
Spatial Mixture-of-Experts

Nikoli Dryden
ETH Zürich

ndryden@ethz.ch

Torsten Hoefler
ETH Zürich

htor@inf.ethz.ch

Abstract

Many data have an underlying dependence on spatial location; it may be weather
on the Earth, a simulation on a mesh, or a registered image. Yet this feature
is rarely taken advantage of, and violates common assumptions made by many
neural network layers, such as translation equivariance. Further, many works that
do incorporate locality fail to capture fine-grained structure. To address this, we
introduce the Spatial Mixture-of-Experts (SMOE) layer, a sparsely-gated layer that
learns spatial structure in the input domain and routes experts at a fine-grained
level to utilize it. We also develop new techniques to train SMOEs, including a
self-supervised routing loss and damping expert errors. Finally, we show strong
results for SMOEs on numerous tasks, and set new state-of-the-art results for
medium-range weather prediction and post-processing ensemble weather forecasts.

1 Introduction

Many datasets exhibit an underlying, location-based structure, where the value at a point depends
on where that point is. For example, weather predictions [78] depend on their location on Earth;
many scientific simulations are parameterized on an underlying mesh [9]; data (e.g., faces) may be
specifically aligned [91]; or it may approximately hold, as in natural images with centered objects.
Further, tasks on such data are often dense regression tasks, such as predicting weather several days in
the future. Numerous architectures have been successfully applied to such tasks. Convolutional neural
networks (CNNs) [80] and transformers [74] show promise for medium-range weather prediction.
Locally-connected networks (LCNs), which use independent, rather than shared, filters at each
point, have been applied to weather post-processing [38], face recognition [46, 77, 91], and other
tasks [18, 71], specifically to learn local features. Low-rank local connectivity (LRLCN) [30] relaxes
the translation equivariance of CNNs while requiring fewer parameters than LCNs. Other approaches,
such as CoordConv [65], add an additional inductive bias by providing explicit input coordinates.

However, for tasks on data with location-based structure, prior approaches suffer from various
limitations. Convolution assumes that data is translation equivariant, which does not hold for such
tasks [46, 91]. Approaches like LCNs require many parameters. Many architectures have been
designed for classification tasks and fail to perform well on regression because they opererate at too
coarse granularity and are unable to capture key details. This limits their applicability to important
tasks, such as medium-range weather prediction or climate simulations. Indeed, on a simple heat
diffusion task with location-dependent diffusivities (see §3.1), many approaches do not learn the
location dependence at all and instead converge to an “average” diffusivity.

To address this, we introduce a novel neural network layer, the Spatial Mixture-of-Experts (SMOE)
layer (§2). An SMOE uses a learned gating function to sparsely select and route from a shared set of
experts to each spatial location (e.g., pixel) in an input sample. This enables experts to specialize to
the unique characteristics of different “regions” within the data and easy interpretability by analyzing
the gate. SMOEs require the assumption that all samples in the dataset have a similar underlying
spatial structure, but this often holds (at least approximately) for many datasets, such as weather,
where each example is on the same latitude/longitude grid. For the SMOE gating function, we
introduce tensor routing, a simple and cheap routing function that effectively learns this spatial
36th Conference on Neural Information Processing Systems (NeurIPS 2022).

In
du

ct
iv

e
bi

as

Parameters
Fully-connected

Convolution

CoordConv

Locally
connected

Spatial
Mixture-of-Experts

(this work)

Tiled LCN

Low-rank locally
connected

SMoE with same experts at
every location

SMoE with different
experts at every location

(Not to scale)

Convolution:

Locally-connected:

Low-rank locally-connected:

Spatial Mixture-of-Experts:

Filters

Filters

!! !" !#

!$!% !&

"! "" "#

"$ "% "&

Basis filters Learned
combiners
!# and "#

Experts

Learned gate

SMoEs learn fine-grained routing to locations

Mixture-of-Experts:

Spatial Mixture-of-Experts:

Experts

Ga
te

Ga
te

Experts

• Coarse-grain
routing

• >Capacity for
constant
compute

• Classification

• Fine-grain
routing

• Learn location-
dependent
functions

• Regression

Inputs

Input

Figure 1: Comparison of SMoEs to other networks. Left: Qualitative comparison of parameter counts and
inductive biases. Center: Pattern of filter application among models. Right: Routing in MoEs and SMOEs.

structure (§2.1). We also find that end-to-end training approaches, as in standard mixture-of-experts
(MoEs) [82, 86], do not capture location-dependence well. Instead, we introduce a separate routing

classification loss (§2.2) to train the gate, a self-supervised loss which provides a better learning
signal to the gate about incorrect routings. We also introduce expert error damping (§2.3), which
limits expert updates from misroutings, and further improves performance. Both methods rely on
extracting information from the error signal (gradient of the layer output) which would otherwise be
uninformative. Figure 1 provides an overview of SMOEs and a qualitative comparison to important
related work. With these methods, SMOEs are able to learn fine-grain, location-dependent structure
which other architectures miss, and consequentially deliver much better performance.

SMOEs are related to and inspired by prior work in MoEs (e.g., [82, 86, 102]), but there are key
differences. Existing MoEs use coarse-grained routing at the sample [99], token [86], or patch [82]
level, and experts produce coarse output (e.g., entire samples or channels) while SMOEs route at
a fine-grained, per-pixel level. Fine-grained routing is important for enabling experts to specialize
to fine-scale information, which may be crucial [74, 84]. Such MoEs also typically aim to increase
model capacity while keeping compute costs constant, whereas the goal of SMOEs is to capture
spatial dependencies. Other work has aimed to incorporate spatial dependence, such as LRLCNs [30],
which learn content- and location-dependent weights to combine a set of basis filters. However,
we found that these prior methods failed to capture the fine-grained features necessary for good
performance on dense regression tasks (§3.1).

We conduct experiments on several benchmark datasets with SMOEs and conduct extensive ablation
studies of SMOE design decisions (§3). Using a simple heat diffusion dataset, we showcase the
limitations of other models and the power of SMOEs in a controlled situation. We then apply
SMOEs to medium-range weather prediction and outperform the state-of-the-art [53, 80] on Weath-
erBench [78]; and set a new state-of-the-art for post-processing ensemble weather forecasts on the
ENS-10 dataset [8]. Finally, we show that SMOEs can also be applied to image classification tasks,
where we match or outperform LRLCNs while using fewer parameters.

Our code is available at https://github.com/spcl/smoe.

1.1 Related Work

Mixture-of-Experts and conditional computation. While MoEs have long been used [15, 49,
52], since the advent of deep learning, there has been much work in applying MoEs, conditional
computation, and dynamic routing to DNNs [1, 4, 5, 7, 10–12, 19–21, 23, 25, 27, 29, 33, 34, 39, 51,
59, 60, 70, 75, 76, 82, 83, 86, 99, 102, 107]. Often, the goal is to increase model capacity without
a corresponding increase in compute costs and models use coarse-grained routing. Notably, MoEs
route at the sample (e.g., [25, 29, 70, 83]), token (e.g., [33, 59, 86]), or patch (e.g., [82]) level; are
typically trained with extensive auxiliary losses; and often target classification tasks. This coarse
routing, in particular, means there is limited opportunity for experts to specialize. MoEs specifically
for vision tasks also typically operate at a sample-level (e.g., [1, 4, 39, 99, 102]) and use experts
to specialize filter or channel choices. In contrast, our SMOEs induce an inductive bias via fine-
grained, location-dependent routing for problems with such underlying structure; typically do not
need auxiliary losses beyond the routing classification loss; and work well for dense regression tasks.

Local spatial structure. Locally connected networks (i.e., convolution filters without weight sharing)
were historically successful in vision tasks such as facial recognition [18, 46, 77, 91]. Further

2

https://github.com/spcl/smoe

Input

Experts ℰ

!

