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Abstract

Zero-sum stochastic games have found important applications in a variety of fields,
from machine learning to economics. Work on this model has primarily focused on
the computation of Nash equilibrium due to its effectiveness in solving adversarial
board and video games. Unfortunately, a Nash equilibrium is not guaranteed to
exist in zero-sum stochastic games when the payoffs at each state are not convex-
concave in the players’ actions. A Stackelberg equilibrium, however, is guaranteed
to exist. Consequently, in this paper, we study zero-sum stochastic Stackelberg
games. Going beyond known existence results for (non-stationary) Stackelberg
equilibria, we prove the existence of recursive (i.e., Markov perfect) Stackelberg
equilibria (recSE) in these games, provide necessary and sufficient conditions for
a policy profile to be a recSE, and show that recSE can be computed in (weakly)
polynomial time via value iteration. Finally, we show that zero-sum stochastic
Stackelberg games can model the problem of pricing and allocating goods across
agents and time. More specifically, we propose a zero-sum stochastic Stackelberg
game whose recSE correspond to the recursive competitive equilibria of a large
class of stochastic Fisher markets. We close with a series of experiments that
showcase how our methodology can be used to solve the consumption-savings
problem in stochastic Fisher markets.

Min-max optimization has paved the way for recent progress in a variety of fields, from machine
learning to economics. These applications require computing solutions to a constrained min-max

optimization problem i.e., minx2X maxy2Y f(x,y), where the objective function f : X ⇥Y ! R
is continuous, and the constraint sets X ⇢ Rn and Y ⇢ Rm are nonempty and compact. When
f is convex-concave, and the constraint sets X and Y are convex, the seminal minimax theorem
[1, 2] holds, i.e., minx2X maxy2Y f(x,y) = maxy2Y minx2X f(x,y), and such problems can
be interpreted as computing a Nash equilibrium of a simultaneous-move min-max (or zero-sum)
game between an outer player x and an inner player y with respective payoff functions �f , f and
respective action sets X , Y , where the solutions (x⇤,y⇤) 2 X ⇥ Y are best responses to one another.

More generally, one can consider zero-sum stochastic games, played over an infinite discrete time
horizon N+. The game starts at some initial state S(0)

⇠ µ(0). At each subsequent time-step t 2 N+,
players encounter a new state s(t) 2 S. After taking their respective actions (x(t),y(t)) from their
respective action spaces X (s(t)) ✓ Rn and Y(s(t)) ✓ Rm, they receive payoffs r(s(t),x(t),y(t)),
and then either transition to a new state S(t+1)

⇠ p(· | s(t),x(t),y(t)) with probability �, or the game
ends with the remaining probability. The goal of the outer (resp. inner) player is to play a sequence
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of actions {x(t)
}t (resp. {y(t)

}t), that maximizes (resp. minimizes) their expected cumulative
discounted payoff (resp. loss) E

⇥P1
t=0 �

tr(S(t),x(t),y(t))
⇤
, fixing their opponent’s policy.

A (stationary) policy is a mapping from states to actions. When r(s,x,y) is bounded, continuous,
and concave-convex in (x,y), for all s 2 S, we are guaranteed the existence of a stationary policy

profile, i.e., a pair of policies ⇡x : S ! X , ⇡y : S ! Y for the outer and inner players, respectively,
specifying the actions taken at each state, with a unique value such that both players maximize their
expected payoffs, as a generalization of the minimax theorem holds [3]:1

min
⇡x2XS

max
⇡y2YS

E
" 1X

t=0

�tr(S(t),⇡x(S
(t)),⇡y(S

(t)))

#
= max

⇡y2YS
min

⇡x2XS
E
" 1X

t=0

�tr(S(t),⇡x(S
(t)),⇡y(S

(t)))

#

In other words, under the aforementioned assumptions, we are guaranteed the existence of a recursive

Nash equilibrium (sometimes called a Markov perfect Nash equilibrium [4]), a stationary policy
profile in which players not only best respond to one another, but they do so at every state of the
game. Additionally, when the rewards at each state are convex-concave, a recursive Nash equilibrium
can be computed in polynomial time by iterative application of the min-max operator [3]. Zero-sum
stochastic games generalize zero-sum games from a single state to multiple states, and have found
even more applications in a variety of fields [5].

Unfortunately, when the objective function in a min-max optimization problem is not convex-
concave, a minimax theorem is not guaranteed to hold, precluding the interpretation of the game as
simultaneous-move, and the guaranteed existence of Nash equilibrium. Nonetheless, the game can
still be viewed as a Stackelberg game, in which the outer player moves before the inner one. The
canonical solution concept in such games is Stackelberg equilibrium (SE). Moreover, in Stackelberg
games, the inner player’s actions can be constrained by the outer player’s choice, without impacting
existence [6]. The result is a min-max Stackelberg game: i.e., minx2X maxy2Y:h(x,y)�0 f(x,y)
where f, h : X ⇥Y ! R are continuous, and X ,Y are non-empty and compact. Even more problems
of interest can be captured by this model [7, 8, 9, 10].

