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Abstract

The ability of a document classifier to handle inputs that are drawn from a distribu-
tion different from the training distribution is crucial for robust deployment and
generalizability. The RVL-CDIP corpus [18] is the de facto standard benchmark
for document classification, yet to our knowledge all studies that use this corpus do
not include evaluation on out-of-distribution documents. In this paper, we curate
and release a new out-of-distribution benchmark for evaluating out-of-distribution
performance for document classifiers. Our new out-of-distribution benchmark
consists of two types of documents: those that are not part of any of the 16 in-
domain RVL-CDIP categories (RVL-CDIP-O), and those that are one of the 16
in-domain categories yet are drawn from a distribution different from that of the
original RVL-CDIP dataset (RVL-CDIP-N). While prior work on document classi-
fication for in-domain RVL-CDIP documents reports high accuracy scores, we find
that these models exhibit accuracy drops of between roughly 15-30% on our new
out-of-domain RVL-CDIP-N benchmark, and further struggle to distinguish be-
tween in-domain RVL-CDIP-N and out-of-domain RVL-CDIP-O inputs. Our new
benchmark provides researchers with a valuable new resource for analyzing out-of-
distribution performance on document classifiers. Our new out-of-distribution data
can be found at github.com/gxlarson/rvl-cdip-ood.

1 Introduction

The task of automated document classification has wide-ranging use cases, especially in industry
where it can be used to apply labels to massive amounts of documents. In many scenarios, a model
is trained on an initial training set, which is drawn from a particular distribution which may have
certain characteristics (e.g., all documents are in the English language, are from a particular industry
or time period, etc.). It is often desirable for the model to be able to generalize to valid inputs that are
out-of-distribution and exhibit different characteristics than those seen in the in-distribution training
data. At the same time, it is desirable for a model operating in unconstrained input spaces to be able
to identify inputs that are not part of the target label set as out-of-domain to minimize false-positive
predictions.

The RVL-CDIP corpus has emerged as the de facto benchmark dataset for document classification.
This single-label classification dataset covers 16 document categories (e.g., resume, invoice,
letter, memo, etc.), and consists of samples taken from a large collection of documents made public
as a result of litigation and settlement agreements involving the tobacco industry. As such, most of
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Figure 1: Samples from the RVL-CDIP corpus.

the RVL-CDIP documents are related to the American tobacco industry, and were created before
2006. Samples of RVL-CDIP are displayed in Figure 1.

Many contemporary models achieve high classification accuracy scores on the RVL-CDIP classi-
fication benchmark (e.g., [34, 47, 57, 58]). Despite this, there has been limited analysis of these
models’ ability to handle out-of-distribution inputs. In this paper, we address this gap by creating
a new out-of-distribution (OOD) test set intended to be used in conjunction with RVL-CDIP. We
first identify two types of OOD inputs: (1) in-domain documents that fall within one of the 16
RVL-CDIP categories, yet were sampled from a different distribution than RVL-CDIP (for example,
born-digital documents from the 2010s and 2020s, and those not from the tobacco industry); and
(2) out-of-domain documents that do not fall within one of the 16 RVL-CDIP categories. Then, we
evaluate several document classifiers trained on RVL-CDIP and tested on our new OOD data. We find
that model performance on both types of OOD data is substantially lower than on the in-distribution
RVL-CDIP test set, indicating that while models may perform well on RVL-CDIP, they (1) struggle to
generalize to other distributions and (2) struggle on the task of out-of-domain document classification.
Our hope is that with our new OOD data, researchers investigating document classification will also
begin to include OOD performance as part of their analyses.

2 Related Work

2.1 RVL-CDIP Document Classification

The RVL-CDIP corpus [18] is widely used for benchmarking the performance of document classifiers.
This corpus consists of images of scanned documents, and most early efforts on the RVL-CDIP
classification task used convolutional neural networks (CNNs), including [1, 10, 18, 27, 52]. Later
work incorporated the textual modality along with visual features (e.g., [3, 4, 11, 15]). The recent
advent of transformers has seen researchers employ this architecture to the classification task. This
includes models that solely use image features (e.g., [12, 25, 34]) as well as models that incorporate
page layout and optical character recognition (OCR) features (e.g., [2, 6, 13, 16, 33, 37, 44, 46, 47,
48, 54, 57, 58]). Despite the prominence of the RVL-CDIP corpus in evaluating document classifiers,
there is no published OOD corpus for benchmarking models on out-of-distribution performance.
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2.2 Out-of-Distribution Performance Benchmarking

Prior work has developed benchmarks for evaluating out-of-distribution performance for other tasks.
In general, these benchmarks belong to one of two categories: (1) out-of-domain or out-of-scope
benchmarks, where—in the case of classification—dedicated evaluation data is included that does not
belong to any of the in-domain target labels; and (2) distribution shift benchmarks, where evaluation
data is different than the training distribution yet still belongs to the in-domain target label set. We
discuss relevant work in each category.