"

Gate ", tensor routing
∼ ℰ ×!×" (§2.1)

Select ! = 1 experts per pixel
Apply experts at locations

top$ sparse routing (§2)

MSE loss
! = 1

$% & − (!

Error signal
)!
)& =

2
$ (& − ()

Routing Classification Loss (§2.2)
Identify incorrect routings

with error signal magnitude

✓ ✘
✓ ✓

Construct labels

1
0 1

-1 2

0
1 0

-1 2 0
0 0
0

Compute Loss

Binary cross-
entropy

Expert Error Damping (§2.3)

Incorrect
routings

✓✘✓✓
Damp error signals for incorrect routings

!11

Forward Backward

. = 1 input
channels

/ ⋅ 1 = 1 output
channels

❶

❷

❸

Figure 2: Overview of SMOE architecture and training using a mean-square error loss and an example input.
∂ Each location in an input is routed to E experts from a set E based on a gate G (§§2 and 2.1). ∑ The gate is
trained using a routing classification loss, which identifies incorrect routings based on the error signal (§2.2).
∏ The error signal to experts is damped for locations they were incorrectly routed to (§2.3).

work incorporated periodic or tiled weight sharing [37, 71, 105]. However, more recent work often
exclusively uses convolution, which has been found to perform better [72] while requiring significantly
fewer parameters. CoordConv [65] explicitly provides pixel coordinates as input. Because of their
structure, a single convolution or CoordConv layer cannot learn location-dependent sparse activations
as SMOEs do, and multi-layer networks give limited improvements in practice. Low-rank locally
connected networks [30] learn to combine a small number of basis filters in a location- and input-
dependent manner. These combiners lack sparsity and apply all basis filters at each point, and are
softmax-normalized, which can result in a few filters dominating, limiting diversity. Separate work
has used attention to provide position-dependent scaling or integrate context [35, 50, 64, 93, 95, 100].
This has culminated in vision transformers [26] and variants [28, 62, 67, 96, 97], which use specialized
attention mechanisms to integrate spatial information. Other work uses Markov [61, 66] or conditional
random fields [16, 43, 106], or graph-based methods [17, 98, 104], to learn long-range dependencies.
Additional work has studied incorporating equivariance properties into neural networks (e.g., [13]).

Sparsity. Our use of sparse routing resembles work on sparsity in DNNs in general [45]. Many
approaches learn a fine-grained mask to identify which weights to keep or prune (e.g., [63, 90]),
while other approaches sparsify activations (e.g., [3, 47, 56, 68, 69]). These works use sparsity to
improve runtime performance, typically at inference time.

Weather prediction. Medium-range weather prediction, or forecasting roughly three to seven days in
advance [6], is of broad societal import [57]. There has been much interest in applying deep learning
to this task [85], and WeatherBench [78] serves as a community benchmark. Deep learning has also
been successfully applied to the related tasks of ensemble post-processing [38, 79] and now-casting
(forecasting a few hours in advance) [2, 31, 81, 87–89]. Standard CNNs are currently state-of-the-art
on WeatherBench [80] (although graph neural networks show promise on similar data [53]) and are
competitive on post-processing tasks [8]. SMOEs can take advantage of the extensive fine-grained,
location dependent structure in weather data for improved performance.

2 Spatial Mixture of Experts

We now introduce the Spatial Mixture-of-Experts (SMOE) layer. An SMOE uses a learned gating
function (§2.1) to select specific experts from a shared set to apply at each point (e.g., pixel) in an
input. The gate learns the underlying spatial structure of the data, and routes specific experts to
different “regions”, allowing them to specialize. An SMOE is predicated on the assumption that the
spatial structure is similar across all samples in a dataset. We also assume data are on a Cartesian
mesh (i.e., grid), although this could be generalized. To train SMOEs, we introduce a self-supervised

3

routing classification loss (§2.2) and expert error damping (§2.3), which we found essential for
achieving the best performance. Figure 2 provides an overview of SMOEs and their training.

We first define the SMOE layer in full generality, then discuss the particular implementation we use.
(See §3.1 for ablations.) Let x 2 RC⇥H⇥W be an input sample (we assume 2D data for simplicity).
The SMOE layer consists of a set E of experts, of which E |E| will be selected at each point, and
a gating function G : RC⇥H⇥W ! R|E|⇥H⇥W . The gating function has exactly E nonzeros at each
spatial point (H⇥W), which correspond to the selected experts at that point. Each expert e 2 E is
applied at the points in x where it has been selected, and may include additional context from x (e.g.,
surrounding points if e is convolution), and produces an output of size F . The outputs of each expert
at a point are then concatenated to form the output channel dimension (of size E·F) of the SMOE.
More precisely, let gather

I
(·) select only the input entries where I is nonzero. Then an SMOE is:
y = gather

G(x)

�
G(x) · [e1(x); . . . ; e|E|(x)]

�
,

where · is element-wise multiplication, [e; . . .] stacks tensors, and y 2 REF⇥H⇥W . When E ⌧ |E|,
the gating function induces significant sparsity; this allows an SMOE to compute experts only at the
points where they are to be applied, avoiding most computation.

This formulation yields a weighted SMOE, where the expert outputs are scaled by the gating function.
An alternative, which is slightly more efficient and can be more readily interpretable, is an unweighted

SMOE, in which case experts are not scaled, and the gather only uses G(x) to select experts.

In this work, we focus on a simple, yet powerful, SMOE layer using convolution filters as experts:

yi = G(x)i ·
X

c2[C]

wi,c ? xc,

where ? is cross-correlation, i 2 [|E|], and we have elided the gather for simplicity.

2.1 Gating Functions

The gating function G in an SMOE is critical for learning the underlying location-dependence
of the data. While G can be any function, a good gate should be relatively cheap. We follow
prior work on MoEs (e.g., [82, 86]) and use top-E routing to select experts and sparsify the gate:
G(x) = top

E
(g(x)), where g(x) 2 R|E|⇥H⇥W is a learnable gating layer and top

E
selects the E

largest entries along the first (expert) dimension and sets the remaining entries to 0. However, we
found that normalizing the gating function using softmax, as is typically done, was not necessary.

There are many options for the gating layer. Many MoE works have used MLPs [82, 86], but we found
this did not perform well. Convolution or CoordConv [65] also did not perform well (§3.1). Instead,
we find that a simple tensor routing gating layer worked best. With this, g(x) = D 2 R|E|⇥H⇥W ,
where D is a learnable tensor that directly encodes the underlying location dependence and routing
structure without depending on the input. Further, D uses one parameter per expert per location and
requires no computation beyond optimizer updates, making it an efficient choice.

We initialize D using a uniform distribution over [�3|E|/EF , 3|E|/EF], which corresponds to a Kaiming
uniform initialization with fan-in EF/|E| [41]. However, in many practical cases, some data about
locations may be known (e.g., whether it is land or sea when doing weather prediction). In such cases,
D can be initialized based on this data to assign groups of experts in advance. This allows the gating
function to benefit from prior knowledge while still being able to adjust the routing. Additionally, a
network may contain many SMOE layers, in which case we can share D between layers that have the
same spatial dimensions and number of experts, which reduces the overhead of the gate.

Finally, many MoE formulations use a number of auxiliary losses to ensure gates learn good routing
policies and avoid mode collapse (e.g., [10, 82, 86]). When training with the routing classification
loss we propose, we did not find additional auxiliary losses to be necessary.

2.2 Training and the Routing Classification Loss

Training MoEs is typically done end-to-end, with the experts and gate learning simultaneously,
and sparse gradients based on the routing. We found this did not lead to good performance with
SMOEs and tensor routing, particularly on regression tasks, as the gate did not learn well: it rarely
changed its routing decisions from initialization. We hypothesize that this is due to a “mismatch” in

4

the gradients on regression tasks, where they are informative for experts but not the gate, because
regression aims to make a continuous prediction over both positive and negative values, whereas
selecting an expert requires a threshold (see §B). To address this, we train the gate with a separate,
self-supervised loss function, the routing classification (RC) loss. The key idea is to consider routing
as a dense, multi-label classification task: selecting the “correct” experts at each point (cf. semantic
segmentation). The RC loss does exactly this, and trains the gate by constructing appropriate labels.
This also helps avoid mode collapse, where only a small number of experts are selected (see §3.2).

