
Appendices
A Details of Models

In this section, we describe details about the dictionary construction, the architecture of the semantic
encoder and linguistic encoder, and multi-length discriminator. For further information about the
variational generator, one could refer to PortaSpeech [41]. We also describe our modifications to
model architecture to support the pre-training task of Dict-TTS with large-scaled ASR datasets.

A.1 Dictionary Construction

The Chinese dictionary used in the experiments is obtained from https://github.com/yihui/
zdict, which is crawled from https://www.zdic.net/zd/zb/ty/. The Japanese dictionary is
crawled from https://dictionary.goo.ne.jp and the Cantonese dictionary is crawled from
https://humanum.arts.cuhk.edu.hk/Lexis/lexi-can. The crawled dictionaries are pro-
cessed into the format described in SubSection 3.3.

We use a pre-trained cross-lingual language model [10] to extract the semantic context information
k of every gloss entry e and store them in the disk for computational efficiency8. Note that our
Dict-TTS does not need the heavy BERT model in the inference stage. As is pointed out by the
previous works, lower layers of BERT are found to perform broad attention across all pairs of words
or encode local syntax [9, 39] and middle layers are found to mostly capture transferable syntactic
and semantic knowledge [17, 51]. But the upper layers are specifically tuned towards the pre-training
tasks of BERT [56]. Thus, we use the average of the first-layer word embeddings and the later 8-layer
contextual BERT representations as the extracted knowledge.

A.2 Architecture of the Semantic Encoder and Linguistic Encoder

Multi-Head
Attention

Add & Norm

Conv1D

Add & Norm

~

x N

Figure 6: The detailed architecture
of the semantic encoder and linguis-
tic encoder.

As shown in Figure 6, the semantic encoder and linguistic
encoder of our Dict-TTS are both stacks of feed-forward Trans-
former layers with relative position encoding [44] following
PortaSpeech [41]. And there are four layers of the semantic en-
coder and four layers of the linguistic encoder in our Dict-TTS.

A.3 Modifications for Pre-training Task

The vanilla architecture of PortaSpeech is tested on LJSpeech
(a single-speaker dataset). By introducing a group of learnable
speaker embeddings to represent the speakers’ timbre, pronun-
ciation habits, and other features, it can be trained on multi-
speaker datasets. However, since large-scaled ASR datasets
may not have explicit speaker information, the following mod-
ifications should be made: we extract the speaker embeddings
from audio samples using resemblyzer9 and feed them into the
variational generator and duration predictor. We pre-train our
DictTTS on the WenetSpeech dataset [61], which is a multi-
domain corpus for speech recognition. It takes 600k steps
for pre-training until convergence. As is shown in Table 2, the semantic comprehension and the
generalization capacity of our Dict-TTS are significantly improved by our pre-training process.

B Detailed Experimental Settings

In this section, we describe more model configurations and details in subjective evaluation.

8The model used in our experiments can be downloaded from https://huggingface.co/
xlm-roberta-base. One could use monolingual BERT to enhance the performance.

9https://github.com/resemble-ai/Resemblyzer

16

https://github.com/yihui/zdict
https://github.com/yihui/zdict
https://www.zdic.net/zd/zb/ty/
https://dictionary.goo.ne.jp
https://humanum.arts.cuhk.edu.hk/Lexis/lexi-can
https://huggingface.co/xlm-roberta-base
https://huggingface.co/xlm-roberta-base
https://github.com/resemble-ai/Resemblyzer

B.1 Dict-TTS Model Configurations

We list the model hyper-parameters of Dict-TTS in Table 5.