Out-of-scope or out-of-domain evaluation benchmarks are used to measure a model’s ability to
differentiate between in-domain and out-of-domain inputs. In this setting, a model is typically trained
on the in-domain data, and then evaluated on both in- and out-of-domain data (where ideally the
model can correctly classify in-domain data with high accuracy while also being able to discriminate
between in- and out-of-domain data, which could be done using a confidence score). Out-of-domain
benchmarks include those for text classification (e.g., intent classification in dialog systems [30]) and
image classification and object detection in the presence of natural adversarial inputs that mislead
classifiers (e.g., ImageNet-O [23] and its COCO counterpart [31]). In this paper, we present new
out-of-domain evaluation data for the RVL-CDIP benchmark, which we call RVL-CDIP-O.

Distribution shift evaluation benchmarks are crafted to measure a model’s ability to generalize to
"unseen" inputs, as well as to measure how robust a model is to perturbations and/or corruptions (e.g.,
noise). Here, "unseen" typically means data that is different from the training distribution, yet still
belongs to the label-set of the training dataset. For image classification, the "seen" training distribution
may be photographic pictures of images but the "unseen" data distribution may be different "views"
or modalities of these images, like hand-drawn sketches or clip art representations of the image
categories (e.g., DomainNet [45] and Office-Home [53]).

Other domain-shift benchmarks include the WILDSbenchmark [26], which itself is a collection of 10
mostly image and text datasets for evaluating out-of-distribution performance. For instance, WILDS
includes the Camelyon17 histopathology dataset [7], where the task is image classification but where
the test set consists of data collected from a hospital different from that of the training set. Other
prior work (e.g., [24, 35, 36]) evaluates out-of-distribution detection for image classifiers trained on
CIFAR-10/100 by testing on various other image datasets, but does not account for the problem of
discriminating between out-of-distribution inputs that are out-of-domain versus in-domain.

Lastly, datasets that measure a model’s robustness to corruptions include ImageNet-C [20], which
uses data augmentation strategies to generate noisy versions of ImageNet [14] images. We note
that other data augmentation tools and pipelines have been used to generate perturbations and
corruptions of in-distribution data, including [40, 43, 49, 39] for image and text data. In this paper,
we present new evaluation data for benchmarking both of the out-of-distribution tasks described in
this section. Our new benchmark data enables researchers to analyze document classifier performance
on out-of-domain inputs as well as in-domain data from a "shifted" input distribution.

3 Datasets

In this section, we present our new evaluation data for benchmarking out-of-distribution performance
on document classification models. We first discuss the RVL-CDIP dataset as it is relevant in
constructing our new out-of-distribution data. We then discuss our new out-of-distribution benchmark.

3.1 RVL-CDIP

The RVL-CDIP corpus consists of grayscale images of scanned documents from the IIT-CDIP
collection [32], a large repository of publicly-available documents that were released as part of
litigation against several tobacco-related companies and organizations. As such, all documents in
the RVL-CDIP corpus are tobacco-related. The corpus consists of 16 categories: advertisement,
budget, email, file_folder, form, handwritten, invoice, letter, memo, news_article,
presentation, questionnaire, resume, scientific_publication, scientific_report,
and specification. Samples from RVL-CDIP are shown in Figure 1. We note that many of
the RVL-CDIP samples contain visual noise introduced by scanners due to having been scanned
from the physical world using old or noisy document scanners. Each RVL-CDIP category has 20,000
training samples (320,000 total training samples), and there is a total of 40,000 validation and 40,000
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Figure 2: Example out-of-distribution document images from our RVL-CDIP-O set, prior to grayscale
transformation.

test documents across all categories. All documents from this dataset are from the year 2006 or
earlier, as 2006 was the year that the IIT-CDIP collection was released.

3.2 New Out-of-Distribution Data

Table 1: Per-category counts for RVL-CDIP-N.