In order to construct these labels, we need to determine whether the gate selected the correct set of
experts at each point. However, such information is not directly available. Instead, we use the error
signal into the SMOE layer (i.e., the gradient of the layer output w.r.t. the loss) as a proxy, and say
that the routing was incorrect when the error signal has a large magnitude for the expert at that point,
as this will imply a correspondingly large gradient update. Further, in the case of a mean-square error
loss L (commonly used for regression), the error signal can directly encode the prediction error. Let
X be the predictions, Y the true values, and N the number of elements in X . Then the error signal is:

dL

dX
=

d

dX

1

N

X
(X � Y)2 =

2

N
(X � Y).

Hence, the error signal is simply the (scaled, signed) error of the predictions. While this exact relation
ceases to hold as backpropagation proceeds, the intuition behind the error signal magnitude remains.

We now define the routing classification loss. Given the error signal " into an SMOE layer, and an
error quantile q (a hyperparameter), we say that selecting an expert at a point was incorrect if " at
that expert and point is greater than the qth quantile of ", and correct otherwise. We use quantiles as
they are independent of "’s scale, which may be hard to determine and change during training. We
then construct the labels for each point as follows: Unselected experts start with label 0. A correctly
selected expert has label 1. Finally, if an expert was incorrectly selected, its label is 0 and we add
1/(|E| � E) to the label value of each unselected expert (note |E| � E is the number of unselected
experts). This corresponds to a uniform prior that the correct expert could be any unselected expert.
With these labels, the RC loss for a gate is then the binary cross-entropy loss of the gate output.

2.3 Expert Error Damping

While the RC loss enables an SMOE gate to be trained directly based on whether it routed correctly,
experts that were incorrectly routed to still perform gradient updates based on this routing. This
results in experts updating to improve their performance for locations they may not be applied at in
future training iterations after routing changes. To mitigate this, we propose expert error damping,
where the portion of an error signal that corresponds to incorrect routings is damped to limit incorrect
updates. We find that this can improve SMOE performance and reduce convergence time.

Expert error damping is similar to the RC loss, and we classify incorrect routings in the same way.
We then scale the error signal into the experts by a constant factor at each point where the routing
was incorrect. This will limit the magnitude of the update made in response to the misrouting.

2.4 Practical Implementation

We now discuss the implementation of an SMOE layer, primarily focusing on the simple SMOE
with convolution filters we use. In an ideal implementation, the flop cost of an SMOE is the cost of
the gate plus the cost of applying the selected experts. When using a tensor routing gate, there are
no flops in the gate. The flops from applying the selected convolutional experts is equivalent to a
standard convolutional layer with a number of filters equal to the number of selected experts. Hence,
SMOEs are quite efficient flop-wise. However, recent work has shown that data movement is also
critical to performance [48]. Because of this, we do not expect even well-optimized implementations
to match the runtime of a convolution layer due to the sparse routing, limited locality in accessing
expert filters, and other operations, although work on hardware-accelerated sparsity [22] should offer
benefits. Despite this, during inference additional optimizations may be available because the tensor
routing gate does not depend on the input and computations could be reordered to maximize locality.

Unfortunately, efficiently implementing the irregular access patterns in an SMOE is challenging in
standard Python frameworks, and likely requires custom compute kernels. Instead we opt for a naïve
implementation in PyTorch [73] where we apply all experts at all points and then use gather and
scatter operations to implement sparse routing. Experts are concatenated in sorted routing score

5

Model #Params Epochs % within 1%

Convolution 146 102 91.3±0.2

CoordConv [65] 56 50 91.1±0.2

CondConv [102] 200 120 91.2±0.3

LRLCN [30] 516 27 91.8±0.5

LRLCN-ND [30] 12315 35 91.5±0.3

LCN 36764 110 100.0±0

FC 16.7M 250 14.2±1.2

ViT [26] 200k 67 93.5±0.1

V-MoE [82] 470k 74 93.8±0.3

SMoE 27+12288 8 100.0±0

True region mask & diffusion stencils SMoE routing map & expert weights

Figure 3: Heat diffusion results. Left: SMOE and baseline performance. Center: Dataset region map and diffu-
sion stencils. Right:SMOE routing map and experts. SMOEs learn correct stencils and location-dependence.

order (i.e., as given by G(x)); while this can result in channel orders changing during training, we
find it has little impact (see §3.2). We find this implementation sufficient even for large-scale tasks.

3 Experiments

We now present experimental results using SMOEs and a variety of baseline models, as well as
ablations of different SMOE components. First, we describe a simple location-dependent heat
diffusion dataset, which we use to study the ability of different architectures to learn location
dependence in a controlled environment (§3.1). We then present results on the WeatherBench [78]
medium-range weather forecasting challenge (§3.2) and the ENS-10 [8] dataset for post-processing
ensemble weather forecasts (§3.3), where SMOEs set new state-of-the-art performance results. Lastly,
we show results on several image classification tasks, illustrating the breadth of SMOE applicability
even in situations without strict location-dependence (§3.4).

All results were run using PyTorch [73] version 1.11 on a large cluster with 16 GB V100 GPUs. We
summarize training details throughout this section, and provide full details in §A. We use existing
PyTorch implementations when available, and implemented methods ourselves otherwise. Unless
noted, all SMOE results used 3⇥3 convolution kernel experts, unweighted tensor routing gates, RC
loss, expert error damping, error quantile q = 0.7, and damping factor 0.1. We report the mean
and standard deviation (mean±std) over ten runs for all experiments, except for WeatherBench and
ImageNet, which used three runs. In total, we used about 30k GPU hours for experiments.

3.1 Location-Dependent Heat Diffusion

To study location-dependence in a controlled manner, we generated a heat diffusion dataset with
location-dependent diffusivities. The task is to predict what the heat will be at the next timestep,
given the current heat at each point. Because we know the exact diffusivities and their distribution in
the data, it is easy to identify how well a model has learned this task. We first describe the dataset
and its generation in detail, then discuss results and ablation studies on SMOE components.

Dataset. The dataset consists of a region map, where each location is assigned a type, and each type
corresponds to a different heat diffusivity. The region map and diffusivity assignment are then fixed
for the dataset. We generate the region map randomly using a simple preferential attachment method.
This defines the location-dependence that we wish to learn. To generate samples, we first randomly
distribute drops of heat across the domain, then apply five-point diffusion stencils at each point, using
the diffusivity of the region type for each point. For simplicity, we use zero boundary conditions.
This process is iterated to generate many timesteps from the given starting state. The dataset then
consists of the generated timesteps for many different starting states.

If a model is able to learn the diffusion stencils and the location-diffusivity correspondence, it
can exactly predict the next timestep. Further, the diffusivity stencils are also simple, and exactly
correspond to a 3⇥3 convolution kernel with no nonlinearity.

The particular dataset we use consists of 100,000 64⇥64 samples, with 1,000 initial states evolved
for 100 timesteps each. Adding more samples did not significantly change results. There are three
region types, with diffusivities 0.25, 0.025, and 0.0025. Figure 3 (center) shows the region map and

6

Table 1: Effect of RC loss and expert error
damping on the heat diffusion dataset.

RC loss Damping Epochs % within 1%

7 7 14 91.5±0.4

7 X 16 91.6±0.2

X 7 15 96.7±0.4

X X 8 100.0±0

Table 2: Effect of different SMOE gate functions
on the heat diffusion dataset.