One can likewise consider zero-sum stochastic Stackelberg games, which generalize both zero-sum
Stackelberg games and zero-sum stochastic games. Similar to zero-sum stochastic games, these
games are played over an infinite discrete time horizon N+, start at some state S(0)

⇠ µ(0) and
consist of nonempty and compact actions spaces X ⇢ Rn and Y ⇢ Rm2, a state-dependent payoff
function r(s,x,y), a transition probability p(s0 | s,x,y), and a discount rate �, but are in addition
augmented with a state-dependent (joint action) constraint function g(s,x,y), with two players that
seek to optimize their cumulative discounted payoffs, in expectation, while satisfying the constraint
g(s,x,y) � 0 at each state s 2 S. Applications of this model include autonomous driving [8,
10], reach-avoid problems in human-robot interaction [9], and robust optimization in stochastic
environments [7], and, as we show, economic markets.

While in stochastic games, players announce their policies simultaneously before play commences,
in stochastic Stackelberg games, the outer player, announces their (in general, non-stationary) policy:
i.e., the action they will take at each time step, first, after which the inner player announces theirs.
The canonical solution concept for such games is the Stackelberg equilibrium, which is guaranteed
to exist (in non-stationary policies) under mild assumptions [11, 6].

The computational complexity of non-stationary equilibrium policies in stochastic games can be
prohibitive, since even representing such policies in an infinite horizon setting is intractable. A
natural question to ask then is whether stationary equilibria exist in zero-sum Stackelberg games, i.e.,
stationary policy profiles at which the outer player maximizes their expected discounted cumulative
payoff while the inner player best responds. We call such policies recursive Stackelberg equilibria

(recSE) (or Markov perfect Stackelberg equilibria).

In this paper, we define and prove the existence of recSE in zero-sum stochastic Stackelberg games,
provide necessary and sufficient conditions for a policy profile to be a recSE, and show that a recSE
can be computed in (weakly) polynomial time via value iteration. We further show that zero-sum
stochastic Stackelberg games can be used to solve problems of pricing and allocating goods across

1Shapley’s original results, which concern state-dependent payoff functions that are bilinear in the outer and
inner players’ actions, extend directly to payoffs which are convex-concave in the players’ actions.

2To simplify notation, we drop the dependency of action spaces on states going forward, but our theory
applies in this more general setting.
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agents and time. In particular, we introduce stochastic Fisher markets, a stochastic generalization
of the Fisher market [12], and a special case of Friesen’s [13] financial market model, which itself
is a stochastic generalization of the Arrow and Debreu model of a competitive economy [14]. We
then prove the existence of recursive competitive equilibrium (recCE) [15] in this model, under the
assumption that consumers have continuous and homogeneous utility functions, by characterizing the
recCE of any stochastic Fisher market as the recSE of a corresponding zero-sum stochastic Stackelberg
game. Finally, we use value iteration to solve various stochastic Fisher markets, highlighting the
issues that value iteration can encounter, depending on the smoothness properties of the utilities.

Related Work Algorithms for min-max optimization problems (i.e., zero-sum games) with inde-
pendent strategy sets have been extensively studied [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] (for a summary see, Section G [6]). Goktas and Greenwald
studied min-max games with dependent strategy sets, proposing polynomial-time nested gradient
descent ascent (GDA) [6] and simultaneous GDA algorithms for such problems [40].

The computation of Stackelberg equilibrium in two-player stochastic Stackelberg games has been
studied in several interesting settings, in which the leader moves before the follower, but without
the leader’s actions impacting the followers’ choice sets. Bensoussan, Chen, and Sethi [41] study
continuous-time general-sum stochastic Stackelberg games with continuous action spaces, and prove
existence of a solution in this setting. Vorobeychik and Singh [11] consider a general-sum stochastic
Stackelberg game with finite state-action spaces and an infinite horizon. These authors show that
stationary SE policies do not exist in this very general setting, but nonetheless identify a subclass of
games, namely team (or potential) Stackelberg games for which stationary Stackelberg equilibrium
policies do exist. Vu et al. [42] study the empirical convergence of policy gradient methods in the
same setting as Vorobeychik and Singh [11], while Ramponi and Restelli [43] study non-stationary
equilibria in this same setting, assuming a finite horizon. Chang, Erera, and White [44] and Sengupta
and Kambhampati [45] consider a partially observable version of Vorobeychik and Singh’s [11]
model, and provide methods to compute Stackelberg equilibria in their setting.

Some recent research concerns one leader-many followers Stackelberg games. Vasal [46] studies
a discrete-time, finite horizon one leader-many follower stochastic Stackelberg game with discrete
action and state spaces, and provides algorithms to solve such games. DeMiguel and Xu [47] consider
a stochastic Stackelberg game-like market model with n leaders and m followers; they prove the
existence of a SE in their model, and provide (without theoretical guarantees) algorithms that converge
to such an equilibrium in experiments. Dynamic Stackelberg games [48] have been applied to a wide
range of problems, including security [46, 11], insurance provision [49, 50], advertising [51], robust
agent design [52], allocating goods across time intertemporal pricing [53].

The study of algorithms that compute competitive equilibria in Fisher markets was initiated by
Devanur et al., who provided a polynomial-time method for solving these markets assuming linear
utilities. More recently, there have been efforts to study markets in dynamic settings [55, 56, 6], in
which the goal is to either track the changing equilibrium of a changing market, or minimize some
regret-like quantity for the market. The models considered in these earlier works differ from ours as
they do not have stochastic structure and do not invoke a dynamic solution concept.