Category Count

budget 58
email 33
form 70
handwritten 176
invoice 57
letter 152
memo 47
news_article 86
questionnaire 39
resume 184
scientific_pub. 39
specification 61

Total 1,002

Our new out-of-distribution benchmark consists
of two subsets of data: document images that (a)
do not belong to any of the 16 in-domain RVL-
CDIP categories (we call this subset RVL-CDIP-
O); and (b) belong to one of the 16 RVL-CDIP
categories yet are not from IIT-CDIP or tobacco-
related (RVL-CDIP-N). Examples from RVL-
CDIP-O are shown in Figure 2, while examples
from RVL-CDIP-N are shown in Figure 3. The
samples in Figure 2 show several types of docu-
ments that are not included in the 16 RVL-CDIP
categories, including—but not limited to—court
documents, guides, music sheets, timelines, and
schedules.

Our out-of-distribution documents were col-
lected from two internet sources: (1) Google
and Bing web searches; and (2) the public Doc-
umentCloud 2 repository. The DocumentCloud
repository contains a large number of government, legal, or public service related documents that were
made available through serviced Freedom of Information Act (FOIA) requests. To collect the new
OOD data, the authors of this paper first familiarized themselves with the 16 in-domain RVL-CDIP
categories by reviewing numerous samples from each RVL-CDIP category. While reviewing samples
from RVL-CDIP, we noticed that some could be seen as having multiple labels—for instance, a
handwritten letter could technically be both handwritten and letter. However, we found that

2https://www.documentcloud.org
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Figure 3: Samples from the RVL-CDIP-N evaluation set, prior to grayscale transformation.

RVL-CDIP is consistent in labelling such cases as with a single label (e.g., handwritten letters are
labeled as handwritten). The annotations we applied to our new RVL-CDIP-N adopt such rules
from RVL-CDIP.

To collect RVL-CDIP-O data, the authors searched for PDF documents that were not one of the 16
RVL-CDIP categories. Similarly for RVL-CDIP-N, the authors searched for PDF documents that
were one of the 16 RVL-CDIP categories. While original descriptions of the RVL-CDIP categories
are unavailable, we sought to include only clear-cut examples of these categories in our RVL-CDIP-N
set; samples from each RVL-CDIP-N category are juxtaposed with original RVL-CDIP samples
in Figures 20 – 43 (in Appendix B). Using our search method, we were unable to find sufficient
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Figure 4: Examples of document images from the RVL-CDIP-O set (top row) with corresponding
Augraphy-augmented grayscale images (bottom row).

documents for a few of the in-domain categories like file_folder, as that category seems to be
quite specific to the RVL-CDIP dataset. Counts of the in-domain categories that we collected for
RVL-CDIP-N are shown in Table 1.

Each raw document may have consisted of multiple pages, but to maintain consistency between our
out-of-distribution data and the original RVL-CDIP data, we only use the first page of each document,
which we convert to a grayscale image. Following the RVL-CDIP dataset’s convention, we save each
image so that the maximum dimension (i.e., height or width) is 1000 pixels, and like RVL-CDIP
we save the OOD images to TIFF files. As summarized in Table 2, there are a total of 4,417 out-
of-distribution document images. We estimate that roughly 65% of documents that we collected
from DocumentCloud are "born digital" (i.e., they are "clean" and not scanned versions of physical
paper documents), while around 95% of documents that we collected via web search are born digital.
For this reason we also conduct a side experiment with the Augraphy tool [39] to add scanner-like
noise to our out-of-distribution data as a way to test whether models trained on RVL-CDIP are
overfit to scanner-like noise. Examples of our data post-Augraphy are shown in Figure 4. Our final,
published data for both RVL-CDIP-N and RVL-CDIP-O do not include Augraphy augmentations.

Table 2: Out-of-distribution dataset count
statistics. DC and WS refer to Document-
Cloud and Web Search, respectively.

DC WS Total

RVL-CDIP-N 877 125 1,002
RVL-CDIP-O 1,382 2,033 3,415

Total 2,259 2,158 4,417

Our new data is out-of-distribution with respect to the
RVL-CDIP corpus in several ways: (1) a substantial
portion of our new data is "born-digital", whereas the
overwhelming majority of RVL-CDIP is scanned phys-
ical documents; (2) a substantial portion of our data was
created post-2006, with a large amount having been cre-
ated within the past 10 years; (3) documents from our
dataset are almost exclusively from industries and topics
other than tobacco-related ones. As such, our new out-
of-distribution data poses a challenge to models trained
on RVL-CDIP, as models evaluated on our new data must be able to generalize to new distribu-
tions (RVL-CDIP-N), while also being able to distinguish between in- and out-of-domain inputs
(RVL-CDIP-O).