Gate #Params % within 1%

Fully-connected 50M 85.2±5.7

3⇥3 convolution 27 91.3±0.3

3⇥3 CoordConv [65] 81 91.5±0.4

3⇥3 LCN 110592 96.3±1.2

3⇥3 CoordConv⇥3 255 91.6±0.2

Tensor routing 12288 100.0±0

diffusion stencils. We report results using “% within 1%”, the percentage of locations in a sample that
are within 1% relative error of the true value, as this is more interpretable than a mean-square error.

Results. Figure 3 (left) shows results on the heat diffusion dataset for SMOEs and a number of
baselines: CNNs, LCNs, fully-connected (FC) layers, CoordConv [65], CondConv [102], LRL-
CNs [30], vision transformers (ViT) [26], and vision MoEs (V-MoE) [82]. For the LCN and FC
layers, we use only a single layer as additional ones showed no benefit. Convolution, CoordConv,
CondConv, and LRLCN are the best network found among a set with up to three layers, 3⇥3 kernels,
12 filters per layer, batchnorm, and ReLU activations. ViT and V-MoE use one transformer block
with a patch size of 4⇥4, an embedding dimension of 128, and four heads. LRLCNs use three basis
filters and an input-dependent combiner. We also tried unshared combining weights with no input
dependence (LRLCN-ND). V-MoEs select one expert from a set of three. Our SMOEs use a single
layer with three experts and select E = 1 expert per point. All models were trained with batch size
32, Adam [54] with a learning rate of 0.001 (decayed by 10⇥ after no validation improvement for 15
epochs), and early stopping after no improvement for 30 epochs. Additional hyperparameter tuning
did not significantly improve results. We report SMOE parameters as expert+gate parameters.

SMOEs achieve perfect performance on this dataset. Further, by examining the learned routing
and experts (Fig. 3, right), we can see that it has indeed correctly learned the diffusion stencils and
location-dependence. LCNs also achieve this, but require 3⇥ more parameters, and require 110
epochs to converge (versus 8 for SMOEs). Fully-connected layers failed to learn the data well, likely
due to the challenge of optimizing so many parameters. Other methods all converge to between 91
and 94% within 1%. Examining their predictions and weights, we observe that they do not appear to
have learned the location-dependence of the diffusivities, and instead converged to predicting with
an “average” diffusivity across the domain. We also tried larger (deeper and/or wider) convolutional
networks, but performance did not improve. MoE methods (CondConv and V-MoE) also fail in
this manner, as their coarse-grained experts are unable to specialize. Further, the LRLCN-ND
fails in this manner, despite its architecture being similar to an SMOE when there is one output
channel (a location-dependent, softmax-weighted combination of three basis kernels). We believe the
LRLCN-ND exhibits a similar gradient “mismatch” as discussed earlier (§2.2).

We now discuss a number of different ablations of the SMOE architecture and design.

What if the “right” expert configuration is not known? While in the above experiments, we
were able to select the SMOE expert configuration (number of experts, number of selected experts,
expert filter size) so that it is both necessary and sufficient to learn the task, in many situations this
information may not be available. We considered alternative SMOE configurations varying each of
these parameters: ∂ using six experts; ∑ experts with 5⇥5 kernels; ∏ and selecting two experts per
location from six total. For case ∏, we summed the two SMOE output channels together.

In all three cases, the SMOE achieved 100.0±0% within 1% on the heat diffusion task. In ∂, we
found that they learned duplicate diffusion stencils and still routed them appropriately. ∑ learned the
five-point stencil plus a boundary of near-zero values, thus being nearly identical to the 3⇥3 kernel.
Finally, ∏ learned diffusion stencils that summed together to produce the correct diffusivity. Thus,
we can see that SMOEs are robust and adapt well to these sorts of architecture choices.

RC loss and expert error damping. Table 1 shows results for training SMOEs with and without
our routing classification loss (§2.2) and expert error damping (§2.3). Without the RC loss, SMOE
performance is at par with other baselines in Fig. 3, but once it is added, performance improves sig-
nificantly as the gating function now learns the location-dependency in the data. Adding expert error
damping further improves performance and convergence by limiting the impact of gate misroutings

7

Table 3: WeatherBench [78] results (latitude-weighted RMSE).

Model
Z500 [m2 s�2] T850 [K]

3 days 5 days 3 days 5 days

Rasp and Thuerey [80] 316±2.4 563±3.1 1.80±0.02 2.84±0.03

Â 2⇥wide 310±2.0 555±2.8 1.76±0.03 2.78±0.01

LRLCN [30] 290±1.4 549±1.9 1.73±0.03 2.79±0.01

ViT (2⇥2) [26] 438±2.8 638±3.1 2.24±0.04 2.88±0.03

SMOE after first layer 305±1.9 556±2.2 1.77±0.01 2.80±0.03

Last layer SMOE 298±2.6 553±3.2 1.73±0.02 2.78±0.04

3⇥3 convs!SMOE 278±2.0 530±1.8 1.69±0.01 2.65±0.01

Â + gate prior 270±1.9 525±2.0 1.66±0.02 2.60±0.01

Â rand fixed gate init 328±3.7 572±4.1 1.89±0.08 2.96±0.05

R&T [80] (pretrained) 267±1.8 500±2.4 1.66±0.03 2.43±0.02

SMOE (pretrained) 253±2.1 488±1.7 1.57±0.02 2.34±0.02

Â + extra ERA5 232±1.5 440±1.2 1.46±0.02 2.19±0.01

Â + 1.4� 198±1.8 382±2.0 1.42±0.00 2.06±0.02

Table 4: ImageNet [24] validation accuracy.

Model Top–1 % Top–5 %

ResNet-50 [42, 94] 80.83±0.04 95.39±0.03

LRLCN [30] 80.90±0.02 95.41±0.05

SMOE after first layer 80.85±0.05 95.40±0.01

Last layer SMOE 80.91±0.04 95.42±0.03

3⇥3 convs!SMOE 81.33±0.03 95.52±0.01

Wide ResNet-50-2 [103] 81.76±0.03 95.74±0.02

on expert learning. However, damping on its own offers little benefit, as it does not improve gate
learning. These results show that these refinements are critical for good performance.

Gating function. Table 2 shows the performance of different gating functions (§2.1) on the SMOE.
We consider six options: A single fully-connected layer (as is commonly used in MoEs [82, 86]); a
single 3⇥3 convolution, CoordConv [65], or LCN layer; a gate with three CoordConv layers with
batchnorm and ReLU; and our tensor routing gate. When training, we also considered auxiliary losses
and other methods for improving performance (see §C) and report the best result. Our tensor routing
offers the best performance. An LCN performs second-best, likely because it also uses separate
parameters per location, but uses 9⇥ as many parameters and requires significant computation. Other
methods do not appear able to effectively capture location-dependence.

Other ablations. We conduct a number of additional ablation studies in §C, including using auxiliary
losses and routing noise during training, routing normalizations, and expert functions.

3.2 Medium-Range Weather Prediction

We now discuss results on the WeatherBench [78] medium-range weather forecasting benchmark.
This benchmark uses the ERA5 reanalysis dataset [44], with hourly global weather data for 1979–
2018. We use the data subset suggested by Rasp et al. [78] at 5.625° resolution (32⇥64 grid points)
and train on data from 1979–2015, validate on 2016, and report test results for 2017–2018. We
otherwise follow the training methodology of Rasp and Thuerey [80]. The target quantities to predict
are geopotential at 500 hPa (Z500) and temperature at 850 hPa (T850) with a three- and five-day
lead time. We report results using latitude-weighted root-mean-square error (RMSE).

As a baseline, we use the ResNet architecture [42] introduced by Rasp and Thuerey [80], which
currently reports the best results on WeatherBench. This architecture consists of 19 residual blocks
each with two [3⇥3 convolution ! LeakyReLU ! batchnorm ! dropout] layers, plus an initial
7⇥7 convolution layer. All convolutions but the last have 128 filters. We consider three additional
baselines. The first is identical to the above, but with twice as many filters (256) in each convolution.
Second, we replace 3⇥3 convolutions with LRLCN [30] layers. Finally, we use a four-layer ViT [26]
with patch size 2⇥2, hidden dimension 1024, and eight heads (the best performing configuration).