1 Preliminaries

Notation We use caligraphic uppercase letters to denote sets (e.g., X ); bold lowercase letters to
denote vectors (e.g., p,⇡); bold uppercase letters to denote matrices and vector-valued random
variables (e.g., X , �)—which one should be clear from context; lowercase letters to denote scalar
quantities (e.g., x, �); and uppercase letters to denote scalar-valued random variables (e.g., X,�).
We denote the ith row vector of a matrix (e.g., X) by the corresponding bold lowercase letter with
subscript i (e.g., xi). Similarly, we denote the jth entry of a vector (e.g., p or xi) by the corresponding
Roman lowercase letter with subscript j (e.g., pj or xij). We denote functions by a letter: e.g., f if
the function is scalar valued, and f if the function is vector valued. We denote the vector of ones of
size n by 1n. We denote the set of integers {1, . . . , n} by [n], the set of natural numbers by N, the
set of real numbers by R. We denote the postive and strictly positive elements of a set by a + and ++
subscript respectively, e.g., R+ and R++. We denote the orthogonal projection operator onto a set C
by ⇧C , i.e., ⇧C(x) = argminy2C kx� yk2. We denote by �n = {x 2 Rn

+ |
Pn

i=1 xi = 1}, and
by �(A), the set of probability measures on the set A.
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A stochastic Stackelberg game (S,X ,Y, µ(0), rx, ry, g, p, �) is a two-player game played over
an infinite discrete time horizon N+. At each time-step t 2 N+, the players, who we call the
outer- (resp. inner-) players, encounter a new state s 2 S, and choose an action to play from their
continuous set of actions X ⇢ Rn (resp. Y ⇢ Rm). Play initiates at a start state S(0) drawn from
a distribution µ(0) : S ! [0, 1]. At each state s 2 S the action x 2 X chosen by the outer player
determines the set of feasible actions {y 2 Y | g(s,x,y) � 0} available to the inner player, where
g : S ⇥ X ⇥ Y ! Rd. After the outer and inner players both make their moves, they receive payoffs
rx : S⇥X⇥Y ! R and ry : S⇥X⇥Y ! R, respectively, and the game either ends with probability
1� �, where � 2 (0, 1) is called the discount factor, or transitions to a new state s0 2 S , according
to a transition probability function p : S ⇥ S ⇥ X ⇥ Y ! [0, 1] s.t. p(s0 | s,x,y) 2 [0, 1] denotes
the probability of transitioning to state s0 2 S from state s 2 S when action profile (x,y) 2 X ⇥ Y

is chosen by the players.

In this paper, we focus on zero-sum stochastic Stackelberg games G(0) .
= (S,X ,Y, µ(0), r, g, p, �),

in which the outer player’s loss is the inner player’s gain, i.e., rx = �ry. A zero-sum stochastic
Stackelberg game reduces to zero-sum (simultaneous-move) stochastic game [3] in the special case
where g(s,x,y) � 0, for all state-action tuples (s,x,y) 2 S ⇥ X ⇥ Y . More generally, a policy
profile (⇡x,⇡y) 2 X

S
⇥ Y

S is said to be feasible if g(s,⇡x(s),⇡y(s)) � 0, for all states s 2 S.
To simplify notation, we introduce a function G : XS

⇥ Y
S
! R|S|⇥d such that G(⇡x,⇡y) =

(g(s,⇡x(s),⇡y(s)))s2S , and define feasible policy profiles as those (⇡x,⇡y) 2 X
S
⇥ Y

S s.t.
G(⇡x,⇡y) � 0. From now on, we assume:

Assumption 1.1. 1. For all states s 2 S , the functions r(s, ·, ·), g(s, ·, ·) are continuous in (x,y) 2
X ⇥ Y , and payoffs are bounded, i.e., krk1  rmax < 1, for some rmax 2 R+, 2. X ,Y are
non-empty and compact, and for all s 2 S and x 2 X there exists y 2 Y s.t. g(s,x,y) � 0.3

Given a zero-sum stochastic Stackelberg game G(0), the state-value function, v : S⇥X
S
⇥Y

S
! R,

and the action-value function, q : S ⇥ X ⇥ Y ⇥ X
S
⇥ Y

S
! R, respectively, are defined as:

v(s;⇡x,⇡y) = E⇡x,⇡y

S(t+1)⇠p(·|S(t),X(t),Y (t))

" 1X

t=0

�tr(S(t),X(t),Y (t)) | S(0) = s

#
(1)

q(s,x,y;⇡x,⇡y) = E⇡x,⇡y

S(t+1)⇠p(·|S(t),X(t),Y (t))

" 1X

t=0

�tr(S(t),X(t),Y (t)) | S(0) = s,X(0) = x,Y (0) = y

#

(2)

Again, to simplify notation, we write expectations conditional on X(t) = ⇡x(S(t)) and
Y (t) = ⇡y(S(t)) as E⇡x,⇡y , and denote the state- and action-value functions by v⇡x⇡y (s),
and q⇡x⇡y (s,x,y), respectively. Additionally, we let V = [�rmax/1��, rmax/1��]S be the
space of all state-value functions of the form v : S ! [�rmax/1��, rmax/1��], and we let
Q = [�rmax/1��, rmax/1��]S⇥X⇥Y be the space of all action-value functions of the form q :
S ⇥ X ⇥ Y ! [�rmax/1��, rmax/1��]. Note that by Assumption 1.1 the range of the state-
and action-value functions is [�rmax/1��, rmax/1��]. The cumulative payoff function of the game
u : XS

⇥ Y
S
! R is the total expected loss (resp. gain) of the outer (resp. inner) player, given by

u(⇡x,⇡y) = Es⇠µ(0)(s) [v
⇡x⇡y (s)].

