 = O(1/γ2) , for all k . (9)

Prop. 1 states that minimizing the ELBO gap (equivalently, maximizing the ELBO) w.r.t. the encoder
parameters ϕ implies in the limit of large γ that the encoder’s mean µϕ(x) tends to gθ(x), the image
of x by the inverse decoder. We can interpret this as the decoder “inverting” the encoder. Additionally,
the variances of the encoder will converge to zero.

Let us now consider the relevance of this result for training VAEs, i.e., maximizing the expectation
of the ELBO for an observed distribution p(x). While maximization only w.r.t. ϕ in (7) does not
match common practice—which is learning θ and ϕ jointly—it models this process in the limit of
large-capacity encoders. Indeed, in this case, (7) can be solved for each x as a separate learning
problem, which entails that the following inequality is satisfied for any parameter choice

Ex∼p(x) [ELBO(x;θ,ϕ)] =
∫
p(x)ELBO(x;θ,ϕ)dx

≤
∫
p(x)ELBO(x;θ, ϕ̂(x,θ))dx =: Ex∼p(x) [ELBO∗(x;θ)] . (10)

The joint optimization of encoder and decoder parameters thus reduces to optimizing the subset of
pairs (θ, ϕ̂(x,θ)), and is equivalent to optimizing the expected self-consistent ELBO, that is

maximize
θ,ϕ

Ex∼p(x) [ELBO(x;θ,ϕ)] ⇐⇒ maximize
θ

Ex∼p(x) [ELBO∗(x;θ)] (11)

This problem reduction is aligned with the original purpose of the ELBO: building a tractable
but optimal likelihood approximation. Namely, (i) ELBO∗ depends on the same parameters as the
likelihood (x, γ and θ), (ii) its gap KL [qϕ(z|x)||pθ(z|x)] is minimal. The problem reduction of
(11) allows us to compare the optimality of different decoders and Prop. 1 helps addressing the case
of near-deterministic decoders.

3.2 Self-consistent ELBO, IMA-regularized log-likelihood and identifiability of VAEs

We want to investigate how the choice of qϕ(z|x) and pθ(x|z) implicitly regularizes the Jacobians
of their means µϕ(x) and fθ (z) in the near-deterministic regime. Exploiting self-consistency, we
are able to precisely characterize how this happens: we formalize this in Thm. 1.
Theorem 1. [VAEs with a near-deterministic decoder approximate the IMA objective] Under
Assumption 1, the variational posterior satisfies

σϕ̂
k (x)

2 =

(
−d2 log p0

dz2k
(gθk (x)) + γ2

∥∥∥[Jfθ

(
gθ(x)

)]
:k

∥∥∥2)−1

+O(1/γ3) , (12)

and the self-consistent ELBO (10) approximates the IMA-regularized log-likelihood (6):

ELBO∗(x;θ) = log pθ(x)− cIMA(f
θ, gθ(x)) +Oγ→∞ (1/γ2) . (13)
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Figure 2: Self-consistency (Prop. 1) in VAE training, on a log-log plot, cf. 4.1 for details. Left:
convergence of σϕ̂

k (x)
2 to 0; Center: connecting σϕ̂

k (x)
2, γ2, and the column norms of the decoder

Jacobian via LHS and RHS of (12); Right: convergence of µϕ̂(x) to gθ (x)

Proof is in Appx. B. Below, we provide a qualitative argument on the interplay between distributional
assumptions in the VAE and implicit constraints on the decoder’s Jacobian and its inverse.

Modeling assumptions implicitly regularize the mean decoder class fθ under self-consistency.
In the near deterministic regime, pθ(x) gets close to the pushforward distribution of the
prior by the mean decoder fθ

∗ [p0(z)], which can be used to show that the true posterior
pθ(z|x) = pθ(x|z)p0(z)/pθ(x) is approximately the pushforward through the inverse mean de-
coder gθ

∗ [pθ(x|z)] (see Appx. A for more details). If we select a given latent z0 and denote its
image by fθ (z0) , then we can locally linearize gθ by its Jacobian Jgθ = Jgθ (fθ (z0)), yielding
a Gaussian for the pushforward distribution gθ