4 Experiments

Recall that our proposed dataset is intended to reveal deficiencies in recognizing out-of-distribution
data in document classification tasks. We demonstrate our dataset’s viability by (1) training several
classifiers on the full RVL-CDIP training set, then (2) evaluating the performance of each model on
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our new out-of-distribution data. We discuss the models and metrics used in our experiments, and
then discuss the results obtained.

4.1 Models

We trained several image-based classifiers on the full RVL-CDIP training set, including convolutional
neural network (CNN) architectures and image transformer architectures. We consider the following
CNNs: VGG-16, ResNet-50, GoogLeNet, and AlexNet (each uses the architecture from [50, 19, 51,
28], respectively). All of these CNN models were originally trained and evaluated on the RVL-CDIP
corpus by [1]. Our analysis uses PyTorch [41] implementations of these models. In addition, we
evaluate the LayoutLMv2-base model architecture [58], which uses a language model trained on
the locations and sizes of words in documents. As the original RVL-CDIP corpus does not provide
textual information, we use the Tesseract 3 OCR engine to extract words and their locations in each
document image. Our analysis uses the Hugging Face [56] implementation of LayoutLMv2.

We also evaluate the image-only transformer-based DiT model [34], which itself is a version of the
BEiT image transformer [8]. Recent work has shown that image transformers often outperform CNN
models, and prior work has also found that transformer models outperform other model architectures
in terms of out-of-distribution performance (e.g., [9, 22, 38, 42]; on the contrary, cf. [5, 55] for
opposing viewpoints). Unlike the other models analyzed here, we use the pre-trained DiT model
hosted on Hugging Face instead of training the model ourselves. All models have an input image
resolution of 224x224 pixels.

4.2 Evaluation Metrics

RVL-CDIP-N. We measure each model’s raw classification accuracy on our RVL-CDIP-N dataset,
as RVL-CDIP-N contains document images that do belong to one of the 16 in-domain RVL-CDIP
document categories. Accuracy can be measured by aggregating all predictions together (micro
accuracy), or by averaging the within-category accuracy scores (macro accuracy); we report both.

RVL-CDIP-O. The documents from RVL-CDIP-O do not belong to any of the 16 RVL-CDIP
categories, and we do not train the models on a 17th catch-all unknown category for out-of-domain
documents. Therefore, we benchmark two decision functions that use the model’s output logits as a
way to arbitrate between in- and out-of-domain predictions. The first, termed Maximum Softmax
Probability (MSP) obtains confidence scores from applying the softmax function on the logits (as
done in e.g. [21, 29, 30]). If the model f applied to a document image x produces logits f(x) = z,
then MSP applies the softmax function to obtain confidence scores scaled between 0 and 1 for each
in-domain category. That is, the ith document category has a confidence score of

s(z)i =
ezi

PK
j=1 e

zj
,

where K is the number of target label categories (in our case, 16). An alternative confidence function
that has been shown to perform better on out-of-distribution detection tasks than MSP is the Energy
score [36], defined as

E(z;T ) = T · log
KX

j=1

ezj/T

where T is a temperature parameter. Note that the Energy score produces a single confidence score
rather than K scores.

An ideal classifier will assign high confidence to an in-domain document, and lower confidence to an
out-of-domain document. One straightforward way to do this is to use a threshold on the confidence
score, so that we assign an unknown label to documents that have a confidence score lower than t.
That is, the decision rule is

decision rule =

⇢
in-domain, if max(score(z)) � t
out-of-domain, if max(score(z)) < t.

3https://github.com/tesseract-ocr/tesseract
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Table 3: Accuracy scores on RVL-CDIP compared to RVL-CDIP-N.
RVL-CDIP RVL-CDIP RVL-CDIP-N RVL-CDIP-N RVL-CDIP-N RVL-CDIP-N

Model (reported) (achieved) micro micro w/Aug. macro macro w/Aug.