The canonical solution concept for stochastic Stackelberg games is the Stackelberg equilibrium

(SE). A feasible policy profile (⇡⇤
x,⇡

⇤
y) 2 X

S
⇥ Y

S is said to be a Stackelberg equilibrium (SE) of
a zero-sum stochastic Stackelberg game G

(0) iff

max
⇡y2YS :G(⇡⇤

x,⇡y)�0
u (⇡⇤

x,⇡y)  u
�
⇡⇤
x,⇡

⇤
y

�
 min

⇡x2XS
max

⇡y2YS :G(⇡x,⇡y)�0
u (⇡x,⇡y) .

Note the strength of this definition, as it requires the constraints g(s,⇡x,⇡y) � 0 to be satisfied
at all states s 2 S, not only states which are reached with strictly positive probability. A SE is

3Note that this condition is weaker than Slater’s condition; it simply ensures the feasible action sets are
non-empty for the inner player at each state.
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guaranteed to exist in zero-sum stochastic Stackelberg games, under Assumption 1.1, as a corollary
of Goktas and Greenwald’s [6] Proposition B.2.; however, this existence result is non-constructive.4

In this paper, we study a Markov perfect refinement of SE, which we call recursive Stackelberg

equilibrium (recSE).
Definition 1.2 (Recursive Stackelberg Equilibrium (recSE)). A policy profile (⇡⇤

x,⇡
⇤
y) 2 S

X
⇥ S

Y

is a recursive Stackelberg equilibrium (recSE) iff, for all s 2 S , it holds that:

max
y2Y:g(s,⇡⇤

x(s),y)�0
q⇡

⇤
x⇡⇤

y (s,⇡⇤
x(s),y)  q⇡

⇤
x⇡⇤

y (s,⇡⇤
x(x),⇡

⇤
y(y))  min

x2X
max

y2Y:g(s,x,y)�0
q⇡

⇤
x⇡⇤

y (s,x,y).

Equivalently, a policy profile (⇡⇤
x,⇡

⇤
y) is a recSE if (⇡⇤

x(s),⇡
⇤
y(s)) is a SE with value v⇡

⇤
x⇡

⇤
y (s) at

each state s 2 S: i.e., v⇡
⇤
x⇡

⇤
y (s) = minx2X maxy2Y:g(s,x,y)�0 q⇡

⇤
x⇡

⇤
y (s,x,y), for all s 2 S .

Mathematical Preliminaries A probability measure q1 2 �(S) convex stochastically dominates

(CSD) q2 2 �(S) if
R
S v(s)q1(s)ds �

R
S v(s)q2(s)ds for all continuous, bounded, and convex

functions v on S. A transition function p is termed CSD convex in x if, for all � 2 (0, 1),
y 2 Y and any (s0,x0), (s†,x†) 2 S ⇥ X , with (s,x) = �(s0,x0) + (1� �)(s†,x†), it holds that
�p(· | s0,x0,y) + (1 � �)p(· | s†,x†,y) CSD p(· | s,x,y). A transition function p is termed
CSD concave in y if, for all � 2 (0, 1) and any (s0,y0), (s†,y†) 2 S ⇥ X ⇥ Y , with (s,y) =
�(s0,y0)+ (1��)(s†,y†), it holds that p(· | s,x,y) CSD �p(· | s0,x,y0)+ (1��)p(· | s†,x,y†).
A mapping L : A ! B is said to be a contraction mapping (resp. non-expansion) w.r.t. norm k·k

iff for all x,y 2 A, and for k 2 [0, 1) (resp. k = 1) such that kL(x)� L(y)k  k kx� yk. The
min-max operator minx2X maxy2Y : RX⇥Y

! R w.r.t. to sets X ,Y takes as input a function
f : X ⇥ Y ! R and outputs minx2X maxy2Y f(x,y). The generalized min-max operator

minx2X maxy2Y:g(x,y)�0 : RX⇥Y
! R w.r.t. to sets X ,Y and the function g : X ⇥ Y ! R takes

as input a function f : X ⇥ Y ! R and outputs minx2X maxy2Y:g(x,y)�0 f(x,y).

2 Properties of Recursive Stackelberg equilibrium

In this section, we show that a recSE exists in all zero-sum stochastic Stackelberg games.5 To
do so, we first associate an operator C : V ! V with any zero-sum stochastic Stackelberg
game G

(0), the fixed points of which satisfy Definition 1.2, and hence correspond to the value
function associated with a recSE of G

(0). We then show that this operator is a contraction
mapping, thereby establishing the existence of such a fixed point. This result generalizes Shap-
ley’s theorem on the existence of Markov perfect Nash equilibria in zero-sum stochastic games
[3]. Define C : V ! V for any zero-sum stochastic Stackelberg game G

(0) as the operator
(Cv) (s) = minx2X maxy2Y:g(s,x,y)�0 ES0⇠p(·|s,x,y) [r(s,x,y) + �v(S0)]. We first show that
the fixed points of C correspond to the recSE of the associated game.

Theorem 2.1. (⇡⇤
x,⇡

⇤
y) is a recSE of G(0) of v⇡x⇡y iff it induces a value function which is a fixed

point of C: i.e., (⇡⇤
x,⇡

⇤
y) is a Stackelberg equilbrium iff, for all s 2 S,

⇣
Cv⇡

⇤
x⇡

⇤
y

⌘
(s) = v⇡

⇤
x⇡

⇤
y (s).