∗ [pθ(x|z)] with covariance 1/γ2JgθJT
gθ . As the

sufficient statistics of a Gaussian are given by its mean and covariance, the structure of the posterior
covariance Σϕ

z|x (which is by design diagonal, cf. (3)) is crucial for minimizing the gap in (2). Practi-
cally, this implies that in the zero gap limit, the covariances of qϕ(z|x) and pθ(z|x) should match,
i.e., 1/γ2JgθJT

gθ will be diagonal with entries σϕ
k (x)

2 and therefore Jgθ has orthogonal rows. We

can express the decoder Jacobian via the inverse function theorem as Jfθ (z0) = Jgθ (fθ (z0))
−1.

As the inverse of a row-orthogonal matrix has orthogonal columns, fθ satisfies the IMA principle.
Additionally, we can relate the variational posterior’s variances to the column-norms of Jfθ as

σϕ
k (x)

2 = 1/γ2∥
[
Jfθ (z0)

]
:k
∥−2

, as predicted by (12).

Our argument indicates that minimizing the gap between the ELBO and the log-likelihood encourages
column-orthogonality in Jfθ by matching the covariances of qϕ(z|x) and gθ

∗ [pθ(x|z)]. When
qϕ(z|x) = pθ(z|x), the gap is closed; this is only possible if the decoder is in the IMA class, for
which cIMA vanishes and the ELBO tends to an exact log-likelihood. To the best of our knowledge,
we are the first to prove this for nonlinear functions, extending related work for linear VAEs [44].

Implications for identifiability of VAEs. While previous works argued that the VAE objective
favors decoders with a column-orthogonal Jacobian [57, 38], they did not exactly characterize
how: our result shows that the self-consistent ELBO tends to a regularized log-likelihood, where
the regularization term cIMA explicitly enforces this (soft) constraint. Thus, it possibly explains
why VAEs are successful in learning disentangled representations: namely, the IMA function class
provably rules out certain spurious solutions for nonlinear ICA [23], and the IMA-regularized
log-likelihood was empirically shown to be beneficial in recovering the true latent factors. Thus,
we speak about embracing the gap, as its functional form equips VAEs with a useful inductive
bias. While the IMA function class has not yet been shown to be identifiable in the classical sense
such results exist for special cases such as conformal maps (d = 2 [29], generalized by the very
recent work in [4]), isometries [26] and for closely-related unsupervised nonlinear ICA models [69].
Moreover, Buchholz et al. [4] demonstrate a local form of identifiability for the IMA function class.
In the following, we empirically corroborate that VAEs: 1) recover the ground truth sources when
the mixing satisfies IMA, and thereby 2) achieve unsupervised disentanglement.
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Figure 3: Left: cIMA and Mean Correlation Coefficient (MCC) for 3-dimensional Möbius mixings
Right: MCC depending on the volume-preserving linear map’s cIMA (γ2 = 1e5)

4 Experiments

Our experiments serve three purposes: 1) demonstrating that self-consistency holds in practice (§ 4.1);
2) showing the relationship of the self-consistent ELBO∗, the IMA-regularized and unregularized
log-likelihood objectives (§ 4.2); and 3) providing empirical evidence that the connection to the IMA
function class in VAEs can lead to success in learning disentangled representations (§ 4.3). More
details are provided in Appx. F.

4.1 Self-consistency in practical conditions

Experimental setup. We use a 3-layer Multi-Layer Perceptron (MLP) with smooth Leaky ReLU
nonlinearities [22] and orthogonal weight matrices—which intentionally does not belong to the IMA
class, as our results are more general. The 60,000 source samples are drawn from a standard normal
distribution and fed into a VAE composed of a 3-layer MLP encoder and decoder with a Gaussian
prior. We use 20 seeds for each γ2 ∈ {1e1; 1e2; 1e3; 1e4; 1e5}.
Results. Fig. 2 summarizes our results, featuring the logarithms on each axes. The left plot shows
that the posterior variances σϕ

k (x)
2 converge to zero with a 1/γ2 rate, as predicted by (9). The center

plot shows that the expression for σϕ
k (x)

2 corresponds to (12) in the optimum of the ELBO by
comparing both sides of the equation. The right plot shows approximate convergence of the mean
encodings µϕ̂(x) to gθ(x) with a 1/γ rate (see § 5). As fθ is not guaranteed to be invertible, we use
instead the optimal encoder and decoder parameters to compare fθ(µϕ̂(x)) to x.