Table 5: Hyperparameters of Dict-TTS models.
Hyper-parameter Dict-TTS Number of parameters

Semantic Encoder

Character Embedding 192

4.907M
Semantic Encoder Layers 4
Hidden Size 192
Conv1D Kernel 5
Conv1D Filter Size 768

S2PA Module Hidden Size 192 0.404M

Linguistic Encoder

Linguistic Encoder Layers 4

3.371MHidden Size 192
Conv1D Kernel 5
Conv1D Filter Size 768

Variational Generator

Encoder Layers 8

7.516M

Decoder Layers 4
Encoder/Decoder Kernel 5
Encoder/Decoder channel size 192
Latent Size 16
Prior Flow Layers 4
Prior Flow Conv1D Kernel 3
Prior Flow Conv1D Channel Size 64

Multi-Length Discriminator

Number of Discriminators 3

0.927MWindow Size 32, 64, 128
Conv2D Layers 3
Hidden Size 192

Total Number of Parameters 17.125M

B.2 Baseline Model Configurations

The baseline systems in our experiments can be divided into: 1) phoneme-based systems; 2)
character-based systems. For phoneme-based systems, we use the mixture alignment proposed
in PortaSpeech [41], which takes phoneme sequence as inputs but utilize both soft phoneme-level
and hard word-level duration for mixture alignment. We use a 4-layer phoneme encoder and a 4-layer
word encoder following the implementation of PortaSpeech [41]. For character-based systems, we
use an 8-layer character encoder for fair comparisons. The encoders above are stacks of feed-forward
Transformer layers with relative position encoding [44] following PortaSpeech [41]. Other parts of
the architecture are kept the same as Dict-TTS to exclude other interference factors.

B.3 Details in Subjective Evaluation

Audio Quality and Prosody We perform the audio quality and prosody evaluation on Amazon
Mechanical Turk (MTurk). For each dataset, we randomly select 50 texts from the test set and use the
TTS systems to generate the audio samples. Each audio has been listened to by at least 20 listeners.
For MOS, each tester is asked to evaluate the subjective naturalness of a sentence on a 1-5 Likert
scale. For CMOS, listeners are asked to compare pairs of audio generated by systems A and B,
indicate which of the two audio they prefer, and choose one of the following scores: 0 indicating no
difference, 1 indicating a slight difference, 2 indicating a significant difference and 3 indicating a
very large difference. For audio quality evaluation (MOS-Q and CMOS-Q), we tell listeners to “focus
on examining the naturalness of audio quality (e.g., noise, timbre, sound clarity, and high-frequency
details), and ignore the differences of prosody and rhythm (e.g., pitch, energy, and duration)”. For
prosody evaluations (MOS-P and CMOS-P), we tell listeners to “focus on examining the naturalness
of prosody and rhythm (e.g., pitch, energy, and duration), and ignore the differences in audio quality
(e.g., noise, timbre, sound clarity, and high-frequency details)”. The screenshots of instructions for

17

(a) Screenshot of MOS-P testing.

(b) Screenshot of MOS-Q testing.

(c) Screenshot of CMOS-P testing.

(d) Screenshot of CMOS-Q testing.

Figure 7: Screenshots of audio quality and prosody evaluations.

18

Figure 8: Screenshot of pronunciation accuracy evaluation.

testers are shown in Figure 7. We paid $8 to participants hourly and totally spent about $500 on
participant compensation.

Pronunciation Accuracy We perform the pronunciation accuracy evaluation on MolarData10. For
each dataset, we use all texts in the test set to generate the audio samples. Each audio has been
listened to by at least 4 language experts. Each tester is asked to carefully listen to the audio multiple
times, write down the mispronounced phonemes, and discuss with each other until a conclusion is
reached. The screenshots of instructions for testers are shown in Figure 8. We paid $15 to participants
hourly and totally spent about $800 on participant compensation. A small subset of speech samples
used in the test is available at https://dicttts.github.io/DictTTS-Demo/.

B.4 Details of the G2P tools used in the experiments

We use pypinyin (0.46.0)11 and G2PM12 in Biaobei dataset. Until 20 May, 2022, the latest version of
pypinyin is 0.46.0. And it is worth noting that the pronunciation accuracy is greatly improved when
we update the version from 0.36.0 to 0.46.0. In JSUT dataset, we use pyopenjtalk (0.2.0)13. And in
Common Voice (HK) dataset, we use pycantonese (3.4.0)14.