VGG-16 0.910 0.905 0.668 0.650 0.691 0.678
ResNet-50 0.911 0.900 0.598 0.606 0.615 0.621
GoogLeNet 0.884 0.871 0.602 0.594 0.613 0.591
AlexNet 0.900 0.885 0.567 0.559 0.571 0.551
LayoutLMv2 0.953 0.887 0.556 0.563 0.600 0.606
DiT-base 0.921 0.933 0.786 0.706 0.805 0.725

Note that t could be global or specific to each document category (as noted in [17]). Our goal is then
to measure how well the decision rule is able to correctly identify in- versus out-of-domain inputs
(i.e., this is a binary classification problem). While we could set a threshold (or thresholds) in our
analysis, we instead opt for a threshold-free evaluation that uses Area Under the Reciever Operating
Characteristic curve (AUC) scores to measure the separability of confidence scores between in-
and out-of-domain documents. The AUC score ranges between 0.5 and 1.0, where higher AUC
scores mean a model is more able to assign lower confidence to out-of-domain documents and
higher confidence to in-domain documents, while a low AUC score of 0.5 means the distributions of
confidence scores for in- and out-of-domain documents are roughly the same.

In our analysis, we compute the AUC between the confidence scores on RVL-CDIP test set and
RVL-CDIP-O, as well as RVL-CDIP-N and RVL-CDIP-O (the latter pair being a more challenging
task, as both RVL-CDIP-N and RVL-CDIP-O are out-of-distribution). Like accuracy, we report
both macro and micro AUC scores for each model, which is important for the RVL-CDIP-O data
because the distribution of confidence scores may vary between predicted label categories. Macro
AUC is computed by computing the AUC for each document category, where the samples used in the
computation of each category’s AUC score are those samples where the model predicted the sample
as that category. Then, each category’s AUC is averaged to yield the macro AUC score. We also
compute the false-positive rate at 95% true positive rate (FPR95), but these results are presented in
Appendix A.3. To compute FPR95, a threshold t is selected so that the true-positive rate is 95%, and
then compute the false-positive prediction rate for out-of-domain documents at this threshold. FPR95
is a lower-is-better metric.

4.3 Results

Table 3 displays accuracy on the RVL-CDIP test set as reported by prior work, as well as the scores
achieved by us. Table 3 also displays accuracy scores on our new RVL-CDIP-N test set. First, we
note that we achieve in-domain RVL-CDIP test scores that are close to the reported scores, with
the exception of LayoutLMv2. One difference between our setup and the LayoutLMv2 setup used
in [58] is the OCR engine used: we used the open-source Tesseract library whereas [58] used a
proprietary Microsoft Azure OCR model. In other words, OCR quality may have impacted our
trained LayoutLMv2 model.

4.3.1 Performance on RVL-CDIP-N

Table 3 shows that the models appear to underperform on the out-of-distribution document images
from the new RVL-CDIP-N set, with micro accuracy scores ranging in the mid 0.500s to 0.786 (in
the case of DiT). These accuracy scores are substantially lower than the scores on the in-distribution
RVL-CDIP test set. Even the top-performing DiT model sees an micro accuracy drop of roughly
15 percentage points. Examples of errors made by the DiT model on RVL-CDIP-N can be seen
in Figure 7 (bottom row). Using the Augraphy augmentation tool to introduce scanner-like noise
to the RVL-CDIP-N test images does little to impact accuracy, and we observe no clear trend
under this setting. In summary, we observe that models trained on RVL-CDIP exhibit substantially
lower accuracy scores on our out-of-distribution RVL-CDIP-N evaluation set than on the original
RVL-CDIP test set, indicating that these models do not generalize well to new data.

4.3.2 Performance on RVL-CDIP-O

Table 4 charts AUC scores on the task of out-of-domain detection for models trained on RVL-CDIP
but tested on the out-of-domain data from our new RVL-CDIP-O data. This table shows AUC scores
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Figure 5: Distributions of predicted labels for each supervised model on the out-of-domain RVL-
CDIP-O data.

Figure 6: Distribution of confidence scores using MSP (left) and Energy (right) for DiT on RVL-
CDIP-N and RVL-CDIP-O.

for model confidence score output on RVL-CDIP versus RVL-CDIP-O (T-O) as well as RVL-CDIP-N
versus RVL-CDIP-O (N-O); both of these settings explore a model’s ability to differentiate between
in-domain (RVL-CDIP and RVL-CDIP-N) versus out-of-domain (RVL-CDIP-O) data, but the N-O

setting is more challenging, as both RVL-CDIP-N and RVL-CDIP-O are out-of-distribution with
respect to RVL-CDIP. We see that most models achieve AUC scores on RVL-CDIP versus RVL-
CDIP-O (T-O) within the mid-to-high 0.800s or low 0.900s for both MSP and Energy confidence
scoring methods. In contrast, models perform much worse on the task of discriminating between RVL-
CDIP-N and RVL-CDIP-O (N-O)—with DiT dropping in performance by 16.6 points for MSP and
13.5 points for Energy—indicating that the document classification models have much more difficulty
detecting out-of-domain documents in the presence of in-domain but out-of-distribution documents.