We adapt the Rasp and Thuerey ResNet to use SMOEs with three configurations: adding an SMOE
layer after the first convolution; adding an SMOE layer after the final convolution; and replacing all
3⇥3 convolutions with SMOE layers. Each SMOE selects the same number of experts as the original
layer had filters, and has twice as many experts (i.e., |E| = 256, E = 128). We also share the tensor
routing gate across all SMOE layers with the same number of experts, so its overhead is minimal.

Because the weather data is on a fixed grid with underlying location-dependence (the Earth), we
expect SMOEs to convey some benefit by specializing to the characteristics of different regions. In
Table 3, we observe that this is indeed the case. Adding SMOEs improves results in all situations,
with the most significant improvement coming through replacing all 3⇥3 convolutions with SMOEs.
This showcases the advantage of incorporating appropriate location-dependent biases. Wider ResNets

8

Table 5: Results for prediction correction on the ENS-10 [8] dataset for ensemble post-processing.

Metric Model
Z500 [m2 s�2] T850 [K] T2m [K]

5-ENS 10-ENS 5-ENS 10-ENS 5-ENS 10-ENS

EMOS 79.12±0.12 78.80±0.21 0.721±0.01 0.706±0.04 0.720±0.00 0.711±0.03

U-Net 76.54±0.20 76.18±0.12 0.685±0.00 0.670±0.01 0.657±0.01 0.644±0.01

C
R

PS

SMOE 68.94±0.14 67.43±0.12 0.612±0.01 0.590±0.02 0.601±0.02 0.594±0.02

EMOS 29.21±0.18 29.02±0.13 0.247±0.00 0.245±0.02 0.244±0.00 0.241±0.02

U-Net 27.78±0.11 27.55±0.19 0.230±0.01 0.229±0.01 0.225±0.00 0.220±0.01

EE
C

R
PS

SMOE 23.79±0.20 23.10±0.16 0.207±0.03 0.197±0.03 0.199±0.01 0.190±0.02

offer limited improvement (in line with results reported by Rasp and Thuerey [80]). The location-
dependent filters of LRLCNs improve over ResNets, but fail to match SMOEs. We were unable to
achieve good performance with ViTs, but did observe that they are highly sensitive to patch size.

Incorporating prior knowledge into gates. While the exact nature of the location-dependence of
this data is unknown, we do have a broad prior on some aspects of it, such as whether a point is land
or sea. This information can be incorporated into an SMOE by initializing the tensor routing gate to
bias routing to different experts. To this end, we use the land-sea mask from ERA5 to initialize the
gate to route land locations to half the experts and sea locations to the other half. Note this does not
fix the routing, as the gate is able to adjust as it learns. Further, the land-sea mask is already included
in the input data, so all models already had access to this information.

Results with this are in the “+ gate prior” line of Table 3, and perform best. This configuration sets a
new state-of-the-art for WeatherBench when not using additional data. Indeed, it nearly matches the
performance of a ResNet with 150 years of additional pretraining data from climate simulations [80].

We also tried a configuration where the gate was initialized randomly and fixed rather than learned
(“rand fixed gate init”). This performs worse than our baseline, as the network cannot adapt its routing
choices, and each expert sees even fewer points in each sample than a standard network, resulting in
less learning. Thus, learning the routing function is critically important to good performance.

Additional data. Following Rasp and Thuerey [80], we use 150 years of data from the MPI-ESSM-
HR climate model from the CMIP6 archive [32] to pretrain our best SMOE configuration, which was
then fine-tuned on ERA5 data as above. This significantly outperforms both our SMOEs without
pretraining and Rasp and Thuerey’s pretrained ResNet. We incorporated more data to further push
the performance by adding ERA5 data from the most recent back extension (1959–1979), increasing
the dataset size by about 50%. This shows improved results; however, we suspect performance is
saturating due to the coarse spatial resolution of the data. We therefore trained a final configuration
with higher resolution (1.4�) data. Using this, our SMOEs significantly outperform the state-of-the-art

on WeatherBench; indeed, its performance on T850 is very close to that of the operational Integrated
Forecast System [78]. Our results are also competitive with those of Keisler [53], although they are
not directly comparable (due to, e.g., different data resolutions).

Mode collapse. Many MoEs suffer from expert or mode collapse (e.g., [10, 82, 86]), where only a
small number of experts are selected. This is typically avoided with routing noise and/or auxiliary
“load balance” losses. On the heat diffusion dataset, we found these losses to offer no benefit (§C).
We also did not observe mode collapse in SMOEs on WeatherBench. With the RC loss, we directly
train the gate, updating routing weights toward other experts after mistakes, and so avoid such issues.

Expert selection order. During training, the order experts are concatenated may change (due to
changes in relative routing scores, or selecting different experts), which will impact the order of
channels seen by subsequent layers. When training on WeatherBench, we found this not to have a
significant impact: expert order stabilizes early, allowing layers to operate on stable representations.
Further, most “swapping” occurs among low-confidence experts, so is limited to a subset of channels.

3.3 Post-Processing Ensemble Weather Forecasts

Numerical weather prediction systems typically utilize ensembles of simulations in order to quantify
uncertainty and improve forecast quality [14]. However, such ensembles typically exhibit systematic
biases [92], and correcting them improves forecast skill [14, 85, 101], a task for which deep learning
has shown promise [38, 79]. We use the ENS-10 dataset [8], which consists of twenty years (1998–

9

2017) of global reforecast [40] data at 0.5� spatial resolution. We follow the benchmarking setup of
Ashkboos et al. [8], and correct predictions for Z500, T850, and 2 meter temperature (T2m) at a 48
hour lead-time using both five and ten ensemble members. We report results using continuous ranked
probability score (CRPS) and extreme event weighted CRPS (EECRPS).

We adapt the U-Net model from the ENS-10 baselines, as it delivers good performance and operates
on global data (other methods use patches). Similar to our approach for WeatherBench, we replace
each 3⇥3 convolution with an SMOE with four times as many experts as the original layer, and select
the same number of experts as the original layer had filters. We share tensor routing gates between all
layers with the same spatial dimensions and number of experts, with the exception that the encoder
and decoder trunks also use separate gates. As baselines, we use the original U-Net architecture and
Ensemble Model Output Statistics (EMOS) [36], a standard post-processing method.

We observe in Table 5 that, similar to WeatherBench, SMOEs offer significant improvements in
forecast skill across all situations, and set a new state-of-the-art for prediction correction on the
ENS-10 dataset. This also demonstrates that SMOEs are able to scale to the very large spatial domain
used by the ENS-10 data and still learn the appropriate location dependence.

3.4 Image Classification

Lastly, we present results on several image classification tasks; we focus here on ImageNet-1k [24]
and discuss results on additional datasets in §D. While these datasets do not have a strict location-
dependent structure, relaxing the strict translation equivariance of convolutions can bring benefits,
and enables a direct comparison with Elsayed et al. [30]. We follow their experimental methodology
and train using the recipe of Vryniotis [94]. We either insert an SMOE layer after the first or last
convolutional layer of ResNet-50 [42] or replace all 3⇥3 convolutions with SMOE layers. Our
SMOEs have twice as many experts as the original convolution layer and select half of them, to
keep output dimensions constant. Gating layers are shared among all equally-sized blocks. For
comparison, we also train ResNet-50 with all 3⇥3 convolutions replaced by LRLCN [30] layers; and
a Wide ResNet-50-2 [103], which has comparable parameters to SMOEs.