The following technical lemma is crucial to proving that C is a contraction mapping. It tells us that
the generalized min-max operator is non-expansive; in other words, the generalized min-max operator
is 1-Lipschitz w.r.t. the sup-norm.
Lemma 2.2. Suppose that f, h : X ⇥Y ! R, g : X ⇥Y ! Rd are continuous functions, and X ,Y
are compact sets. Then

��minx2X maxy2Y:g(x,y)�0 f(x,y)�minx2X maxy2Y:g(x,y)�0 h(x,y)
��

 max(x,y)2X⇥Y |f(x,y)� h(x,y)|.

With the above lemma in hand, we can now prove that C is a contraction mapping.

Theorem 2.3. Consider the operator C associated with a stochastic Stackelberg game G
(0). Under

Assumption 1.1, C is a contraction mapping w.r.t. to the sup norm k.k1 with constant �.
4We note SE should technically be defined in terms of non-stationary policies; however, as we will show,

stationary policies suffice, since SE exist in stationary policies.
5All omitted results and proofs can be found in the appendix.
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Proof of Theorem 2.3. We will show that C is a contraction mapping, which then by Banach fixed
point theorem establish the result. Let v, v 0

2 V be any two state value functions and q, q 0 2 Q be
the respective associated action-value functions. We then have by Lemma 2.2:

kCv � Cv 0
k1  max

s2S

����min
x2X

max
y2Y:g(s,x,y)�0

q(s,x,y)� min
x2X

max
y2Y:g(s,x,y)�0

q 0(s,x,y)

���� (3)

 max
s2S

max
(x,y)2X⇥Y

|q(s,x,y)� q 0(s,x,y)| (4)

Replacing the definition of the state-action value function in the above, we get that C is a contraction
mapping since � 2 (0, 1):

 max
s2S

max
(x,y)2X⇥Y

���� E
S0⇠p(·|s,x,y)

[r(s,x,y) + �v(S0)]� E
S0⇠p(·|s,x,y)

[r(s,x,y) + �v 0(S0)]

���� (5)

 �max
s2S

max
(x,y)2X⇥Y

���� E
S0⇠p(·|s,x,y)

[v(S0)� v 0(S0)]

���� (6)

 �max
s2S

max
(x,y)2X⇥Y

|v(s)� v 0(s)| = � kv � v 0
k1 (7)

Given an initial state-value function v(0) 2 V , we define the value iteration process as v(t+1) =
Cv(t), for all t 2 N+ (Algorithm 2). One way to interpret v(t) is as the function that returns the value
v(t)(s) of each state s 2 S in the t-stage zero-sum stochastic Stackelberg game starting at the last
stage t and continuing until stage 0, with terminal payoffs given by v(0). The following theorem,
which is a consequence of Theorems 2.1 and 2.3, and the Banach fixed point theorem [57], not only
proves the existence of a recSE, but further provides us with a means of computing a recSE via value
iteration.
Theorem 2.4. Consider a zero-sum stochastic Stackelberg game G

(0). Under Assumption 1.1, G(0)

has a unique value function v⇡
⇤
x⇡

⇤
y associated with all recSE (⇡⇤

x,⇡
⇤
y), which can be computed by

iteratively applying C to any initial state-value function v(0) 2 V: i.e., limt!1 v(t) = v⇡
⇤
x⇡

⇤
y .

Remark 2.5. Unlike Shapley’s existence theorem for recursive Nash equilibria in zero-sum stochastic
games, Theorem 2.4 does not require the payoff function to be convex-concave. The only conditions
needed are continuity of the payoffs and constraints, and bounded payoffs. This makes the recSE a
potentially useful solution concept, even for non-convex-non-concave stochastic games.

Since a recSE is guaranteed to exist, and is by definition independent of the initial state dis-
tribution, we can infer that the recSE of any zero-sum stochastic Stackelberg game G

(0) =
(S,X ,Y, µ(0), r, g, p, �) is independent of the initial state distribution µ(0). Hence, in the remainder
of the paper, we denote zero-sum stochastic Stackelberg games by G

.
= (S,X ,Y, r, g, p, �).

Theorem 2.4 tells us that value iteration converges to the value function associated with a recSE.
Additionally, under Assumption 1.1, recSE is computable in (weakly) polynomial time.6

Theorem 2.6 (Convergence of Value Iteration). Suppose value iteration is run on input G. Let
(⇡⇤

x,⇡
⇤
y) be recSE of G with value function v⇡

⇤
x⇡

⇤
y . Under Assumption 1.1, if we initialize v(0)(s) = 0,

for all s 2 S , then for k �
1

1�� log rmax
✏(1��) , it holds that v(k)(s)� v⇡

⇤
x⇡

⇤
y (s)  ✏.

3 Subdifferential Envelope Theorems and Optimality Conditions for

Recursive Stackelberg Equilibrium

In this section, we derive optimality conditions for recursive Stackelberg equilibria. In particular, we
provide necessary conditions for a policy profile to be a recSE of any zero-sum stochastic Stackelberg
game, and show that under additional convexity assumptions, these conditions are also sufficient.

6This convergence is only weakly polynomial time, because the computation of the generalized min-max
operator applied to an arbitrary continuous function is an NP-hard problem; it is at least as hard as non-convex
optimization. If, however, we restrict attention to convex-concave stochastic Stackelberg games, then Stackelberg
equilibria are computable in polynomial time.