4.2 Relationship between ELBO∗, IMA-regularized, and unregularized log-likelihoods

Figure 4: Comparison of the ELBO∗, the IMA-
regularized and unregularized log-likelihoods
over different γ2. Error bars are omitted as they
are orders of magnitudes smaller

Experimental setup. We use an MLP fθ with
square upper-triangular weight matrices and
invertible element-wise nonlinearities to construct a
mixing not in the IMA class [23] and fix the VAE de-
coder to the ground truth such that (4) gives the true
data log-likelihood. This way, we ensure that the
unregularized and IMA-regularized log-likelihoods
differ and make the claim of Nielsen et al. [50] com-
parable to ours. With a fixed decoder, the ELBO∗

depends only on ϕ, therefore we only train the en-
coder with γ2 values from [1e1; 1e5] (5 seeds each).
Results. Fig. 4 compares the difference of the
estimate of ELBO∗ and the unregularized/IMA-
regularized log-likelihoods after convergence over
the whole dataset. As the decoder and the data are
fixed, log pθ(x) and CIMA will not change during
training, only the ELBO∗ does. The figure shows
that as γ→+∞, ELBO∗ approaches LIMA(f

θ, z),
as predicted by Thm. 1, and not log pθ(x), as stated in [50]—the difference is CIMA.
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Figure 5: Left: cIMA and MCC for Sprites [66] during training (γ2=1); Center: true and estimated
latent factors for the best trained VAE on Sprites; Right: the corresponding latent interpolations and
MCC values (from top to bottom): y- (0.989), x-position (0.996), scale (0.933), and color (0.989)

4.3 Connecting the IMA principle, γ2, and disentanglement

Experimental setup (synthetic). We use 3-dimensional conformal mixings (i.e., the Möbius trans-
form [53]) from the IMA class with uniform ground-truth and prior distributions. Our results quantify
the relationship of the decoder Jacobian’s IMA-contrast and identifiability with MCC [27] and show
how this translates to disentanglement—we note that MCC was already used to quantify disentangle-
ment [72, 37]. To determine whether a mixing from the IMA class is beneficial for disentanglement,
we apply a volume-preserving linear map after the Möbius transform (using 100 seeds) to make
cIMA ̸= 0. Other parameters are the same as in § 4.1, with the exception of picking the best γ2 = 1e5.
Results (synthetic). The left of Fig. 3 empirically demonstrates the benefits of optimizing the
IMA-regularized log-likelihood. By increasing γ2, MCC increases, while cIMA decreases, suggesting
that VAEs in the near-deterministic regime encourage disentanglement by enforcing the IMA
principle. The right plot shows that when the mixing is outside the IMA class, MCC decreases,
corroborating the benefits of IMA class mixings for disentanglement.
Experimental setup (image). We train a VAE (not β-VAE) with a factorized Gaussian posterior
and Beta prior on a Sprites image dataset generated using the spriteworld renderer [66] with a Beta
ground truth distribution. Similar to [32], we use four latent factors, namely, x- and y-position, color
and size, and omit factors that can be problematic, such as shape (as it is discrete) and rotation (due to
symmetries) [57, 37]. Our choice is motivated by [26, 18] showing that this data-generating process
may approximately satisfy the IMA principle.
Results (image). The left of Fig. 5 indicates that VAEs can learn the true latent factors and MCC
is anticorrelated with cIMA, reinforcing the hypothesis that the data-generating process belongs to the
IMA class. The center plot compares estimated and true latent factors from the best model (scaling
and permutation indeterminacies are removed), whereas the right plot shows the corresponding
latent interpolations—thus, connecting identifiability (measured by MCC) to disentanglement.