Table 4: AUC scores on RVL-CDIP and RVL-
CDIP-O (T-O) and on RVL-CDIP-N and RVL-
CDIP-O (N-O) for MSP and Energy confidence
scoring methods.

T-O T-O N-O N-O

Model MSP Energy MSP Energy

VGG-16 0.881 0.923 0.649 0.648
ResNet-50 0.849 0.844 0.581 0.554
GoogLeNet 0.838 0.847 0.592 0.587
AlexNet 0.871 0.909 0.620 0.646
LayoutLMv2 0.842 0.849 0.620 0.662
DiT-base 0.894 0.888 0.728 0.753

Figure 6 casts light as to why, as we see that
there is a large amount of overlap between confi-
dence scores for RVL-CDIP-N and RVL-CDIP-
O documents for both MSP and Energy ap-
proaches using the DiT model. Similar plots
for the other models can be found in Figures
8–19 in Appendix A.4, where we also plot
model performance against confidence score
threshold. To correctly identify more out-of-
domain documents—ceteris paribus—we must
naturally increase confidence score thresholds.
Thus we observe in Figures 8–19 that classifi-
cation accuracy on RVL-CDIP-N naturally de-
creases as we increase the confidence threshold,
as more in-domain documents are mis-detected
as out-of-domain at higher confidence thresholds.
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y: out-of-domain
ŷ: scientific_rep. (0.902)

y: out-of-domain
ŷ: email (0.912)

y: out-of-domain
ŷ: resume (0.910)

y: out-of-domain
ŷ: handwritten (0.906)

y: handwritten
ŷ: memo (0.875)

y: resume
ŷ: news_article (0.895)

y: form
ŷ: budget (0.880)

y: invoice
ŷ: form (0.900)

Figure 7: DiT model mis-predictions. Top row: errors on the RVL-CDIP-O set. Bottom row: errors
on the RVL-CDIP-N set. True labels are indicated by y, while predicted labels are indicated with ŷ

(and confidence scores in parentheses).

We delve further into the predictions made by these models by investigating the distribution of labels
for the predictions on the RVL-CDIP-O test data: Figure 5 plots the predicted label distribution for
the data from RVL-CDIP-O. We observe several trends: most of the supervised models have relatively
higher amounts of predictions for advertisement, presentation, scientific_publication,
and resume labels, perhaps due to these categories having similar visual features to much of the RVL-
CDIP-O data. Examples of high-confidence predictions on RVL-CDIP-O can be seen in Figure 7 (top
row). Overall, our findings of model performance on differentiating between in- and out-of-domain
inputs show room for improvement in the case where both in- and out-of-domain documents are
out-of-distribution with respect to the original RVL-CDIP training set.

5 Conclusion

In this paper, we introduce new data for evaluating out-of-distribution performance on document
classification models trained on the popular RVL-CDIP benchmark. Our new out-of-distribution data
is composed of two types: RVL-CDIP-N, or data that do belong to one of the 16 in-domain document
categories in RVL-CDIP yet were obtained from a different distribution than the original RVL-CDIP
corpus; and RVL-CDIP-O, or out-of-domain data that do not belong to one of the 16 RVL-CDIP
label categories. We find that while models trained on RVL-CDIP perform well on the in-distribution
RVL-CDIP test data, they struggle comparatively on the out-of-distribution RVL-CDIP-N data as
well as at differentiating between the out-of-domain RVL-CDIP-O and in-domain RVL-CDIP-N data.

Analyzing model performance on out-of-distribution inputs is an important yet understudied problem,
but is a hurdle for developing robust, generalizable models. This seems to be the case in the document
classification field, where most analyses rely only on in-distribution and in-domain tests performed
on RVL-CDIP. Our hope is that our new out of distribution data—RVL-CDIP-N and RVL-CDIP-
O—provide researchers with a valuable resource for analyzing out-of-distribution performance on
document classifiers.
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