6



The Benveniste-Scheinkman theorem characterizes the derivative of the optimal value function
associated with a recursive optimization problem w.r.t. its parameters, when it is differentiable [58].
Our proofs of the necessary and sufficient optimality conditions rely on a novel subdifferential
generalization (Theorem C.2, Appendix C) of this theorem, which applies even when the optimal
value function is not differentiable. A consequence of our subdifferential version of the Benveniste-
Scheinkman theorem is that we can easily derive the first-order necessary conditions for a policy
profile to be a recSE of any zero-sum stochastic Stackelberg game G satisfying Assumption 1.1,
under standard regularity conditions.
Theorem 3.1. Consider a zero-sum stochastic Stackelberg game G, where X = {x 2 Rn

|

q1(x)  0, . . . , qp(x)  0} and Y = {y 2 Rm
| r1(y) � 0, . . . , rl(y) � 0} are convex. Let

Ls,x(y,�) = r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S
0,x)] +

Pd
k=1 �kgk(s,x,y) where Cv = v .

Suppose that Assumption 1.1 holds, and that 1. for all s 2

S, maxy2Y:g(s,x,y)�0

�
r(s,x,y) + � ES0⇠p(·|s,x,y) [v(S

0,x)]
 

is con-
cave in x, 2. rxr(s,x,y),rxg1(s,x,y), . . . ,rxgd(s,x,y),
ryr(s,x,y),ryg1(s,x,y), . . . ,rygd(s,x,y) exist, for all s 2 S,x 2 X ,y 2 Y ,
4. p(s0 | s,x,y) is continuous and differentiable in (x,y), and 5. Slater’s condition holds,
i.e., 8s 2 S,x 2 X , 9by 2 Y s.t. gk(s,x, by) > 0, for all k = 1, . . . , d and rj(by) > 0, for all
j = 1, . . . , l, and 9x 2 Rn s.t. qk(x) < 0 for all k = 1 . . . , p. Then, there exists µ⇤ : S ! Rp

+,
�⇤ : S ⇥ X ! Rd

+, and ⌫⇤ : S ⇥ X ! Rl
+ s.t. a policy profile (⇡⇤

x,⇡
⇤
y) 2 X

S
⇥ Y

S is a recSE of
G only if it satisfies the following conditions, for all s 2 S:

rxLs,⇡⇤
x(s)

(⇡⇤
y(s),�

⇤(s,⇡⇤
x(s))) +

pX

k=1

µ⇤
k(s)rxqk(⇡

⇤
x(s)) = 0 (8)

ryLs,⇡⇤
x(s)

(⇡⇤
y(s),�

⇤(s,⇡⇤
x(s))) +

lX

k=1

⌫⇤k(s,⇡
⇤
x(s))rxrk(⇡

⇤
y(s)) = 0 (9)

µ⇤
k(s)qk(⇡

⇤
x(s)) = 0 qk(⇡

⇤
x(s))  0 8k 2 [p] (10)

gk(s,⇡
⇤
x(s),⇡

⇤
y(s)) � 0 �⇤

k(s,⇡
⇤
x(s))gk(s,⇡

⇤
x(s),⇡

⇤
y(s)) = 0 8k 2 [d] (11)

⌫⇤k(s,⇡
⇤
x(s))rxrk(⇡

⇤
y(s)) = 0 rk(⇡

⇤
x(s)) � 0 8k 2 [l] (12)

Under the conditions of Theorem 3.1, if we additionally assume that for all s 2 S and x 2 X , both
r(s,x,y) and g1(s,x,y), . . . , gd(s,x,y) are concave in y, and p(s0 | s,x,y) is continuous, CSD
concave in y, and differentiable in (x,y), Equations (59) to (63) become necessary and sufficient
optimality conditions. For completeness, the reader can find the necessary and sufficient optimality
conditions for convex-concave stochastic Stackelberg games under standard regularity conditions in
Theorem C.3 (Appendix C). The proof follows exactly as that of Theorem 2.1.

4 Recursive Market Equilibrium

We now introduce an application of zero-sum stochastic Stackelberg games, which generalizes a
well known market model, the Fisher market [12], to a dynamic setting in which buyers not only
participate in markets across time, but their wealth persists. A (static) Fisher market consists of n
buyers and m divisible goods [12]. Each buyer i 2 [n] is endowed with a budget bi 2 Bi ✓ R+ and a
utility function ui : Rm

+ ⇥ Ti ! R, which is parameterized by a type ti 2 Ti that defines a preference
relation over the consumption space Rm

+ . Each good is characterized by a supply qj 2 Qj ⇢ R+.

An instance of a Fisher market is then a tuple M
.
= (n,m,U ,T , b, q), where U = {u1, . . . , un} is

a set of utility functions, one per buyer, b 2 Rn
+ is the vector of buyer budgets, and q 2 Rm

+ is the
vector of supplies. When clear from context, we simply denote M by (T , b, q).

A stochastic Fisher market with savings is a dynamic market in which each state corresponds
to a static Fisher market: i.e., each state s 2 S is characterized by a tuple s

.
= (T , b, q). At each

state, the market determines the prices p of the goods, while the buyers choose their allocations
X = (x1, . . . ,xn)

T
2 Rn⇥m

+ and potentially set aside some savings �i 2 [0, bi] to spend at some
future state. Once allocations, savings, and prices have been determined, the market terminates with
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probability 1� �, or it transitions to a new state s0 with probability �p(s0 | s,�), depending on the
buyers’ saving decisions.7 We denote a stochastic Fisher market by F

(0) .
= (n,m,U ,S, s(0), p, �).