5 Limitations

The near-deterministic regime. Our theory relies on γ→+∞; this is the regime where posterior
collapse may be avoided [44], and where calculating the reconstruction loss may be possible even
without sampling [38]. However, in practice it may be unclear when γ2 is large enough. This seems
to be problem-dependent [57, 44], and possibly tied to the covariance of the observations [60, 59].
Moreover, large values of γ2 may be harder to optimize due to an exploding reconstruction term in (1).
This may be one explanation for the slight deviation of Fig. 2, right from our theory’s predictions:
while convergence of µϕ(x) to gθ matches the prediction in Prop. 1, its rate is not precisely the one
predicted for the self-consistent ELBO (10). Another cause could be the encoder’s finite capacity.
Nonetheless, we have experimentally shown that for realistic hyperparameters, VAEs’ behavior
matches the predictions of our theory for the near-deterministic regime.

Dimensionality. The setting in § 3 requires equal dimensionality for observations x and latents z, in
line with work on normalizing flows [51] and nonlinear ICA [28, 31, 24] (but see, e.g., [33]). For
high-dimensional images, however, it is often assumed that x lives on a lower-dimensional manifold
embedded in a higher-dimensional space, where the dimensionality of x is greater than z [13]. While
our theoretical results do not cover this case, we observe empirically in Fig. 5 that the predictions of
our theory remain accurate when observations are high-dimensional images. Extending our theory to
this setting could leverage ideas explored in, e.g., [13, 12, 7] and is left for future work.
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The ELBO, the self-consistent ELBO, and amortized inference. There are in principle multiple
ways to obtain self-consistency (Defn. 1). Notably, one could simply force the variational mean and
variance encoder maps to behave this way; unlike [38], we model the actual behavior of VAEs trained
under ELBO maximization, and obtain self-consistency as a result. For this, we assume that the
optimal encoder, which minimizes the gap between ELBO and log-likelihood, can be learned. This is
not guaranteed in general, since it requires universal approximation capability of the encoder. On the
other hand, (10) requires unamortized inference to introduce ELBO∗, which does not depend on ϕ.
As in practice amortized inference may be used to efficiently estimate a single set of ϕ for all x [61],
it can lead to a suboptimal gap to the log-likelihood and discrepancies with our theoretical predictions.

6 Discussion
On disentanglement in unsupervised VAEs. It is widely believed that unsupervised VAEs cannot
learn disentangled representations [42, 33], motivating work on models with, e.g., conditional
priors [33] or sparse decoding [47]. We show that under certain assumptions, ELBO optimization can
implement useful inductive biases for representation learning, yielding disentangled representations
in unsupervised VAEs. However, while our results are formulated for VAEs, some of the most
successful models at disentanglement are modifications thereof—e.g., β-VAEs [25, 5], with an
additional parameter β multiplying the KL in (1). While they deviate from the information projection
setting considered in § 3.1, their objectives are equivalent to the ELBO in a sense described in
Appx. A.3, which allows us to derive convergence to the IMA-regularized likelihood objective for
γ/

√
β → +∞. This encompasses the deterministic limit, and also the setting β → 0 with constant

γ described in [38]. Whether this theoretical regime matches common practice remains an open
question. Overall, we stress that we uncover one possible mechanism through which VAEs may
achieve disentanglement. By connecting to IMA [23], we discuss implications on recovering
the ground truth under suitable assumptions, extending uniqueness results presented in [38]. We
speculate that our success in disentanglement is probably due to selecting data sets where the mixing
is in the IMA class (cf. [26, 18]), which presumably was not the case in [42].

Characterizing the ELBO gap for nonlinear models. Thm. 1 characterizes the gap between
ELBO and true log-likelihood for nonlinear VAEs, and extends the linear analysis of Lucas et al.
[44] and the results of Dai et al. [14] in the affine case; we also empirically characterize the gap in
the deterministic limit in § 4.2. An unanticipated consequence of this result is that—consistent with
[44]—VAEs optimize the IMA-regularized log-likelihood in the near-deterministic limit, and not the
unregularized one, as stated in [50].