Table 4 shows that SMOEs outperform LRLCNs when we replace all 3⇥3 convolutions, while using
56% of the parameters. However, a wide ResNet performs best overall. Nevertheless, this shows that
ImageNet classification does indeed benefit from relaxing translation equivariance.

4 Discussion

We presented the Spatial Mixture-of-Experts layer, a novel layer that learns underlying location
dependencies in data and then uses fine-grained routing to specialize experts to different areas. We
also introduce a routing classification loss and expert error damping, which enable SMOEs to perform
well on dense regression tasks. Prior work shows limited effectiveness on these tasks: Either it does
not capture location-dependence (e.g., convolutions) or it operates at a coarse-grained level (e.g.,
standard MoEs). By overcoming these challenges, we show a new capability for neural networks,
and set new state-of-the-arts for medium-range weather prediction and ensemble post-processing.

Many other problems of broad societal import have a similar spatial structure, particularly in scientific
domains [9], and we expect SMOEs to be applicable to them. However, tasks such as facial
recognition and surveillance have also historically shown benefit from such improvements [91] and
SMOEs should therefore be used with care.

SMOEs show that learning location-dependence is a powerful inductive bias for certain types of data,
and there are many avenues for further study. Two key areas of particular interest are to develop
improved implementations for fine-grained, sparse routing; and to generalize SMOEs from operating
on grids to general graphs, which would enable them to be applied to many additional tasks.

Acknowledgements and Disclosure of Funding
We thank the members of SPCL at ETH Zürich , and Peter Dueben and Mat Chantry of ECMWF, for helpful
discussions; and the anonymous reviewers for their suggestions and feedback. This work has received funding
from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No. 955513
(MAELSTROM), and from Huawei. N.D. received support from the ETH Postdoctoral Fellowship. We thank
the Swiss National Supercomputing Center (CSCS) and Livermore Computing for computing infrastructure.

10

References
[1] Alhabib Abbas and Yiannis Andreopoulos. 2020. Biased mixtures of experts: Enabling computer

vision inference under data transfer limitations. IEEE Transactions on Image Processing 29 (2020).
arXiv:2008.09662 [cs.LG]

[2] Shreya Agrawal, Luke Barrington, Carla Bromberg, John Burge, Cenk Gazen, and Jason Hickey. 2019.
Machine learning for precipitation nowcasting from radar images. (2019). arXiv:1912.12132 [cs.CV]

[3] Subutai Ahmad and Luiz Scheinkman. 2019. How can we be so dense? The benefits of using highly
sparse representations. (2019). arXiv:1903.11257 [cs.LG]

[4] Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torresani. 2016. Network of experts for large-scale
image categorization. In European Conference on Computer Vision (ECCV). arXiv:1604.06119 [cs.CV]

[5] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin Zheng, Hugo Larochelle, and Aaron Courville.
2016. Dynamic capacity networks. In International Conference on Machine Learning (ICML).
arXiv:1511.07838 [cs.LG]

[6] American Meteorological Society. 2022. Medium-range forecast. https://glossary.ametsoc.org/
wiki/Medium-range_forecast

[7] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin,
Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. 2021. Efficient Large Scale Language Modeling
with Mixtures of Experts. arXiv:2112.10684 [cs.CL]

[8] Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi, Luca
Kummer, and Torsten Hoefler. 2022. ENS-10: A Dataset For Post-Processing Ensemble Weather Forecast.
Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks.
arXiv:2206.14786 [cs.LG]

[9] Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish
Parashar, Abani Patra, James Sethian, Stefan Wild, et al. 2019. Workshop report on basic research needs

for scientific machine learning: Core technologies for artificial intelligence. Technical Report. United
States Department of Energy, Office of Science.

[10] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. 2016. Conditional computation
in neural networks for faster models. In International Conference on Learning Representations Workshops

(ICLR-W). arXiv:1511.06297 [cs.LG]

[11] Yoshua Bengio. 2013. Deep learning of representations: Looking forward. In International conference on

statistical language and speech processing. arXiv:1305.0445 [cs.LG]

[12] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computation. (2013). arXiv:1308.3432 [cs.LG]

[13] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. (2021). arXiv:2104.13478 [cs.LG]

[14] Roberto Buizza and David Richardson. 2017. 25 years of ensemble forecasting at ECMWF. ECMWF

Newsletter (2017). Issue 153. https://www.ecmwf.int/node/18198

[15] Ke Chen, Lei Xu, and Huisheng Chi. 1999. Improved learning algorithms for mixture of experts in
multiclass classification. Neural networks 12, 9 (1999).

[16] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. 2017.
DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE transactions on pattern analysis and machine intelligence 40, 4 (2017).
arXiv:1606.00915 [cs.CV]

[17] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Yan Shuicheng, Jiashi Feng, and Yannis Kalantidis.
2019. Graph-based global reasoning networks. In Conference on Computer Vision and Pattern Recognition

(CVPR). arXiv:1811.12814 [cs.CV]

[18] Yu-hsin Chen, Ignacio Lopez Moreno, Tara Sainath, Mirkó Visontai, Raziel Alvarez, and Carolina Parada.
2015. Locally-connected and convolutional neural networks for small footprint speaker recognition. In
INTERSPEECH.

11

https://glossary.ametsoc.org/wiki/Medium-range_forecast
https://glossary.ametsoc.org/wiki/Medium-range_forecast
https://www.ecmwf.int/node/18198

[19] Zhourong Chen, Yang Li, Samy Bengio, and Si Si. 2019. You look twice: GaterNet for dy-
namic filter selection in CNNs. In Conference on Computer Vision and Pattern Recognition (CVPR).
arXiv:1811.11205 [cs.CV]

[20] Kyunghyun Cho and Yoshua Bengio. 2014. Exponentially increasing the capacity-to-computation ratio
for conditional computation in deep learning. (2014). arXiv:1406.7362 [stat.ML]

[21] Aidan Clark, Diego de las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. 2022. Unified Scaling Laws for
Routed Language Models. arXiv:2202.01169 [cs.CL]

[22] Shail Dave, Riyadh Baghdadi, Tony Nowatzki, Sasikanth Avancha, Aviral Shrivastava, and Baoxin Li.
2021. Hardware acceleration of sparse and irregular tensor computations of ML models: A survey and
insights. Proc. IEEE 109, 10 (2021). arXiv:2007.00864 [cs.AR]

[23] Andrew Davis and Itamar Arel. 2013. Low-rank approximations for conditional feedforward computation
in deep neural networks. In International Conference on Learning Representations Workshops (ICLR-W).
arXiv:1312.4461 [cs.LG]

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale
hierarchical image database. In Conference on computer vision and pattern recognition (CVPR).

[25] Ludovic Denoyer and Patrick Gallinari. 2014. Deep sequential neural network. (2014).
arXiv:1410.0510 [cs.LG]

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2021. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference on

Learning Representations (ICLR). arXiv:2010.11929 [cs.CV]

[27] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2021. GLaM: Efficient Scaling of Language Models with
Mixture-of-Experts. arXiv:2112.06905 [cs.CL]

[28] Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent Sagun.
2021. ConViT: Improving vision transformers with soft convolutional inductive biases. In International

Conference on Machine Learning (ICML). arXiv:2103.10697 [cs.CV]

[29] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. 2013. Learning factored representations in a
deep mixture of experts. (2013). arXiv:1312.4314 [cs.LG]

[30] Gamaleldin Elsayed, Prajit Ramachandran, Jonathon Shlens, and Simon Kornblith. 2020. Revisiting
spatial invariance with low-rank local connectivity. In International Conference on Machine Learning

(ICML). arXiv:2002.02959 [cs.CV]

[31] Lasse Espeholt, Shreya Agrawal, Casper Sønderby, Manoj Kumar, Jonathan Heek, Carla Bromberg,
Cenk Gazen, Jason Hickey, Aaron Bell, and Nal Kalchbrenner. 2021. Skillful Twelve Hour Precipitation
Forecasts using Large Context Neural Networks. (2021). arXiv:2111.07470 [cs.LG]

[32] Veronika Eyring, Sandrine Bony, Gerald A Meehl, Catherine A Senior, Bjorn Stevens, Ronald J Stouffer,
and Karl E Taylor. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
experimental design and organization. Geoscientific Model Development 9, 5 (2016).