B.5 Details of Datasets

In this subsection, we mainly describe the distribution characteristics of polyphones in the datasets
used in our experiments, including: 1) Biaobei [3]; 2) JSUT [47] and 3) Common Voice (HK) [1].
As shown in Figure 9, we calculate the number of polyphones in every sentence. The average
sentence lengths of the Biaobei, JSUT, and Common Voice (HK) datasets are 18, 29, and 10. Among
these datasets, the most frequent number of polyphones appearing in a sentence is three to five and
some sentences even include eight (or more) polyphones, indicating the importance of polyphone
disambiguation.

B.6 Error Bars and Random Seeds

For the experiments of the audio quality and prosody, we report confidence intervals of subjective
metric results in Table 3. For the experiments of the pronunciation accuracy, we ran the experiments 10
times with 10 different random seeds ([1234, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999])
and obtained the averaged results.

C Visualization of Attention Weights

We put some semantics attention visualizations in Figure 10. We can see that Dict-TTS can create rea-
sonable text-to-dictionary alignments, which improves the performance of polyphone disambiguation
and helps the semantics comprehension for end-to-end TTS systems.

10https://www.molardata.com/en.html
11https://github.com/mozillazg/python-pinyin
12https://github.com/kakaobrain/g2pM
13https://github.com/r9y9/pyopenjtalk
14https://github.com/jacksonllee/pycantonese

19

https://dicttts.github.io/DictTTS-Demo/
https://www.molardata.com/en.html
https://github.com/mozillazg/python-pinyin
https://github.com/kakaobrain/g2pM
https://github.com/r9y9/pyopenjtalk
https://github.com/jacksonllee/pycantonese

Figure 9: The illustration of the number of polyphone in a sentence. The horizontal axis is the
frequency of polyphones in a sentence and the vertical axis is the number of sentences shown by
percentage.

(a) Biaobei-000001

(b) Biaobei-000002

Figure 10: Visualizations of the semantics attention weights in Biaobei dataset.

20

D The Definition of Polyphone and Heteronym

Polyphones are letters or characters having more than one phonetic value, while heteronyms are
words that have two (or more) different possible pronunciations that are associated with two (or
more) different meanings [35]. According to the previous research [63], the difficulty of polyphone
disambiguation in logographic languages mainly lies in heteronyms. Thus, the previous works [11,
49, 38] usually use “polyphone disambiguation” to refer to “heteronym disambiguation” for those
languages. In this work, we use “polyphone disambiguation” to refer to “heteronym disambiguation”
following the previous works.

E Analyses on Prosodic Realization

The DTW measure would be impacted by both lexical tone and prosodic realization. In order to
further analyse the naturalness of prosody and rhythm for Dict-TTS and baseline systems, we evaluate
the duration errors and character-level average pitch errors. For duration errors, we calculate the MSE
of character-level durations. For character-level average pitch errors, we firstly calculate the mean
pitch for each character’s region in the mel spectrogram according to the Montreal Forced Aligner
(MFA) to remove the influence of lexical tone, and then we calculate the MSE of the mean pitch
sequences. The results on the Biaobei dataset are shown in Table 6. It can be seen that the duration
error and the average pitch error of Dict-TTS are significantly lower than those of the baseline
systems, demonstrating the effectiveness of the extracted semantics from prior dictionary knowledge.

Table 6: Duration error and average pitch error comparisons on the Biaobei dataset.
Method Duration Error (ms) Average Pitch Error

Character 36.2 1424.6
BERT Embedding 35.7 1312.1
NLR 36.4 1414.3
Phoneme (G2PM) 35.8 1341.7
Phoneme (pypinyin) 35.3 1308.8
Dict-TTS 34.4 1232.3

F Adding Rules to the Pronunciation Weights

There are some pronunciation rules (like “sandhi rules”) that can not be learned from the dictionary.
For example, in Mandarin, "一" before tone4 should be “Y I2” (e.g., “一段”) and when “一” is an
ordinal word, it should be “Y I1” (e.g., “一四九五年”). According to these pronunciation rules, we
can obtain the correct pronunciation labels for some specific characters based on the part-of-speech
(POS) tags of the input character sequence. After we obtain the correct pronunciation labels for these
specific characters, we can directly force the pronunciation weights of these characters to be the
ground truth values.