Extensions to related work. Several papers discuss the (near-)deterministic regime [50, 57, 38, 13].
For example, Nielsen et al. [50] postulate a deterministic VAE with the encoder inverting the decoder.
Also Kumar and Poole [38] work in that regime, but without justifying the relationship between the
encoder and decoder. Although they show that the choice of p0(z) and qϕ(z|x) influences uniqueness
(by, e.g., ruling out rotations), this does not imply recovering the true latents. Our approach formalizes
(Defn. 1), proves (Prop. 1), and demonstrates the practical feasibility of (§ 4) the near-deterministic
regime. To the best of our knowledge, all previous work relied on the linear case [44] or a (linear)
approximation and the evaluation of the ELBO around a point to show the inductive bias on the
decoder Jacobian. However, our main result (Thm. 1) yields a nonlinear equation where the decoder
Jacobian can be evaluated at any point and is equipped with a convergence bound. Moreover, the
consistency of VAE estimation for identifiable models [33] requires guarantees on qϕ(z|x); our
result helps proving these. Dai and Wipf [13] use a non-factorized Gaussian variational posterior
and prove in their Thm. 2 (including the dimx = dim z case) that in the deterministic limit their
κ-simple VAE can fit perfectly arbitrary observed data (barring few assumptions), while the ELBO
gap tends to zero. In contrast, we use a factorized variational posterior; this prevents the ELBO gap to
vanish in the deterministic limit, except in the special case of a decoder mean in the IMA class fitting
the data perfectly. Dai and Wipf [13] take the limit of γ → +∞ (here using γ as the square root of
the decoder precision and not the decoder variance as used in [13]) to relate encoder and decoder
properties in this limit in their Thm. 5, similarly to Prop. 1. In contrast to our nonlinear analysis, this
is derived when optimizing w.r.t. both encoder and decoder parameters, and with a non-factorized
encoder assumption, leading to fundamentally different behavior of the solutions in the deterministic
limit. The work done by Sliwa et al. [62], simultaneously to ours, showcases an extensive empirical
study highlighting that the IMA contrast allows distinguishing true and spurious solutions for a broad
range of cases and outperforms standard regularizers such as weight decay. We discuss extended
connections to the literature in Appx. D and Appx. E.
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Covariance structure and IMA. We have shown that specific choices for encoder and decoder
covariances regularize the decoder Jacobian, such that closing the ELBO gap constrains the decoder to
belong to the IMA class. Following our intuition (Fig. 1), assuming factorized qϕ(z|x) and isotropic
pθ(x|z), IMA holds only for the decoder; since in the other direction the pushforward of qϕ(z|x)
through fθ has covariance Jfθ (z)Σϕ

z|xJfθ (z)
T
, which cannot be used to make row orthogonality

statements on Jfθ (z) in the general case. Additionally, we conjecture that assuming an isotropic
encoder would constrain IMA to hold in both encoding and decoding directions (as both Jfθ (z) and
Jgθ (x) need to be column-orthogonal), such that the resulting decoder mean is constrained to have
orthogonal columns of equal norms, which is a defining property of conformal maps [4]. On the other
hand, we conjecture that if the observation model is not isotropic, but the encoder model is, IMA
would only tend to be enforced for the mean encoder Jacobian, converging to the inverse decoder
mean in the deterministic limit.

Implications for recovering the true latent factors using unsupervised VAEs. Convergence of the
ELBO to the IMA-regularized log-likelihood suggests that unsupervised VAEs may recover the true
factors of variation according to current identifiability results of the IMA class [4]. This is based on
the following reasoning: If the ground truth generative model belongs to the IMA class, unsupervised
learning of the model with an infinite capacity VAE will, in the deterministic limit, ensure a solution
that perfectly fits the data and whose decoder mean is also in the IMA class (by joint optimization
of both the likelihood and the regularization term). Identifiability of the IMA class implies that
the VAE will learn the true decoder (up to acceptable ambiguities); then, since self-consistency
guarantees that the encoder inverts the decoder, the encoder infers the ground truth generative
factors associated to observations. Although strict identifiability for all functions in the IMA class
remains to be proven, three concurrent papers provide guarantees that go towards identifiability:
Leemann et al. [41] proves identifiability for a subset of the IMA class in the context of concept
discovery; Zheng et al. [70] shows identifiability of nonlinear ICA by assuming a specific sparsity
structure of the decoder Jacobian (called structural sparsity); whereas Buchholz et al. [4] introduce
the concept of local identifiability and proves that IMA is locally identifiable.