[33] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv:2101.03961 [cs.LG]

[34] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu, Alexander
Pritzel, and Daan Wierstra. 2017. PathNet: Evolution channels gradient descent in super neural networks.
arXiv preprint arXiv:1701.08734 (2017). arXiv:1701.08734 [cs.NE]

[35] Hiroshi Fukui, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi. 2019. Attention branch
network: Learning of attention mechanism for visual explanation. In Conference on computer vision and

pattern recognition (CVPR). arXiv:1812.10025 [cs.CV]

[36] Tilmann Gneiting, Adrian E Raftery, Anton H Westveld III, and Tom Goldman. 2005. Calibrated
probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly

Weather Review 133, 5 (2005).

12

[37] Karo Gregor and Yann LeCun. 2010. Emergence of complex-like cells in a temporal product network
with local receptive fields. arXiv preprint arXiv:1006.0448 (2010). arXiv:1006.0448 [cs.NE]

[38] Peter Grönquist, Chengyuan Yao, Tal Ben-Nun, Nikoli Dryden, Peter Dueben, Shigang Li, and Torsten
Hoefler. 2021. Deep learning for post-processing ensemble weather forecasts. Philosophical Transactions

of the Royal Society A 379, 2194 (2021). arXiv:2005.08748 [cs.LG]

[39] Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. 2017. Hard mixtures of experts for large
scale weakly supervised vision. In Conference on Computer Vision and Pattern Recognition (CVPR).
arXiv:1704.06363 [cs.CV]

[40] Thomas M. Hamill, Jeffrey S. Whitaker, and Steven L. Mullen. 2006. Reforecasts: An Important Dataset
for Improving Weather Predictions. Bulletin of the American Meteorological Society 87, 1 (2006).

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In International conference on computer vision

(ICCV). arXiv:1502.01852 [cs.CV]

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recog-
nition. In Conference on computer vision and pattern recognition (CVPR). arXiv:1512.03385 [cs.CV]

[43] Xuming He, Richard S Zemel, and Miguel A Carreira-Perpinán. 2004. Multiscale conditional random
fields for image labeling. In Conference on Computer Vision and Pattern Recognition (CVPR).

[44] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. 2020. The ERA5 global reanalysis.
Quarterly Journal of the Royal Meteorological Society 146, 730 (2020).

[45] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. 2021. Sparsity in Deep
Learning: Pruning and growth for efficient inference and training in neural networks. Journal of Machine

Learning Research 22, 241 (2021). arXiv:2102.00554 [cs.LG]

[46] Gary B Huang, Honglak Lee, and Erik Learned-Miller. 2012. Learning hierarchical representations for
face verification with convolutional deep belief networks. In Conference on Computer Vision and Pattern

Recognition (CVPR).

[47] Kevin Lee Hunter, Lawrence Spracklen, and Subutai Ahmad. 2021. Two Sparsities Are Better Than One:
Unlocking the Performance Benefits of Sparse-Sparse Networks. (2021). arXiv:2112.13896 [cs.LG]

[48] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. 2021. Data movement is
all you need: A case study on optimizing transformers. In Conference on Machine Learning and Systems

(MLSys). arXiv:2007.00072 [cs.LG]

[49] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation 3, 1 (1991).

[50] Saumya Jetley, Nicholas A Lord, Namhoon Lee, and Philip HS Torr. 2018. Learn to pay attention. In
International Conference on Learning Representations (ICLR). arXiv:1804.02391 [cs.CV]

[51] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. [n.d.]. Dynamic filter networks. Advances

in neural information processing systems (NeurIPS) ([n. d.]). arXiv:1605.09673 [cs.LG]

[52] Michael I Jordan and Robert A Jacobs. 1994. Hierarchical mixtures of experts and the EM algorithm.
Neural computation 6, 2 (1994).

[53] Ryan Keisler. 2022. Forecasting Global Weather with Graph Neural Networks. (2022).
arXiv:2202.07575 [physics.ao-ph]

[54] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In International

Conference on Learning Representations (ICLR). arXiv:1412.6980 [cs.LG]

[55] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images. (2009).

[56] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, William
Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. 2020. Inducing and exploiting activation sparsity
for fast inference on deep neural networks. In International Conference on Machine Learning (ICML).

[57] Jeffrey K Lazo, Rebecca E Morss, and Julie L Demuth. 2009. 300 billion served: Sources, perceptions,
uses, and values of weather forecasts. Bulletin of the American Meteorological Society 90, 6 (2009).

13

[58] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied
to document recognition. Proc. IEEE 86, 11 (1998).

[59] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2021. GShard: Scaling giant models with con-
ditional computation and automatic sharding. In International Conference on Learning Representations.
arXiv:2006.16668 [cs.CL]

[60] Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. 2021. BASE layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning (ICML).
arXiv:2103.16716 [cs.CL]

[61] Chuan Li and Michael Wand. [n.d.]. Combining Markov random fields and convolutional neural
networks for image synthesis. In Conference on Computer Vision and Pattern Recognition (CVPR).
arXiv:1601.04589 [cs.CV]

[62] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. 2021. SwinIR:
Image restoration using swin transformer. In International Conference on Computer Vision (ICCV).
arXiv:2108.10257 [eess.IV]

[63] Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. 2020. Dynamic
model pruning with feedback. In International Conference on Learning Representations (ICLR).
arXiv:2006.07253 [cs.LG]

[64] Drew Linsley, Dan Shiebler, Sven Eberhardt, and Thomas Serre. 2019. Learning what and where to
attend. In International Conference on Learning Representations (ICLR). arXiv:1805.08819 [cs.CV]

[65] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, and Jason
Yosinski. 2018. An intriguing failing of convolutional neural networks and the CoordConv solution. In
Advances in Neural Information Processing Systems (NeurIPS). arXiv:1807.03247 [cs.CV]

[66] Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2017. Deep learning Markov
random field for semantic segmentation. IEEE transactions on pattern analysis and machine intelligence

40, 8 (2017). arXiv:1606.07230 [cs.CV]

[67] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. 2021.
Swin transformer: Hierarchical vision transformer using shifted windows. In International Conference on

Computer Vision (ICCV). arXiv:2103.14030 [cs.CV]

[68] E Majani, Ruth Erlanson, and Yaser Abu-Mostafa. 1988. On the K-winners-take-all network. In Advances

in neural information processing systems (NeurIPS).

[69] Alireza Makhzani and Brendan J Frey. 2015. Winner-take-all autoencoders. In Advances in neural

information processing systems (NeurIPS). arXiv:1409.2752 [cs.LG]

[70] Mason McGill and Pietro Perona. 2017. Deciding how to decide: Dynamic routing in artificial neural
networks. In International Conference on Machine Learning (ICML). arXiv:1703.06217 [stat.ML]

[71] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang Koh, Quoc Le, and Andrew Ng. 2010. Tiled
convolutional neural networks. Advances in Neural Information Processing Systems (NeurIPS) (2010).

[72] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A Abolafia,
Jeffrey Pennington, and Jascha Sohl-Dickstein. 2019. Bayesian deep convolutional networks with
many channels are gaussian processes. In International Conference on Learning Representations (ICLR).
arXiv:1810.05148 [stat.ML]

[73] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. 2019. PyTorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems (NeurIPS). arXiv:1912.01703 [cs.LG]

[74] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza
Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. [n.d.]. FourCastNet:
A global data-driven high-resolution weather model using adaptive fourier neural operators. ([n. d.]).
arXiv:2202.11214

14

[75] Svetlana Pavlitskaya, Christian Hubschneider, Michael Weber, Ruby Moritz, Fabian Huger, Peter Schlicht,
and Marius Zollner. 2020. Using mixture of expert models to gain insights into semantic segmentation. In
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[76] Prajit Ramachandran and Quoc V Le. 2018. Diversity and depth in per-example routing models. In
International Conference on Learning Representations (ICLR).