Given a stochastic Fisher market with savings F (0) a recursive competitive equilibrium (recCE)

[15] is a tuple (X⇤,�⇤,p⇤) 2 Rn⇥m⇥S
+ ⇥ Rn⇥S

+ ⇥ Rm⇥S
+ , which consists of an allocation, savings,

and price system s.t. 1) the buyers are expected utility maximizing, constrained by their savings
and spending constraints, i.e., for all buyers i 2 [n], (x⇤

i ,�
⇤
i ) is an optimal policy that, for all states

s
.
= (T , b, q) 2 S, solves the consumption-savings problem, defined by the following Bellman

equations: for all s 2 S , ⌫i(s) =

max
(xi,�i)2Rm+1

+ :xi·p⇤(s)+�ibi

(
ui (xi, ti) + � E

(T 0,b0,q0)⇠p(·|s,(xi,X⇤
�i(s)),(�i,�⇤

�i(s)))
[⌫i(T

0, b0 + �i, q
0)]

)
,

where X⇤
�i, �⇤

�i denote the allocation and saving systems excluding buyer i; and 2) the market
clears in each state so that unallocated goods in each state are priced at 0, i.e., for all j 2 [m] and
s 2 S, p⇤j (s) > 0 =)

P
i2[n] x

⇤
ij(s) = qj and p⇤j (s) � 0 =)

P
i2[n] x

⇤
ij(s)  qj . By analogy

with subgame perfect equilibrium, we can view a recCE as a “submarket” perfect equilibrium, as a
recCE corresponds to a competitive equilibrium of the market starting from any state, i.e., buyers
are allocated expected discounted cumulative utility-maximizing goods starting at any state , and the
aggregate demand for any good is equal to its aggregate supply at all encountered markets.

The following theorem states that any recSE of a stochastic Fisher market with savings is in fact
a recCE. Since recSE are guaranteed to exist, recCE are also guaranteed to exist. As recSE, and
hence recCE, are independent of the initial market state, we denote any stochastic Fisher market with
savings by F

.
= (n,m,U ,S, p, �).

Theorem 4.1. A stochastic Fisher market with savings F in which U is a set of continuous and
homogeneous utility functions and the transition function is continuous in �i has at least one recCE.
Additionally, the recSE that solves the following Bellman equation corresponds to a recCE of F:

v(s) = min
p2Rm

+

max
(X,�)2Rn⇥(m+1)

+ :Xp+�b

X

j2[m]

qjpj +
X

i2[n]

(bi � �i) log(ui(xi, ti))

+� E
(T 0,b0,q0)⇠p(·|s,�)

[v(T 0, b0 + �, q0)] (13)

Remark 4.2. This result cannot be obtained by modifying the Lagrangian formulation, i.e., the
simultaneous-move game form, of the Eisenberg-Gale program, because the inner maximization
problem is convex-non-concave, while recursive Nash equilibria are guaranteed to exist in zero-sum
stochastic games only under the assumption of convex-concave payoffs [5].

5 Experiments

The zero-sum stochastic Stackelberg game associated with a stochastic Fisher market, can, in theory,
be solved via value iteration (Algorithm 1) assuming that one can compute the solution to the
min-max optimization in line 4 of Algorithm 1. However, the min-max optimization problem
which has to be solved at each step of value iteration is convex-non-concave. Specifically, theP

i2[n] (bi � �i) log(ui(xi, ti)) term renders the objective function , convex-non-concave. This
means that in general one is not guaranteed compute a globally optimal solution to the min-max
optimization problem in line 4 of Algorithm 1 and instead can only converge to a local min-max
solution with known (first-order) methods, e.g. nested gradient descent ascent [6]. Unfortunately, if
we are not able to compute a globally optimal solution to the generalized min-max optimization, our
guarantees for the convergence of value iteration do not apply. That said, gradient methods have been
observed to escape local solutions in many non-convex optimization problems (e.g., see [60, 61])
leading us to investigate how well we can solve the generalized min-max operator in Algorithm 1
using nested gradient descent ascent [6], and in turn how effectively we can implement value iteration
(Algorithm 1) in practice.

7In our model, which is consistent with the literature [59] 1. prices do not determine the next state since
market prices are set by a “fictional auctioneer,” not an actual market participant; 2. allocations do not determine
the next state. Only savings, which are forward-looking decisions, affect future states—budgets, specifically.
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Algorithm 1 Value Iteration for Stochastic Fisher Market

1: Initialize v(0) arbitrarily, e.g. v(0) = 0
2: for k = 1, . . . , Tv do

3: For all s 2 S , v(k+1)(T , b, q) =

4: min
p�0

max
(X,�)�0:Xp+�b

(
P

j2[m]

qjpj +
P

i2[n]

(bi � �i) log(ui(xi, ti)) + � E
⇥
v(k)(T 0, b0 + �, q0)

⇤
)

To do so, we computed the recursive Stackelberg equilibria of three different classes of stochastic
Fisher markets with savings.8 Specifically, we created markets with three classes of utility functions,
each of which endowed the state-value function with different smoothness properties. Let ti 2 Rm

be a vector of parameters, i.e., a type, that describes the utility function of buyer i 2 [n]. We
considered the following (standard) utility function classes: 1. linear: ui(xi) =

P
j2[m] tijxij ;

2. Cobb-Douglas: ui(xi) =
Q

j2[m] x
tij
ij ; and 3. Leontief: ui(xi) = minj2[m]

n
xij

tij

o
.