Moreover, as mentioned in the above paragraph, we suspect that closing the ELBO gap with an
isotropic encoder (while the encoder in Thm. 1 is only constrained to have diagonal covariance)
constrains the decoder to be a conformal map. This is an interesting constraint, as nonlinear ICA
with conformal mixings are identifiable: the two-dimensional case was first addressed with some
additional constraints in [29], while the general case (in arbitrary dimension) was shown to rule
out certain spurious solutions for conformal mixings [23], and finally proven to be identifiable by
Buchholz et al. [4] in concurrent work. Hence, we conjecture that given a ground truth generative
model with a conformal map from latent to observation space, and an unsupervised VAEs with
isotropic Gaussian encoders and decoders, the true latent factors can be recovered.

Conclusion. We provide a theoretical justification for VAEs’ widely-used self-consistency
assumption in the near-deterministic regime of small decoder variance. Using this result, we
show that the self-consistent ELBO converges to the IMA-regularized log-likelihood, and not to
the unregularized one. Thus, we can characterize the gap between ELBO and true log-likelihood
and reason about its role as an inductive bias for representation learning in nonlinear VAEs. We
characterize a set of assumptions under which unsupervised VAEs can be expected to disentangle
and we demonstrate this behavior in experiments on synthetic and image data.
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Acronyms

ELBO evidence lower bound
IMA Independent Mechanism Analysis

i.i.d. independent and identically distributed
ICA Independent Component Analysis

KL Kullback-Leibler Divergence

LVM Latent Variable Model

MCC Mean Correlation Coefficient

MLE Maximum Likelihood Estimation
MLP Multi-Layer Perceptron
MSE Mean Squared Error

PCA Principal Component Analysis
PPCA Probabilistic Principal Component Analy-

sis

SVD Singular Value Decomposition

VAE Variational Autoencoder

Nomenclature
Independent Mechanism Analysis
CIMA global IMA contrast
α scalar field
D general diagonal matrix
O orthogonal matrix
y reconstructed sources
LIMA IMA loss function
cIMA local IMA contrast

Variational Autoencoder
V weight matrix of a linear encoder
W weight matrix of a linear decoder
µϕ̂(x) optimal mean of qϕ(z|x)
µϕ(x) mean of qϕ(z|x)
ϕ parameters of the variational posterior qϕ(z|x)
σϕ̂(x)2 optimal variance of qϕ(z|x)
θ parameters of the decoder pθ(x|z)
γ square root of the precision of the VAE decoder
Σϕ

z|x covariance matrix of qϕ(z|x)
Lβ β-VAE loss function
fθ decoder
gθ inverse decoder
ϕ̂ optimal parameters of the variational posterior qϕ(z|x)
p(x) data distribution
p0(z) latent prior distribution
pθ(z|x) true posterior distribution of the decoded samples of the VAE, mapping x 7→ z,
parametrized by θ
pθ(x) marginal likelihood
pθ(x|z) conditional distribution of the decoded samples of the VAE, mapping z 7→ x, parametrized
by θ
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qϕ(z|x) variational posterior of the VAE, mapping x 7→ z parametrized by ϕ
qϕ̂(z|x) optimal variational posterior of the VAE, mapping x 7→ z parametrized by ϕ

µϕ̂
k (x) optimal mean of qϕ(z|x) in dimension k

µϕ
k (x) mean of qϕ(z|x) in dimension k

σϕ̂
k (x)

2 optimal variance of qϕ(z|x) in dimension k

σϕ
k (x)

2 variance of qϕ(z|x) in dimension k

gθ inverse decoder component
H Hessian matrix
Id d-dimensional identity matrix
J Jacobian matrix
Σ covariance matrix
x observation vector
z latent vector
X observation space
d dimensionality of the observation space X
z latent single component
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