[77] Marc’Aurelio Ranzato, Joshua Susskind, Volodymyr Mnih, and Geoffrey Hinton. 2011. On deep
generative models with applications to recognition. In Conference on Computer Vision and Pattern

Recognition (CVPR).

[78] Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils
Thuerey. 2020. WeatherBench: a benchmark data set for data-driven weather forecasting. Journal of

Advances in Modeling Earth Systems 12, 11 (2020). arXiv:2002.00469 [physics.ao-ph]

[79] Stephan Rasp and Sebastian Lerch. 2018. Neural networks for postprocessing ensemble weather forecasts.
Monthly Weather Review 146, 11 (2018). arXiv:1805.09091 [stat.ML]

[80] Stephan Rasp and Nils Thuerey. 2021. Data-driven medium-range weather prediction with a ResNet
pretrained on climate simulations: A new model for WeatherBench. Journal of Advances in Modeling

Earth Systems 13, 2 (2021). arXiv:2008.08626 [physics.ao-ph]

[81] Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. 2021. Skilful precipitation
nowcasting using deep generative models of radar. Nature 597, 7878 (2021). arXiv:2104.00954 [cs.LG]

[82] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Susano
Pinto, Daniel Keysers, and Neil Houlsby. 2021. Scaling Vision with Sparse Mixture of Experts. In
Advances in Neural Information Processing Systems (NeurIPS). arXiv:2106.05974 [cs.CV]

[83] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. 2018. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. In International Conference on Learning Representations

(ICLR). arXiv:1711.01239 [cs.LG]

[84] Christoph Schär, Oliver Fuhrer, Andrea Arteaga, Nikolina Ban, Christophe Charpilloz, Salvatore Di Giro-
lamo, Laureline Hentgen, Torsten Hoefler, Xavier Lapillonne, David Leutwyler, et al. 2020. Kilometer-
scale climate models: Prospects and challenges. Bulletin of the American Meteorological Society 101, 5
(2020).

[85] MG Schultz, Clara Betancourt, Bing Gong, Felix Kleinert, Michael Langguth, LH Leufen, Amirpasha
Mozaffari, and Scarlet Stadtler. 2021. Can deep learning beat numerical weather prediction? Philosophical

Transactions of the Royal Society A 379, 2194 (2021).

[86] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations (ICLR). arXiv:1701.06538 [cs.LG]

[87] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. 2015.
Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Advances

in neural information processing systems (NeurIPS). arXiv:1506.04214 [cs.CV]

[88] Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun
Woo. 2017. Deep learning for precipitation nowcasting: A benchmark and a new model. In Advances in

neural information processing systems (NeurIPS). arXiv:1706.03458 [cs.CV]

[89] Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim Salimans,
Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. 2020. MetNet: A neural weather model for
precipitation forecasting. (2020). arXiv:2003.12140 [cs.LG]

[90] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. 2017. Training sparse neu-
ral networks. In Conference on computer vision and pattern recognition workshops (CVPRW).
arXiv:1611.06694 [cs.CV]

[91] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. DeepFace: Closing the gap to
human-level performance in face verification. In Conference on Computer Vision and Pattern Recognition

(CVPR).

[92] Zoltan Toth and Eugenia Kalnay. 1993. Ensemble forecasting at NMC: The generation of perturbations.
Bulletin of the American Meteorological Society 74, 12 (1993).

15

[93] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, and Jonathon
Shlens. 2021. Scaling local self-attention for parameter efficient visual backbones. In Conference on

Computer Vision and Pattern Recognition (CVPR). arXiv:2103.12731 [cs.CV]

[94] Vasilis Vryniotis. 2021. How to Train State-of-the-Art Models Us-
ing TorchVision’s Latest Primitives. https://pytorch.org/blog/
how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/

[95] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and
Xiaoou Tang. 2017. Residual attention network for image classification. In Conference on computer

vision and pattern recognition (CVPR). arXiv:1704.06904 [cs.CV]

[96] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. 2021. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In International Conference on Computer Vision (ICCV). arXiv:2102.12122 [cs.CV]

[97] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and
Ling Shao. 2022. PVT v2: Improved baselines with Pyramid Vision Transformer. Computational Visual

Media (2022). arXiv:2106.13797 [cs.CV]

[98] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local neural networks. In
Conference on computer vision and pattern recognition (CVPR). arXiv:1711.07971 [cs.CV]

[99] Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, and
Joseph E Gonzalez. 2020. Deep mixture of experts via shallow embedding. In Uncertainty in Artificial

Intelligence. arXiv:1806.01531 [cs.CV]

[100] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. 2018. CBAM: Convolutional block
attention module. In European conference on computer vision (ECCV). arXiv:1807.06521 [cs.CV]

[101] World Meteorological Organization. 2021. Guidelines on Ensemble Prediction System Postprocessing,

2021 edition. Technical Report. World Meteorological Organization.

[102] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. 2019. CondConv: Conditionally
parameterized convolutions for efficient inference. In Advances in Neural Information Processing Systems

(NeurIPS). arXiv:1904.04971 [cs.CV]

[103] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide residual networks. In British Machine Vision

Conference (BMVC). arXiv:1605.07146 [cs.CV]

[104] Songyang Zhang, Xuming He, and Shipeng Yan. 2019. LatentGNN: Learning efficient non-
local relations for visual recognition. In International Conference on Machine Learning (ICML).
arXiv:1905.11634 [cs.CV]

[105] Kaili Zhao, Wen-Sheng Chu, and Honggang Zhang. 2016. Deep region and multi-label learning for facial
action unit detection. In Conference on computer vision and pattern recognition (CVPR).

[106] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong
Du, Chang Huang, and Philip HS Torr. 2015. Conditional random fields as recurrent neural networks. In
International Conference on Computer Vision (ICCV).

[107] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. Designing effective sparse expert models. arXiv:2202.08906 [cs.CL]

16

https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We discuss the key assumption
that all data must have similar location-dependence for SMOEs to be applicable in §1.
We discuss other assumptions in §2 and implementation details in §2.4.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss
this in §4.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] We include
code and instructions in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] §3 discusses general training details and §A provides additional
details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All results in §3 were run multiple times, and we report
the mean and standard deviation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] This is discussed in §3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Most datasets we use are publicly

available. Our heat diffusion dataset is synthetic and can be generated by our included
code. The supplementary material includes the license for our code.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We include code to implement SMOEs and run experiments.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [No] Some image classification datasets we present results on,
notably ImageNet, contain images of people. We have not obtained consent from them.
However, these are standard, widely-used benchmark datasets for image classification,
and we do not include any results that disclose personal information. We do not
introduce or curate any new data that contains personal information.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We do not introduce or curate any new data
that contains personal information or offensive content. We do use ImageNet as a
standard benchmark, which may contain personally identifiable information (pictures
of people), but do not report any results that include personally identifiable information
or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

17

	Introduction
	Related Work

	Spatial Mixture of Experts
	Gating Functions
	Training and the Routing Classification Loss
	Expert Error Damping
	Practical Implementation

	Experiments
	Location-Dependent Heat Diffusion
	Medium-Range Weather Prediction
	Post-Processing Ensemble Weather Forecasts
	Image Classification

	Discussion
	Training Details
	Medium-Range Weather Prediction
	Post-Processing Ensemble Weather Forecasts
	Image Classification

	Routing Challenges
	Additional SMoE Ablation Studies
	Auxiliary Losses
	Importance Loss
	Load Loss
	Spatial Agreement Loss
	Final Auxiliary Loss

	Additional Image Classification Results