We ran two different experiments. First, we modeled a small stochastic Fisher market with savings
without interest rates. In this setting, buyers’ budgets, which are initialized at the start of the game,
persist across states, and are replenished by a constant amount with each state transition. Thus, the
buyers’ budgets from one state to the next are deterministic.

Second, we modeled a larger stochastic Fisher market with savings and probabilistic interest rates. In
this model, although buyers’ savings persist across states, they are nondeterministic, as they increase
or decrease based on the random movements of an interest rate with each state transition. More
specifically, we chose five different equiprobable interest rates (0.9, 1.0, 1.1, 1.2, and 1.5) to provide
buyers with more incentive to save as compared to the model without interest rates.

Since budgets are a part of the state space in stochastic Fisher markets, the state space is continuous;
so we attempted to estimate the value function at each iteration of value iteration by running linear
regression on a sample of state and associated min-max value pairs, finding a fit via linear regression
(e.g., [62]). To compute the min-max value of each state that we sampled, i.e., the solution to the
optimization problem in line 4 of Algorithm 1, we used nested gradient descent ascent [6] which
runs a step of gradient descent on the prices and a loop of gradient ascent on allocations and savings
repeatedly (Algorithm 3), where we computed gradients via auto-differentiation using JAX [63]
which we observed achieved better numerical stability than analytically derived gradients as can often
be the case with autodifferentiation [64].

In both experiments, to check whether the optimal value function was found, we measured the
exploitability of the market, meaning the distance between the recCE computed and the actual recCE.
To do so, we checked two conditions: 1) whether each buyer’s expected utility was maximized at
the computed allocation and savings, at the prices outputted by the algorithm, and 2) whether the
market always cleared. In both settings, we extracted the greedy policy from the value function
computed by value iteration, and unrolled it across time to obtain the greedy actions (X(t),�(t),p(t))
at each state s(t). We then computed the cumulative utility of these allocation and savings, i.e., for
all i 2 [n], ûi

.
=

PT
t=0 �

tui(x
(t)
i ). We compared these values to the expected maximum utility

u⇤
i , given the prices and the other buyers’ allocations computed by our algorithm. We report the

normalized distance between these two values, ûi and u⇤
i , which we call the normalized distance to

utility maximization (UM). For example, in the case of two buyers, the normalized distance to UM
= ||(û1,û2)�(u?

1 ,u
?
2)||2

||(u⇤
1 ,u

⇤
2)||2

. Finally, we also measured excess demand, which we took as the distance to

market clearance (MC), i.e., 1
T

PT
t=1||

P
i2[n] x

(t)
i � q(t)

||2.

In the experiment with smaller markets and without interest rates, Figure 1 depicts the average
value of the value function across a sample of states as it varies with time, and Table 1 records the
exploitability of the recCE found by nested GDA. For all three class of utility functions, not only do
the value functions converge, exploitability is also sufficiently minimized, as all the buyer utilities are
maximized and the market always clears.

8Our code can be found here, and details of our experimental setup can be found in Appendix E.
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Figure 1: The value function averaged
across budgets.

Utility
Class Distance to UM Distance to MC

Linear 0.011 0.010
Leontief 0.056 0.010

Cobb-Douglas 0.006 0.010
Table 1: Exploitability of recCE found by Nested GDA.

Table 2: Nested GDA in stochastic Fisher markets with savings but without interest rates.

Figure 2: The value function averaged
across budgets.

Utility
Class Distance to UM Distance to MC

Linear 0.040 0.009
Leontief 0.463 0.009

Cobb-Douglas 0.017 0.009
Table 3: Exploitability of recCE found by Nested GDA.

Table 4: Nested GDA in stochastic Fisher markets with savings and probabilistic interest rates.

In the experiment with larger markets and probabilistic interest rates (Figure 2, Table 3), in linear and
Cobb-Douglas markets, the value functions converge, and exploitability is sufficiently minimized.
In Leontief markets, however, although the value function converges and the markets almost clear,
the buyers’ utilities are not fully maximized, since the cumulative utilities they obtained are less
than half of their expected maximum utilities. The difficulty in this case likely arises from the fact
that the Leontief utility function is not differentiable, so the problem for Leontief markets is neither
smooth nor convex-concave, which makes it difficult, if not impossible, for nested GDA to find even
a stationary point of the objective of the min-max optimization problem in line 4 of Algorithm 1,
since gradient ascent on a function is not guaranteed to converge to a stationary point of that function
if it is non-convex-non-smooth [65].

6 Conclusion

In this paper, we proved the existence of recursive Stackelberg equilibria in zero-sum stochastic
Stackelberg games, provided necessary and sufficient conditions for a policy profile to be a recursive
Stackelberg equilibrium, and showed that a Stackelberg equilibrium can be computed in (weakly)
polynomial time via value iteration. Finally, we showed that recursive Stackelberg equilibria coincide
with recursive competitive equilibria in stochastic Fisher markets, and we used value iteration together
with nested GDA to solve for them. Future work in this space could try using deep reinforcement
learning methods to learn better (i.e., nonlinear) representations of the value functions. It is also
conceivable that deep reinforcement learning would be able to learn better policies, thereby resolving
the difficulties that our methods face due to non-smoothness and non-concavity have in solving for
global solutions of the min-max optimization problem in line 4 of Algorithm 1 .
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