G Polyphone Disambiguation for Various Languages

The polyphone disambiguation problem is critical in logographic languages such as Chinese, but is
less problematic in phonograms like English.

For logographic languages like Chinese, although the lexicon can cover nearly all the characters,
there are a lot of polyphones that can only be decided according to the context of a character. Thus,
G2P conversion in this kind of languages is mainly responsible for polyphone disambiguation, which
decides the appropriate pronunciation based on the current word context. Therefore, polyphone
disambiguation is crucial in these languages and our method is an effective solution for the polyphone
disambiguation problem in these languages. For alphabetic languages like English, lexicon cannot
cover the pronunciations of all the words. Thus, the G2P conversion for English is mainly respon-
sible for generating the pronunciations of out-of-vocabulary words [50]. Although the polyphone
disambiguation is less problematic in these languages, our methods can still be used as the modules

21

to retrieve the correct pronunciation for polyphones and heteronyms in their G2P process (e.g., the
Algorithm step 2 in https://github.com/Kyubyong/g2p).

In our experiments, JSUT dataset is a mixture of phonograms and logograms, which is different
from Biaobei and Common Voice (HK). Japanese writing system consists of two types of characters:
the kanji (漢字) and the syllabic kana – hiragana (平仮名) and katakana (片仮名). In our analysis,
32.42% of the characters in JSUT dataset are kanji. The pronunciations of a part of the kanji can not
only be specified by the semantic information and should be specified by empirical pronunciation
rules. For example, most kanji (漢字) can be pronounced multiple ways: on-yomi (音読み) and
kun-yomi (訓読み). Although the compound kanji usually uses on-yomi and one kanji probably uses
kunyomi, the different readings are largely just chosen empirically in practice. Our Dict-TTS has the
potential to work only for the kanji whose pronunciation should be specified based on the semantic
meaning. Due to the characteristics of Japanese writing systems, in Table 1, although Dict-TTS
surpasses the character-based system, it does not show comparable performance with the open source
G2P module in Japanese. But as shown in Section 3.4, our method is compatible with the predefined
rules from language experts by directly adding specific rules to pronunciation weight. We are sure
that the performance of our method can be further improved by introducing the pronunciation rules
in Japanese (e.g., the rules in the rule-based G2P baseline "pyopenjtalk").

H Potential Negative Societal Impacts

Dict-TTS improves the pronunciation accuracy and prosody of the synthesized speech voice and
lowers the requirements for G2P conversion, which may cause unemployment for people with related
occupations. Besides, the production of fake speeches may cause voice security issues. Further
efforts in automatic speaker verification should be made to improve voice security.

22

https://github.com/Kyubyong/g2p

	Introduction
	Background
	Method
	Model Overview
	Comparison between the phoneme-based and character-based TTS systems
	Semantics-to-Pronunciation Attention
	Training and Pre-training

	Experiments
	Experimental Setup
	Results of Pronunciation Accuracy
	Results of Audio Quality and Prosody
	Ablation Studies

	Conclusion
	Acknowledgments
	Details of Models
	Dictionary Construction
	Architecture of the Semantic Encoder and Linguistic Encoder
	Modifications for Pre-training Task

	Detailed Experimental Settings
	Dict-TTS Model Configurations
	Baseline Model Configurations
	Details in Subjective Evaluation
	Details of the G2P tools used in the experiments
	Details of Datasets
	Error Bars and Random Seeds

	Visualization of Attention Weights
	The Definition of Polyphone and Heteronym
	Analyses on Prosodic Realization
	Adding Rules to the Pronunciation Weights
	Polyphone Disambiguation for Various Languages
	Potential Negative Societal Impacts

